Please use this identifier to cite or link to this item: http://ir-ithesis.swu.ac.th/dspace/handle/123456789/2979
Title: DETECTING SUSPICIOUS TRANSACTIONS ON BITCOIN NETWORKUSING UNSUPERVISED LEARNING
การตรวจจับธุรกรรมต้องสงสัยบนเครือข่ายบิทคอยน์ด้วยการเรียนรู้แบบไม่มีผู้สอน
Authors: YOSSAPOL WITAYANONT
ยศพล วิทยานนท์
Waraporn Viyanon
วราภรณ์ วิยานนท์
Srinakharinwirot University
Waraporn Viyanon
วราภรณ์ วิยานนท์
waraporn@swu.ac.th
waraporn@swu.ac.th
Keywords: Anomaly Detection
Unsupervised Learning
Bitcoin
Issue Date:  19
Publisher: Srinakharinwirot University
Abstract: This research is the study and development of unsupervised learning algorithms to detect suspicious entities on the Bitcoin network. The objective is to develop a practical model for detecting anomalies in the Bitcoin network. This study was divided into two tasks, which are transaction and wallet address. The statistical techniques are applied for feature engineering and a Histogram-based Outlier Score (HBOS) and Isolation Forest (IForest) algorithms are trained and evaluated. The evaluations utilized were visualization, dual, and known-thieves evaluations.  The result showed a similar detection for both algorithms. While HBOS has a higher wallet visualization score at 0.423, Isolation Forest yields better scores on transaction visualization, dual, and known-thieves evaluations with scores of 0.713, 0.681, and 0.035, respectively.
-
URI: http://ir-ithesis.swu.ac.th/dspace/handle/123456789/2979
Appears in Collections:Faculty of Science

Files in This Item:
File Description SizeFormat 
gs631130119.pdf2.31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.