Please use this identifier to cite or link to this item: http://ir-ithesis.swu.ac.th/dspace/handle/123456789/2750
Full metadata record
DC FieldValueLanguage
dc.contributorSUTIDA PATLERTSINen
dc.contributorสุธิดา พัฒเลิศสินธุ์th
dc.contributor.advisorSuchada Pongpraserten
dc.contributor.advisorสุชาดา พงษ์ประเสริฐth
dc.contributor.otherSrinakharinwirot Universityen
dc.date.accessioned2024-07-11T03:12:58Z-
dc.date.available2024-07-11T03:12:58Z-
dc.date.created2024
dc.date.issued24/5/2024
dc.identifier.urihttp://ir-ithesis.swu.ac.th/dspace/handle/123456789/2750-
dc.description.abstractLeibniz algebras, generalizations of Lie algebras, are characterized by their non-antisymmetric properties. In this study, we delve into the properties of decompositions within Leibniz algebras, drawing parallels with analogous results in Lie algebras. Our investigation extends to complete Leibniz algebras, focusing on the conditions governing their extensions. Similar to Lie algebras, we find that inner derivations play a pivotal role in characterizing complete Leibniz algebras. Specifically, it was revealed that the algebra of inner derivations of a Leibniz algebra can be decomposed into the sum of the algebra of left multiplications and a certain ideal. Moreover, the quotient of the algebra of derivations of the Leibniz algebra by this ideal yields a complete Lie algebra. The results further demonstrated that any derivation of a semisimple Leibniz algebra can be expressed as a combination of three derivations. Additionally, the properties of the algebra of inner derivations were explored in comparison to the algebra of central derivations. We also delve into the study of generalizations of derivations of Leibniz algebras.en
dc.description.abstract-th
dc.language.isoen
dc.publisherSrinakharinwirot University
dc.rightsSrinakharinwirot University
dc.subjectLeibniz algebraen
dc.subjectLie algebraen
dc.subjectDecompositionen
dc.subjectCentral derivationen
dc.subjectInner derivationen
dc.subject.classificationMathematicsen
dc.subject.classificationProfessional, scientific and technical activitiesen
dc.titleON THE DECOMPOSITION OF COMPLETE LEIBNIZ ALGEBRAen
dc.titleการแยกของพีชคณิตไลบ์นิทซ์แบบบริบูรณ์th
dc.typeDissertationen
dc.typeปริญญานิพนธ์th
dc.contributor.coadvisorSuchada Pongpraserten
dc.contributor.coadvisorสุชาดา พงษ์ประเสริฐth
dc.contributor.emailadvisorsuchadapo@swu.ac.th
dc.contributor.emailcoadvisorsuchadapo@swu.ac.th
dc.description.degreenameDOCTOR OF PHILOSOPHY (Ph.D.)en
dc.description.degreenameปรัชญาดุษฎีบัณฑิต (ปร.ด.)th
dc.description.degreelevel-en
dc.description.degreelevel-th
dc.description.degreedisciplineDepartment of Mathematicsen
dc.description.degreedisciplineภาควิชาคณิตศาสตร์th
Appears in Collections:Faculty of Science

Files in This Item:
File Description SizeFormat 
gs632120008.pdf1.14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.