

ON THE DECOMPOSITION OF COMPLETE LEIBNIZ ALGEBRA

Graduate School Srinakharinwirot University

การแยกของพีชคณิตไลบ์นิทซ์แบบบริบูรณ์

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปรัชญาดุษฎีบัณฑิต สาขาวิชาคณิตศาสตร์
คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
ปีการศึกษา 2566
ลิขสิทธิ์ของมหาวิทยาลัยศรีนครินทรวิโรฒ

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY
(Mathematics)
Faculty of Science, Srinakharinwirot University
2023
Copyright of Srinakharinwirot University

ON THE DECOMPOSITION OF COMPLETE LEIBNIZ ALGEBRA

BY

SUTIDA PATLERTSIN

HAS BEEN APPROVED BY THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT

 OF THE REQUIREMENTS FOR THE DOCTOR OF PHILOSOPHY IN MATHEMATICS AT SRINAKHARINWIROT UNIVERSITY(Assoc. Prof. Dr. Chatchai Ekpanyaskul, MD.)
Dean of Graduate School

ORAL DEFENSE COMMITTEE

Major-advisor
Chair
(Asst. Prof.Suchada Pongprasert)
(Assoc. Prof.Keng Wiboonton)
\qquad
(Assoc. Prof.Varanoot Khemmani)
\qquad Committee
(LecturerSermsri Thaithae)
\qquad Committee
(Asst. Prof.Jittinart Rattanamoong)

Title
Author
Degree
Academic Year
Thesis Advisor

ON THE DECOMPOSITION OF COMPLETE LEIBNIZ ALGEBRA SUTIDA PATLERTSIN

DOCTOR OF PHILOSOPHY 2023

Assistant Professor Suchada Pongprasert

Leibniz algebras, generalizations of Lie algebras, are characterized by their non-antisymmetric properties. In this study, we delve into the properties of decompositions within Leibniz algebras, drawing parallels with analogous results in Lie algebras. Our investigation extends to complete Leibniz algebras, focusing on the conditions governing their extensions. Similar to Lie algebras, we find that inner derivations play a pivotal role in characterizing complete Leibniz algebras. Specifically, it was revealed that the algebra of inner derivations of a Leibniz algebra can be decomposed into the sum of the algebra of left multiplications and a certain ideal. Moreover, the quotient of the algebra of derivations of the Leibniz algebra by this ideal yields a complete Lie algebra. The results further demonstrated that any derivation of a semisimple Leibniz algebra can be expressed as a combination of three derivations. Additionally, the properties of the algebra of inner derivations were explored in comparison to the algebra of central derivations. We also delve into the study of generalizations of derivations of Leibniz algebras.

Keyword : Leibniz algebra, Lie algebra, Decomposition, Central derivation, Inner derivation

ACKNOWLEDGEMENTS

I would like to express my gratitude to the following individuals and institutions:

Firstly, I am immensely thankful to Srinakharinwirot University for providing me with a scholarship and the opportunity to pursue further studies. The financial support I received played a crucial role in allowing me to focus on my academic endeavors.

I owe a great deal of appreciation to my advisor, Dr. Suchada Pongprasert, whose guidance, advice, and inspiration were instrumental throughout this study. Dr. Pongprasert's mentorship not only made research in this field enjoyable but also ensured that my work adhered to the highest standards of excellence.

I am also grateful to my committee member and Dr. Thitarie Rungratgasame, for their valuable feedback and insightful advice. Dr. Rungratgasame's input provided me with a fresh perspective on the topic and greatly contributed to the refinement of my work.

Furthermore, I extend my thanks to the Mathematics Department at North Carolina State University, particularly Dr. Kailash C. Misra, for affording me the opportunity to present my thesis abroad in the U.S. I am appreciative of Dr. Misra's time and prompt assistance in addressing any queries I had.

Last but certainly not least, I am deeply indebted to my family. Their unwavering support and encouragement have been the cornerstone of my journey. I am incredibly fortunate to have such a loving and supportive family, and I am proud to be a member of it.

TABLE OF CONTENTS

Page
ABSTRACT D
ACKNOWLEDGEMENTS E
TABLE OF CONTENTS F
CHAPTER 1 INTRODUCTION 7
CHAPTER 2 PRELIMINARIES 10
CHAPTER 3 DECOMPOSITIONS OF LEIBNIZ ALGEBRS 19
CHAPTER 4 COMPLETE LEIBNIZ ALGEBRAS 34
CHAPTER 5 GENERALIZATIONS OF DERIVATIONS OF LEIBNIZ ALGEBRAS 46
REFERENCES 50
Appendix A 52
VITA 55

CHAPTER 1
 INTRODUCTION

Lie algebras, introduced by Marius Sophus Lie in the 1870s, serve as fundamental mathematical structures for examining infinitesimal transformations. Lie theory permeates various mathematical disciplines, including harmonic analysis, algebraic topology, algebraic geometry, combinatorics, number theory, and physics (see, for example, (1), (2), (3), (4)). In 1989, Loday (5) noticed that the Chevalley-Eilenberg boundary map on the exterior can be lifted to the tensor algebra of a Lie algebra and introduced a finite dimensional algebra A over an algebraically closed field \mathbb{F} with a bilinear bracket to be a Leibniz algebra if it satisfies the Leibniz identity $[a,[b, c]]=[[a, b], c]$ $+[b,[a, c]]$ for all $a, b, c \in A$. Notably, a Leibniz algebra A aligns with a Lie algebra if and only if $[a, a]=0$ for every element $a \in A$. Given that Leibniz algebras extend Lie algebras, understanding their properties has become a focal point of research endeavors.

Similar to Lie algebras, derivations play a pivotal role in comprehending the structure and properties of Leibniz algebras. A linear transformation $\delta: A \rightarrow A$ is called a derivation of A if $\delta[x, y]=[\delta(x), y]+[x, \delta(y)]$ for all $x, y \in \mathrm{~A}$. The set of all derivations of A is denoted by $\operatorname{Der}(A)$. Notably, Meng (6) established in 1994 that if a Lie algebra $L=L_{1} \oplus L_{2}$, where L_{1} and L_{2} are ideals of L, then $\operatorname{Der}(\mathrm{L})=\operatorname{Der}\left(\mathrm{L}_{1}\right) \oplus \operatorname{Der}\left(\mathrm{L}_{2}\right)$. In Lie theory, specific types of Lie algebras, such as complete, nilpotent, simple, and semisimple Lie algebras, garner significant attention. A Lie algebra L is complete if its center is trivial and all derivations of L are inner. A Lie algebra L is nilpotent if $L^{m}=\{0\}$ for some positive integer m where $\mathrm{L}=\mathrm{L}^{1}, \mathrm{~L}^{i}=\left[\mathrm{L}, \mathrm{L}^{i-1}\right]$ for $i \geqslant 2$. L is a simple Lie algebra if L is non-abelian and contains no non-zero proper ideals, and L is semisimple if it is a direct sum of simple Lie algebras. Jacobson (7) proved in 1979 that all non-zero nilpotent Lie algebras are not complete. However, in 1994, Meng (6) demonstrated that all semisimple Lie algebras are complete. He also showed that a Lie algebra L is complete if and only if the holomorph of L, hol $(L)=L \oplus \operatorname{Der}(L)$, is a direct sum of L and the centralizer of L in the holomorph, i.e., hol $(\mathrm{L})=\mathrm{L} \oplus \mathrm{Z}_{\text {hol(L) }}(\mathrm{L})$.

The notion of complete Leibniz algebras was introduced in 2013 by Ancochea and Campoamor (8), with a definition identical to that of complete Lie algebras. However, Boyle, Misra, and Stitzinger (9) later refined this concept, introducing a different definition and showcasing a semisimple Leibniz algebra that did not adhere to the previous definition's completeness criterion. They instead defined a complete Leibniz algebra A as one in which the center of $A / \operatorname{Leib}(A)$ is trivial, and for every derivation δ of A, there exists $x \in A$ such that $\operatorname{im}\left(\delta-L_{x}\right) \subseteq$ Leib(A). Utilizing this new definition, some fundamental results from Lie theory carry over to Leibniz algebras. Specifically, it has been proven that all nilpotent Leibniz algebras are not complete, and all semisimple Leibniz algebras are complete. However, if A is a complete non-Lie Leibniz algebra, the holomorph of A is not the direct sum of A and $Z_{\text {hol(A) }}(A)$. Based on these findings, we will explore complete Leibniz algebras under the definition introduced by Boyle, Misra, and Stitzinger.

This report consists of five chapters. In chapter 2, we review important notions and results of Leibniz algebras. In chapter 3, we focus on the properties of derivations and ideals of Leibniz algebras. We define set / as the set of all derivations of a Leibniz algebra A whose image is a subset of $\operatorname{Leib}(A)$ and show that / is a characteristic ideal of A. We also prove that the algebra of inner derivations of a Leibniz algebra can be decomposed into the sum of the algebra of left multiplications and the ideal I. Then, we assume that the Leibniz algebra A is the direct sum of two ideals and study the properties of the decompositions of Leibniz algebras. We demonstrate that the algebra of derivations of a Leibniz algebra cannot be decomposed in the same manner as the algebra of derivations of a Lie algebra. We also provide an example to illustrate this point. Additionally, we study the properties of inner derivations of Leibniz algebras by comparing them with the set of central derivations, as done for Lie algebras by Tôgô in (10). In chapter 4, we prove that the direct sum of complete Leibniz algebras is also complete and any derivation of a semisimple Leibniz algebra can be written as a combination of three derivations in a different approach from Rakhimov, Masutova and Omirov (11). In (6), Meng showed that the Lie algebra of derivations of any complete Lie algebra is complete.

However, in (12) Kongsomprach, Pongprasert, Rungratgasame and Tiansa-ard showed that this result does not hold for some complete Leibniz algebras. We focus on Leibniz algebras with complete liezation and prove that the quotient of the Lie algebra of derivations of these Leibniz algebras by the ideal / is complete. This quotient algebra is isomorphic to the Lie algebra of derivations of the liezation. In the last chapter, we study some properties of generalized derivations of finite dimensional Lie algebras and investigate some analogues of those properties for Leibniz algebras. Throughout this work, all algebras are assumed to be finite dimensional over an algebraically closed field \mathbb{F} with characteristic zero.

CHAPTER 2

PRELIMINARIES

In this chapter, we review definitions and facts that will be needed later in our discussion.

Definition 2.1. (13) A Lie algebra L is a vector space over \mathbb{F} with a bilinear map [,]: $L \times L$ $\rightarrow L$ such that following axioms are satisfied:
(i) $[a, a]=0$ for all $a \in L$ and
(ii) $\quad[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0$ for all $a, b, c \in L \quad$ (Jacobi Identity).

Remark 2.2. For a Lie algebra L, let $a, b \in L$. By Definition 2.1 (i), we have

$$
\begin{aligned}
0 & =[a+b, a+b] \\
& =[a, a+b]+[b, a+b] \\
& =[a, a]+[a, b]+[b, a]+[b, b] \\
& =[a, b]+[b, a] .
\end{aligned}
$$

Thus, $[a, b]=-[b, a]$.
Moreover, for any $a, b, c \in L$, by Definition 2.1 (ii) we have

$$
0=[a,[b, c]]+[b,[c, a]]+[c,[a, b]] .
$$

Hence,

$$
[a,[b, c]]=-[c,[a, b]]-[b,[c, a]]=[[a, b], c]+[b,[a, c]] .
$$

Example 2.3. (14) Let $\mathrm{L}=\mathbb{R}^{3}$ and $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right), \in \mathrm{L}$. Define

$$
[x, y]=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right)
$$

Then L is a Lie algebra over \mathbb{F}.

Definition 2.4. (9) A (left) Leibniz algebra A is a vector space over \mathbb{F} with a bilinear map (called bracket) [,]: A $\times \mathrm{A} \rightarrow \mathrm{A}$ that satisfies the Leibniz identity

$$
[a,[b, c]]=[[a, b], c]+[b,[a, c]] \text { for all } a, b, c \in A \text {. }
$$

It is easy to see that all Lie algebras are Leibniz algebras, as the Jacobi identity can be rearranged to match the Leibniz identity, as observed in Remark 2.2. For a Leibniz algebra A, if $[a, a]=0$ for all $a \in A$, then axiom (i) holds, and hence A is a Lie algebra. Note that Definition 2.4 is for left Leibniz algebras. One can define right Leibniz algebras in a similar way. Following Barnes (15), throughout this work, we will focus on left Leibniz algebras.

Example 2.5. Let $\mathrm{A}=\operatorname{span}\{x, y, z\}$ with non-zero brackets defined by $[x, x]=z,[x, y]=y$ and $[y, x]=-y$. Let $a, b, c \in A$ such that

$$
\begin{array}{ll}
a=\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, & \\
b=b_{1} x+b_{2} y+b_{3} z, & \text { for } \alpha_{i}, b_{i}, y_{i} \in \mathbb{F}, 1 \leq i \leq 3 . \\
c=y_{1} x+\gamma_{2} y+\gamma_{3} z \quad
\end{array}
$$

Then

$$
\begin{aligned}
& {[a,[b, c]]=\left[a,\left[b_{1} x+b_{2} y+b_{3} z, y_{1} x+y_{2} y+y_{3} z\right]\right]} \\
& =\left[a,\left[\beta_{1} x+\beta_{2} y+\beta_{3} z, y_{1} x\right]+\left[\beta_{1} x+\beta_{2} y+\beta_{3} z, y_{2} y\right]\right. \\
& \left.+\left[B_{1} x+B_{2} y+B_{3} z, y_{3} z\right]\right] \\
& =\left[a,\left[\beta_{1} x, y_{1} x\right]+\left[\beta_{2} y, y_{1} x\right]+\left[\beta_{3} z, y_{1} x\right]+\left[\beta_{1} x, y_{2} y\right]+\left[B_{2} y, y_{2} y\right]\right. \\
& \left.+\left[\beta_{3} z, y_{2} y\right]+\left[B_{1} x, y_{3} z\right]+\left[B_{2} y, y_{3} z\right]+\left[\beta_{3} z, y_{3} z\right]\right] \\
& =\left[a, \beta_{1} y_{1}[x, x]+b_{2} y_{1}[y, x]+\beta_{3} y_{1}[z, x]+b_{1} y_{2}[x, y]+b_{2} y_{2}[y, y]\right. \\
& \left.+b_{3} y_{2}[z, y]+b_{1} y_{3}[x, z]+b_{2} y_{3}[y, z]+b_{3} y_{3}[z, z]\right] \\
& =\left[a,\left(B_{1} y_{1}\right) z-\left(b_{2} y_{1}\right) y+\left(B_{1} y_{2}\right) y\right] \\
& =b_{1} y_{1}[a, z]-b_{2} y_{1}[a, y]+b_{1} y_{2}[a, y] \\
& =\beta_{1} y_{1}\left[\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, z\right]-\beta_{2} y_{1}\left[\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, y\right] \\
& +b_{1} y_{2}\left[\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, y\right] \\
& =b_{1} y_{1}\left(\alpha_{1}[x, z]+\alpha_{2}[y, z]+\alpha_{3}[z, z]\right)-\beta_{2} y_{1}\left(\alpha_{1}[x, y]+\alpha_{2}[y, y]\right. \\
& \left.+\alpha_{3}[z, y]\right)+\beta_{1} y_{2}\left(\alpha_{1}[x, y]+\alpha_{2}[y, y]+\alpha_{3}[z, y]\right) \\
& =-\left(\alpha_{1} \beta_{2} y_{1}\right) y+\left(\alpha_{1} \beta_{1} y_{2}\right) y \\
& =\left(\alpha_{1} \beta_{1} y_{2}-\alpha_{1} \beta_{2} y_{1}\right) y \text {. }
\end{aligned}
$$

Similarly, we have

$$
[[a, b], c]+[b,[a, c]]=\left[\alpha_{1} \beta_{1} z-\alpha_{2} b_{1} y+\alpha_{1} \beta_{2} y, c\right]+\left[b,\left[\alpha_{1} y_{1} z-\alpha_{2} y_{1} y+\alpha_{1} y_{2} y\right]\right]
$$

$$
\begin{aligned}
& =\left(\alpha_{2} B_{1} y_{1}\right) y-\left(\alpha_{1} B_{2} y_{1}\right) y-\left(\alpha_{2} B_{1} y_{1}\right) y+\left(\alpha_{1} B_{1} y_{2}\right) y \\
& =\left(\alpha_{1} B_{1} y_{2}-\alpha_{1} B_{2} y_{1}\right) y .
\end{aligned}
$$

Thus the Leibniz identity holds, hence, A is a Leibniz algebra. In fact, A is not a Lie algebra since $[x, x]=z \neq 0$.

For subsets M and N of a Leibniz algebra A, we define the product of M and N to be the subspace spanned by all brackets $[a, b]$, where $a \in M$ and $b \in N$, denoted by $[M, N]$.

Definition 2.6. (9) A subspace M of a Leibniz algebra A is called a subalgebra of A if $[M, M] \subseteq M$. A subspace M of a Leibniz algebra A is called an ideal of A if $[M, A] \subseteq M$ and $[\mathrm{A}, \mathrm{M}] \subseteq M$.

For ideals M and N of a Leibniz algebra A, there are several ways to construct new ideals from M and N, similar to the case of Lie algebras. The sum and intersection of two ideals of a Leibniz algebra are also ideals. However, the product of two ideals does not necessarily result in an ideal, as demonstrated below.

Example 2.7. (16) Let $\mathrm{A}=\operatorname{span}\{x, a, b, c, d\}$ with non-zero brackets defined by $[a, b]=c$, $[b, a]=d,[x, a]=a=-[a, x],[x, c]=c,[x, d]=d,[c, x]=d,[d, x]=-d$. Let $M=\operatorname{span}\{a, c$, $d\}$ and $N=\operatorname{span}\{b, c, d\}$. Then M and N are ideals of A, but $[M, N]=\operatorname{span}\{c\}$ which is not an ideal of A.

Definition 2.8. (9) Let A be a Leibniz algebra. The left center of A is $Z^{\ell}(A)=\{x \in A \mid[x, a]=$ 0 for all $a \in A\}$. The right center of A is $Z^{r}(A)=\{x \in A \mid[a, x]=0$ for all $a \in A\}$. The center of A is $Z(A)=Z^{\ell}(A) \cap Z^{r}(A)$.

Given any Leibniz algebra A, we denote Leib(A) $=\operatorname{span}\{[x, x] \mid x \in A\}$. Clearly, $\operatorname{Leib}(A)=\{0\}$ if and only if A is a Lie algebra.

Example 2.9. Consider the Leibniz algebra $A=\operatorname{span}\{x, y, z\}$ with non-zero brackets defined by $[x, x]=z,[x, y]=y$ and $[y, x]=-y$. Then for all $a \in \mathrm{~A}$,

$$
[a, a]=\left[\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, \alpha_{1} x+\alpha_{2} y+\alpha_{3} z\right]=2 \alpha_{1} z+\alpha_{1} \alpha_{2} y-\alpha_{2} y_{1} y=2 \alpha_{1} z
$$

We can see that A is not a Lie algebra because Leib $(A)=\operatorname{span}\{z\}$.

Proposition 2.10. Let A be a Leibniz algebra. Then $Z(A)$ and $\operatorname{Leib}(A)$ are ideals of A. Moreover, $\operatorname{Leib}(A) \subseteq Z^{\ell}(A)$.

Proof. Let $a \in Z(A)$ and $b \in A$. Then $[a, b]=0=[b, a]$. This implies that $[Z(A), A] \subseteq Z(A)$ and $[A, Z(A)] \subseteq Z(A)$, hence, $Z(A)$ is an ideal of A. Let $x \in \operatorname{Leib}(A)$ and $y \in A$. Then there exist u $\in \mathrm{A}$ and $\alpha \in \mathbb{F}$ such that $x=\alpha[u, u]$. Consider the element $[y+x, y+x]-[y, y] \in \operatorname{Leib}(\mathrm{A})$, we have

$$
\begin{aligned}
\operatorname{Leib}(\mathrm{A}) \ni[y+x, y+x]-[y, y] & =[y, y+x]+[x, y+x]-[y, y] \\
& =[y, y]+[y, x]+[x, y+x]-[y, y] \\
& =[y, x]+[\alpha[u, u], y+x] \\
& =[y, x]+\alpha([u,[u, y+x]]-[u,[u, y+x]]) \\
& =[y, x] .
\end{aligned}
$$

Therefore, $[\mathrm{A}, \operatorname{Leib}(\mathrm{A})] \subseteq \operatorname{Leib}(\mathrm{A})$. Moreover, $[x, y]=[\alpha[u, u], y]=\alpha([u,[u, y]]-[u,[u, y]])=0 \in$ $\operatorname{Leib}(A)$ for all $y \in A$. Hence $\operatorname{Leib}(A) \subseteq Z^{\ell}(A)$ and Leib (A) is an ideal of A.

For any ideal M of a Leibniz algebra A, we define the quotient space by $\mathrm{A} / \mathrm{M}=$ $\{a+M \mid a \in A\}$ with the bracket $[x+M, y+M]=[x, y]+M$, for all $x, y \in A$.

Proposition 2.11. Let M be an ideal of Leibniz algebra A. Then A / M is a Leibniz algebra.
Proof. Observe that A / M is a subalgebra because for any $x, y \in \mathrm{~A}$,

$$
[x+M, y+M]=[x, y]+M \in \mathrm{~A} / M .
$$

Let $\alpha, b \in \mathbb{F}$ and $x, y, z \in \mathrm{~A}$. Then

$$
\begin{aligned}
& {[\alpha x+b y+M, z+M]=[\alpha x+b y, z]+M=\alpha[x, z]+b[y, z]+M,} \\
& {[x+M, \alpha y+b z+M]=[x, \alpha y+b z]+M=\alpha[x, y]+b[x, z]+M .}
\end{aligned}
$$

Thus, the bracket is bilinear. To check if the Leibniz identity is satisfied, we consider the following:

$$
[x+M,[y+M, z+M]]=[x+M,[y, z]+M]=[x,[y, z]]+M .
$$

We know that $[x,[y, z]]=[[x, y], z]+[y,[x, z]]$ since A is a Leibniz algebra. Thus the Leibniz identity holds. Now, we will check if the bracket is well defined. To do this, assume that $x+M=\tilde{x}+M$ and $y+M=\tilde{y}+M$. This implies that $\tilde{x}=x+i_{1}$ and $\tilde{y}=y+i_{2}$ for some i_{1}, i_{2} $\in M$. Then

$$
\begin{aligned}
{[\tilde{x}+M, \tilde{y}+M] } & =\left[x+i_{1}+M, y+i_{2}+M\right] \\
& =\left[x+i_{1}, y+i_{2}\right]+M \\
& =[x, y]+\left[i_{1}, y\right]+\left[x, i_{2}\right]+\left[i_{1}, i_{2}\right]+M .
\end{aligned}
$$

Here, $\left[i_{1}, y\right],\left[x, i_{2}\right]$ and $\left[i_{1}, i_{2}\right]$ are all in M since M is an ideal. Thus,

$$
[x, y]+\left[i_{1}, y\right]+\left[x, i_{2}\right]+\left[i_{1}, i_{2}\right]+M=[x, y]+M=[x+M, y+M] .
$$

Therefore, the bracket is indeed well-defined and A / M is a Leibniz algebra.

Proposition 2.12. Let A be a Leibniz algebra. Then Leib(A) is the minimal ideal of A such that $\mathrm{A} / \mathrm{Leib}(\mathrm{A})$ is a Lie algebra.

Proof. Suppose there exists an ideal S such that A / S is a Lie algebra. Then S must have the property that for all $x \in \mathrm{~A},[x, x] \in S$. This is only achievable if $S=\{0\}$ or $S \supseteq \operatorname{Leib}(\mathrm{~A})$. Thus, $\operatorname{Leib}(A)$ is the minimal ideal of A such that $A / \operatorname{Leib}(A)$ is a Lie algebra.

Definition 2.13. (9) Let A be a Leibniz algebra. A linear transformation $\delta: A \rightarrow A$ is a derivation of A if $\delta[a, b]=[\delta(a), b]+[a, \delta(b)]$ for all $a, b \in \mathrm{~A}$.

We denote $\operatorname{Der}(\mathrm{A})$ to be the set of all derivations of A with the commutator bracket $\left[\delta_{1}, \delta_{2}\right]:=\delta_{1} \circ \delta_{2}-\delta_{2} \circ \delta_{1}$ for any $\delta_{1}, \delta_{2} \in \operatorname{Der}(\mathrm{~A})$.

Proposition 2.14. (14) Let A be a Leibniz algebra. Then $\operatorname{Der}(\mathrm{A})$ is a Lie algebra under the commutator bracket.

Proof. Let A be a Leibniz algebra. Since $\operatorname{Der}(\mathrm{A})$ is closed under linear combinations, it is a subspace of $\mathrm{gl}(\mathrm{A})$, the Lie algebra of all linear transformations on A under the commutator bracket. Let $\delta_{1}, \delta_{2} \in \operatorname{Der}(\mathrm{~A})$. Then for all $x, y \in \mathrm{~A}$ we have

$$
\begin{aligned}
{\left[\delta_{1}, \delta_{2}\right][x, y]=} & \delta_{1}\left(\delta_{2}[x, y]\right)-\delta_{2}\left(\delta_{1}[x, y]\right) \\
= & \delta_{1}\left(\left[\delta_{2}(x), y\right]+\left[x, \delta_{2}(y)\right]\right)-\delta_{2}\left(\left[\delta_{1}(x), y\right]+\left[x, \delta_{1}(y)\right]\right) \\
= & \delta_{1}\left(\left[\delta_{2}(x), y\right]\right)+\delta_{1}\left(\left[x, \delta_{2}(y)\right]\right)-\delta_{2}\left(\left[\delta_{1}(x), y\right]\right)-\delta_{2}\left(\left[x, \delta_{1}(y)\right]\right) \\
= & {\left[\delta_{1}\left(\delta_{2}(x)\right), y\right]+\left[\delta_{2}(x), \delta_{1}(y)\right]+\left[\delta_{1}(x), \delta_{2}(y)\right]+\left[x, \delta_{1}\left(\delta_{2}(y)\right)\right] } \\
& -\left[\delta_{2}\left(\delta_{1}(x)\right), y\right]-\left[\delta_{1}(x), \delta_{2}(y)\right]-\left[\delta_{2}(x), \delta_{1}(y)\right]-\left[x, \delta_{2}\left(\delta_{1}(y)\right)\right] \\
= & {\left[\delta_{1}\left(\delta_{2}(x)\right), y\right]+\left[x, \delta_{1}\left(\delta_{2}(y)\right)\right]-\left[\delta_{2}\left(\delta_{1}(x)\right), y\right]-\left[x, \delta_{2}\left(\delta_{1}(y)\right)\right] } \\
= & {\left[\delta_{1} \delta_{2}(x), y\right]+\left[x, \delta_{1} \delta_{2}(y)\right]-\left[\delta_{2} \delta_{1}(x), y\right]-\left[x, \delta_{2} \delta_{1}(y)\right] } \\
= & {\left[\left[\delta_{1}, \delta_{2}\right](x), y\right]+\left[x,\left[\delta_{1}, \delta_{2}\right](y)\right] }
\end{aligned}
$$

which implies that $\left[\delta_{1}, \delta_{2}\right] \in \operatorname{Der}(\mathrm{A})$. Hence $\operatorname{Der}(\mathrm{A})$ is a subalgebra of the Lie algebra $\mathrm{gl}(\mathrm{A})$, and thus a Lie algebra.

Definition 2.15. (9) Let A be a Leibniz algebra. An ideal M of A is a characteristic ideal if $\delta(M) \subseteq M$ for all $\delta \in \operatorname{Der}(\mathrm{A})$.

As shown in (9), the ideals Leib(A) and $Z^{\ell}(A)$ are characteristic ideals. Let A be a Leibniz algebra. For any $a \in A$, we define the left multiplication operator $L_{a}: A \rightarrow A$ by $L_{a}(b)=[a, b]$ for all $b \in \mathrm{~A}$. Clearly, $L_{a} \in \operatorname{Der}(\mathbf{A})$ because for all $b, c \in A$ we have $L_{a}[b, c]=$ $[a,[b, c]]=[[a, b], c]+[b,[a, c]]=\left[L_{a}(b), c\right]+\left[b, L_{a}(c)\right]$.

For a Lie algebra L , a derivation $d: \mathrm{L} \rightarrow \mathrm{L}$ is inner if there exists $x \in \mathrm{~L}$ such that d $=\operatorname{ad}_{x}$ where $\operatorname{ad}_{x}: L \rightarrow L$ is defined by $\operatorname{ad}_{x}(y)=[x, y]$ for all $y \in \mathrm{~L}$. Several authors have adopted the same definition for inner derivations of Leibniz algebras. It is known that all derivations of simple Lie algebras are inner. However, as shown in (9) with this definition, there is a simple Leibniz algebra that contains an outer derivation. Hence we use the wider definition of inner derivations of Leibniz algebras given in (9).

Definition 2.16. (9) Let A be a Leibniz algebra. A derivation $\delta \in \operatorname{Der}(A)$ is said to be inner if there exists $x \in A$ such that $\operatorname{im}\left(\delta-L_{x}\right) \subseteq$ Leib(A).

Example 2.17. Consider the Leibniz algebra A with the ordered basis $B=\{x, y, z\}$ and non-zero brackets defined by $[x, x]=z,[x, y]=y$ and $[y, x]=-y$. Let $\delta \in \operatorname{Der}(A)$ and define the action of δ on the basis elements as follows:

$$
\begin{aligned}
& \delta(x)=\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, \\
& \delta(y)=b_{1} x+b_{2} y+b_{3} z \quad \text { and } \\
& \delta(z)=v_{1} x+\nu_{2} y+\nu_{3} z \quad \text { for } \alpha_{i}, b_{i}, v_{i} \in \mathbb{F}, 1 \leq i \leq 3 .
\end{aligned}
$$

Therefore, $[\delta]_{B}=\left[\begin{array}{lll}\alpha_{1} & b_{1} & r_{1} \\ \alpha_{2} & b_{2} & r_{2} \\ \alpha_{3} & b_{3} & r_{3}\end{array}\right]$. By the derivation property, we have

$$
\delta[\mathrm{x}, \mathrm{x}]=[\delta(\mathrm{x}), \mathrm{x}]+[\mathrm{x}, \delta(\mathrm{x})]
$$

$$
=\left[\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, x\right]+\left[x, \alpha_{1} x+\alpha_{2} y+\alpha_{3} z\right]
$$

$$
=\alpha_{1}[x, x]+\alpha_{2}[y, x]+\alpha_{1}[x, x]+\alpha_{2}[x, y]
$$

$$
=\alpha_{1} z-\alpha_{2} y+\alpha_{1} z+\alpha_{2} y
$$

$$
=2 \alpha_{1} z
$$

Since $[x, x]=z, 2 \alpha_{1} z=\delta[x, x]=\delta(z)=\nu_{1} x+\nu_{2} y+\gamma_{3} z$. Then we have $\nu_{1}=\nu_{2}=0$ and $\gamma_{3}=$ $2 \alpha_{1}$. Similarly, we have

$$
\begin{aligned}
b_{1} x+b_{2} y+b_{3} z=\delta(y) & =\delta[x, y] \\
& =[\delta(x), y]+[x, \delta(y)] \\
& =\left[\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, y\right]+\left[x, b_{1} x+b_{2} y+b_{3} z\right] \\
& =\alpha_{1}[x, y]+b_{1}[x, x]+b_{2}[x, y] \\
& =\alpha_{1} y+b_{1} z+b_{2} y .
\end{aligned}
$$

Then we have $\beta_{1}=\beta_{3}$ and $\alpha_{1}=0$. It follows that $\gamma_{3}=0$. Also, we have

$$
\begin{aligned}
0=\delta(0)=\delta[x, z] & =[\delta(x), z]+[x, \delta(z)] \\
& =\left[\alpha_{1} x+\alpha_{2} y+\alpha_{3} z, z\right]+\left[x, v_{1} x+v_{2} y+v_{3} z\right] \\
& =0+v_{1}[x, x]+v_{2}[x, y] \\
& =v_{1} z+v_{2} y
\end{aligned}
$$

which implies $\gamma_{1}=\gamma_{2}=0$. In addition, we have

$$
\begin{aligned}
-b_{1} x-b_{2} y-b_{3} z & =-\left(b_{1} x+b_{2} y+b_{3} z\right) \\
& =\delta(-y) \\
& =\delta[y, x] \\
& =[\delta(y), x]+[y, \delta(x)] \\
& =\left[b_{1} x+b_{2} y+b_{3} z, x\right]+\left[y, \alpha_{1} x+\alpha_{2} y+\alpha_{3} z\right] \\
& =b_{1}[x, x]+\beta_{2}[y, x]+\alpha_{1}[y, x] \\
& =b_{1} z-b_{2} y-\beta_{3} y
\end{aligned}
$$

which implies $B_{1}=B_{3}=0$.

$$
\begin{aligned}
0=\delta(0) & =\delta[z, x] \\
& =[\delta(z), x]+[z, \delta(x)] \\
& =\left[\nu_{1} x+\nu_{2} y+\nu_{3} z, x\right]+\left[z, \alpha_{1} x+\alpha_{2} y+\alpha_{3} z\right] \\
& =v_{1} z-v_{2} y
\end{aligned}
$$

which implies $\gamma_{1}=\gamma_{2}=0$.
Therefore, $[\delta]_{B}=\left[\begin{array}{ccc}0 & 0 & 0 \\ \alpha_{2} & b_{2} & 0 \\ \alpha_{3} & 0 & 0\end{array}\right]$

$$
=\alpha_{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\alpha_{3}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]+B_{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $\operatorname{Der}(\mathrm{A})=\operatorname{span}\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$, where

$$
\begin{aligned}
& \delta_{1}(x)=y, \delta_{1}(y)=0, \delta_{1}(z)=0, \\
& \delta_{2}(x)=z, \delta_{2}(y)=0, \delta_{2}(z)=0, \\
& \delta_{3}(x)=0, \delta_{3}(y)=y, \delta_{3}(z)=0 .
\end{aligned}
$$

Since $\operatorname{im}\left(\delta_{1}-L_{-\gamma}\right) \subseteq \operatorname{Leib}(\mathrm{A}), \operatorname{im}\left(\delta_{2}-L_{2}\right) \subseteq \operatorname{Leib}(\mathrm{A})$ and $\operatorname{im}\left(\delta_{3}-L_{x}\right) \subseteq \operatorname{Leib}(\mathrm{A}), \delta_{1}, \delta_{2}$ and δ_{3} are inner.

For a Leibniz algebra A, we define the ideals $A^{(1)}=A=A^{1}, A^{(i)}=\left[A^{(i-1)}, A^{(i-1)}\right]$ and $\mathbf{A}^{i}=\left[\mathbf{A}, \mathrm{A}^{i-1}\right]$ for $i \in \mathbb{Z}_{22}$. The Leibniz algebra is said to be solvable (resp. nilpotent) if $\mathrm{A}^{(m)}=$ $\{0\}$ (resp. $\mathbf{A}^{m}=\{0\}$) for some positive integer m. The maximal solvable (resp. nilpotent) ideal of A is called the radical (resp. nilradical) denoted by $\operatorname{rad}(\mathrm{A})$ (resp. nilrad(A)). A Leibniz algebra A is called simple if its ideals are only $\{0\}$, $\operatorname{Leib}(A), A$ and $[A, A] \neq$

Leib(A). A Leibniz algebra A is semisimple if $\operatorname{rad}(A)=$ Leib(A). We recall an analog of Levi's theorem for Leibniz algebras which will be used in this work.

Theorem 2.18. (17) Let A be a Leibniz algebra. Then there exists a subalgebra S (which is a semisimple Lie algebra) of A such that $A=S+\operatorname{rad}(A)$ and $S \cap \operatorname{rad}(A)=\{0\}$.

Corollary 2.19. Let A be a semisimple Leibniz algebra. Then there exists a semisimple Lie algebra S of A such that $A=S+\operatorname{Leib}(A)$.

CHAPTER 3

 DECOMPOSITIONS OF LEIBNIZ ALGEBRSLet $\operatorname{IDer}(\mathbf{A})$ be the set of all inner derivations of a Leibniz algebra A and $L(\mathrm{~A})=$ $\operatorname{span}\left\{L_{a} \mid a \in A\right\}$. It should be noted that $L(A) \subseteq I \operatorname{Der}(A) \subseteq \operatorname{Der}(A)$.

Proposition 3.1. Let A be a Leibniz algebra. Then $L(A)$ and $I \operatorname{Der}(A)$ are ideals of $\operatorname{Der}(A)$.
Proof. Let $L_{a} \in L(\mathbf{A})$ where $a \in \mathbf{A}$ and $d \in \operatorname{Der}(\mathbf{A})$, we have $\left[L_{a}, d\right](x)=L_{a}(d(x))-d\left(L_{a}(x)\right)=$ $[a, d(x)]-d[a, x]=[a, d(x)]-[d(a), x]-[a, d(x)]=L_{-d(a)}(x)$ for all $x \in A$. Then $\left[L_{a}, d\right]=L_{-d(a)}$. Hence, $L(A)$ is an ideal of $\operatorname{Der}(\mathbf{A})$. To show that $\operatorname{IDer}(\mathbf{A})$ is an ideal of $\operatorname{Der}(\mathbf{A})$. Let $d \in$ $\operatorname{Der}(\mathrm{A})$ and $\delta \in \operatorname{IDer}(\mathrm{A})$. Then there exist $b \in \mathrm{~A}$ such that $\operatorname{im}\left(\delta-L_{b}\right) \subseteq \operatorname{Leib}(\mathrm{A})$. For any $x \in$ A, we have

$$
\begin{aligned}
{[\delta, d](x) } & =\delta(d(x))-d(\delta(x)) \\
& =\delta(d(x))-L_{b}(d(x))+[b, d(x)]-d(\delta(x)) \\
& =\left(\delta-L_{b}\right)(d(x))+d([b, x])-[d(b), x]-d(\delta(x)) .
\end{aligned}
$$

Consider, $[\delta, d](x)+[d(b), x]=\left(\delta-L_{b}\right)(d(x))+d\left(L_{b}(x)\right)-d(\delta(x))$

$$
\begin{aligned}
& =\left(\delta-L_{b}\right)(d(x))-d\left(\left(\delta-L_{b}\right)(x)\right) \\
& \in \operatorname{Leib}(\mathbf{A}) .
\end{aligned}
$$

Thus, $\operatorname{im}\left([\delta, d]-L_{-d(b)}\right) \subseteq \operatorname{Leib}(A)$ which implies that $[\delta, d] \in \operatorname{IDer}(A)$. Similary, $[d, \delta] \in$ $\operatorname{IDer}(\mathrm{A})$. Hence $\operatorname{IDer}(\mathrm{A})$ is an ideal of $\operatorname{Der}(\mathrm{A})$.

By studying the set of left multiplications and the set of all inner derivations of the Leibniz algebra A, we became interested in the elements x such that the left multiplication L_{x} maps from A into $\operatorname{Leib}(A)$. So, we define the set $I_{A}=\left\{x \in A \mid \operatorname{im}\left(L_{X}\right) \subseteq\right.$ Leib $\left.(A)\right\}$. It is clear that Leib $(A) \subseteq I_{A}$. The following are easy but important observations.

Proposition 3.2. (18) Let A be a Leibniz algebra. Then I_{A} is a characteristic ideal of A.
Proof. To show that I_{A} is an ideal of A, let $x \in I_{A}$ and $a \in A$. Then for all $y \in A, L_{[x, a]}(y)=$ $[[x, a], y] \in \operatorname{Leib}(A)$ and $L_{[a, x]}(y)=[[a, x], y]=[a,[x, y]]-[x,[a, y]] \in \operatorname{Leib}(A)$, hence $[x, a],[a, x]$ $\in I_{A}$ which implies that I_{A} is an ideal of A. To show that I_{A} is a characteristic ideal, let $x \in I_{A}$
and $d \in \operatorname{Der}(\mathrm{~A})$. Then for all $y \in \mathrm{~A}, L_{d(x)}(y)=[d(x), y]=d[x, y]-[x, d(y)]=d\left(L_{x}(y)\right)-L_{x}(d(y))$ $\in \operatorname{Leib}(A)$ and hence $d(x) \in I_{A}$. This proves that I_{A} is a characteristic ideal of A.

Proposition 3.3. (18) Let A be a Leibniz algebra. Then $Z^{\ell}(A / \operatorname{Leib}(A)) \cong I_{A} / \operatorname{Leib}(A)$.
Proof. Clearly, $\operatorname{Leib}(A)$ is an ideal of I_{A}. Then $Z^{\ell}(A / \operatorname{Leib}(A))=\{x+\operatorname{Leib}(A) \mid[x+\operatorname{Leib}(A)$, $y+\operatorname{Leib}(A)]=\operatorname{Leib}(A)$ for all $y \in A\}=\{x+\operatorname{Leib}(A) \mid[x, y] \in \operatorname{Leib}(A)$ for all $y \in A\}$. By the trivial isomorphism φ defined by $\varphi(x+\operatorname{Leib}(A))=x+\operatorname{Leib}(A)$ for all $x+\operatorname{Leib}(A) \in$ $Z^{\ell}(A / \operatorname{Leib}(A))$, it follows that $Z^{\ell}(A / \operatorname{Leib}(A)) \cong I_{A} / \operatorname{Leib}(A)$.

It is known that $L(\mathrm{~A})$ forms a Lie algebra under the commutator bracket. The following result is easily derived.

Theorem 3.4. (18) Let A be a Leibniz algebra. Then $A / Z^{\ell}(A) \cong L(A)$.
Proof. Define $\varphi: \mathrm{A} \rightarrow L(\mathrm{~A})$ by $\varphi(x)=L_{x}$ for all $x \in \mathrm{~A}$. Then for any $x, y, z \in \mathrm{~A}$, we have $\varphi([x, y])(z)=L_{[x, y]}(z)=[[x, y], z]$ and $[\varphi(x), \varphi(y)](z)=\left[L_{x}, L_{y}\right](z)=L_{x} L_{y}(z)-L_{y} L_{x}(z)=[x,[y, z]]-$ $[y,[x, z]]=[[x, y], z]+[y,[x, z]]-[y,[x, z]]=[[x, y], z]$. Therefore, $\varphi([x, y])=[\varphi(x), \varphi(y)]$. Clearly, φ is onto and $\operatorname{ker}(\varphi)=\left\{x \in \mathrm{~A} \mid L_{x}=0\right\}=\{x \in \mathrm{~A} \mid[x, y]=0$ for all $y \in \mathrm{~A}\}=Z^{\ell}(\mathrm{A})$. Hence, $A / Z^{\ell}(A) \cong L(A)$.

The following is immediate from Proposition 3.3 and Theorem 3.4.

Corollary 3.5. Let A be a Leibniz algebra. Then $\mathrm{A} / I_{A} \cong L(\mathrm{~A} / \operatorname{Leib}(\mathrm{A}))$.

In addition to the elements that render the image of its left multiplication a subset of Leib(A), we also investigate the set of all derivations of a Leibniz algebra A whose image resides within Leib(A). We define the set $I=\{d \in \operatorname{Der}(\mathbf{A}) \mid \operatorname{im}(d) \subseteq \operatorname{Leib}(\mathrm{A})\}$. Clearly, $I \subseteq I \operatorname{Der}(\mathrm{~A}) \subseteq \operatorname{Der}(\mathrm{A})$.

Lemma 3.6. Let A be a Leibniz algebra. Then / is an ideal of $\operatorname{Der}(\mathrm{A})$.
Proof. Let $d \in I$ and $\delta \in \operatorname{Der}(A)$. Then $\operatorname{im}(d) \subseteq \operatorname{Leib}(A)$. Since $\operatorname{Leib}(A)$ is a characteristic ideals of \mathbf{A}, for any $x \in \mathbf{A},[d, \delta](x)=d(\delta(x))-\delta(d(x)) \in \operatorname{Leib}(\mathbf{A})$. This implies that $[/, \operatorname{Der}(\mathbf{A})]$ $\subseteq I$. Hence I is a ideal of $\operatorname{Der}(\mathrm{A})$.

The following theorem is one of our main results.

Theorem 3.7. (18) Let A be a Leibniz algebra. Then $\operatorname{IDer}(\mathrm{A})$ is an ideal of $\operatorname{Der}(\mathrm{A})$ and $I \operatorname{Der}(A)=L(A)+I$. Moreover, if $Z(A / L e i b(A))$ is trivial, then $L(A) \cap I=\{0\}$.

Proof. Let $d \in \operatorname{IDer}(\mathrm{~A})$. Then there exists $x \in \mathrm{~A}$ such that $\mathrm{im}\left(d-L_{x}\right) \subseteq \operatorname{Leib}(\mathrm{A})$. Then $d-L_{x}$ $\in I$ and hence $d \in L(A)+I$. This implies that $I \operatorname{Der}(A) \subseteq L(A)+I$. Since the reverse inclusion
 $L(\operatorname{Leib}(A))=\left\{L_{a} \mid a \in \operatorname{Leib}(A)\right\}=\{0\}$ because Leib $(A) \subseteq Z^{\ell}(A)$. Suppose that $Z(A / L e i b(A))$ is trivial. Let $L_{x} \in L(A) \cap I$. Then $[x, a] \in \operatorname{Leib}(A)$ for all $a \in A$. Thus $x+\operatorname{Leib}(A) \in$ $Z(A / \operatorname{Leib}(A))$ which implies that $x \in \operatorname{Leib}(A)$. Therefore, $L(A) \cap / \subseteq L(\operatorname{Leib}(A))=\{0\}$.

Example 3.8. Consider the Leibniz algebra $A=\operatorname{span}\{w, x, y, z\}$ with non-zero multiplications defined by $[w, w]=y$ and $[x, w]=z$. Clearly, Leib $(A)=\operatorname{span}\{y, z\}$. By direct calculation, we have that $\operatorname{Der}(A)=\operatorname{span}\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}\right\}$ where

$d_{1}(w)=w$,	$d_{1}(x)=0$,	$d_{1}(y)=2 y$,	$d_{1}(z)=z$,
$d_{2}(w)=x$,	$d_{2}(x)=0$,	$d_{2}(y)=z$,	$d_{2}(z)=0$,
$d_{3}(w)=y$,	$d_{3}(x)=0$,	$d_{3}(y)=0$,	$d_{3}(z)=0$,
$d_{4}(w)=z$,	$d_{4}(x)=0$,	$d_{4}(y)=0$,	$d_{4}(z)=0$,
$d_{5}(w)=0$,	$d_{5}(x)=x$,	$d_{5}(y)=0$,	$d_{5}(z)=z$,
$d_{6}(w)=0$,	$d_{6}(x)=y$,	$d_{6}(y)=0$,	$d_{6}(z)=0$,
$d_{7}(w)=0$,	$d_{7}(x)=z$,	$d_{7}(y)=0$,	$d_{7}(z)=0$.

Then we have $L(A)=\operatorname{span}\left\{d_{3}, d_{4}\right\}$ and $I=\operatorname{span}\left\{d_{3}, d_{4}, d_{6}, d_{7}\right\}$. Hence $\operatorname{IDer}(A)=\operatorname{span}\left\{d_{3}\right.$, $\left.d_{4}, d_{6}, d_{7}\right\}=L(A)+I$. Note that $Z(A / \operatorname{Leib}(A))=\operatorname{span}\{w+\operatorname{Leib}(A), x+\operatorname{Leib}(A)\}$ and $L(A) \cap$ $l=\operatorname{span}\left\{d_{3}, d_{4}\right\}$ in this case .

Example 3.9. Consider the Leibniz algebra $\mathrm{A}=\operatorname{span}\{x, y, z\}$ with non-zero multiplications defined by $[x, y]=y,[y, x]=-y$ and $[x, x]=z$. In this case, we have $\operatorname{Leib}(A)=\operatorname{span}\{z\}=$ $Z(A)$ and $Z(A / \operatorname{Leib}(A))$ is trivial. By direct calculation, we have that $\operatorname{Der}(A)=\operatorname{span}\left\{d_{1}, d_{2}\right.$, $\left.d_{3}\right\}=\mid \operatorname{Der}(\mathbf{A})$ where

$$
\begin{array}{lll}
d_{1}(x)=y, & d_{1}(y)=0, & d_{1}(z)=0, \\
d_{2}(x)=z, & d_{2}(y)=0, & d_{2}(z)=0, \\
d_{3}(x)=0, & d_{3}(y)=y, & d_{3}(z)=0 .
\end{array}
$$

Then we have $L(A)=\operatorname{span}\left\{d_{1}, d_{2}+d_{3}\right\}$ and $I=\operatorname{span}\left\{d_{2}\right\}$. Hence $\operatorname{IDer}(\mathbf{A})=L(\mathrm{~A})+I$ and $L(A) \cap I=\{0\}$.

Example 3.10. Consider the Leibniz algebra $A=\operatorname{span}\{x, y, z\}$ with non-zero multiplications defined by $[x, y]=y,[y, x]=-y$ and $[x, z]=z$. Clearly, $\operatorname{Leib}(A)=\operatorname{span}\{z\}$, $Z(A)=\{0\}$ and $Z(A / L e i b(A))$ is trivial. By direct calculation, we have that $\operatorname{Der}(A)=$ $\operatorname{span}\left\{d_{1}, d_{2}, d_{3}\right\}=I \operatorname{Der}(\mathrm{~A})$ where

$$
\begin{array}{lll}
d_{1}(x)=y, & d_{1}(y)=0, & d_{1}(z)=0, \\
d_{2}(x)=0, & d_{2}(y)=0, & d_{2}(z)=z, \\
d_{3}(x)=0, & d_{3}(y)=y, & d_{3}(z)=0 .
\end{array}
$$

Then we have $L(\mathbf{A})=\operatorname{span}\left\{d_{1}, d_{2}+d_{3}\right\}$ and $I=\operatorname{span}\left\{d_{2}\right\}$. Hence, $\operatorname{IDer}(\mathbf{A})=L(\mathbf{A})+I$ and $L(A) \cap I=\{0\}$ in this case.

Following the definition of the holomorph of a Lie algebra, the holomorph of the Leibniz algebra A is defined to be the vector space hol(A$):=\mathrm{A} \oplus \operatorname{Der}(\mathrm{A})$, with the bracket defined by $\left[x+\delta_{1}, y+\delta_{2}\right]=[x, y]+\delta_{1}(y)+\left[L_{x}, \delta_{2}\right]+\left[\delta_{1}, \delta_{2}\right]$ for all $x, y \in A$ and $\delta_{1}, \delta_{2} \in$ $\operatorname{Der}(\mathbf{A})$ (see (9)). By direct calculation, it is known that hol (\mathbf{A}) is a Leibniz algebra.

Proposition 3.11. Let A be a Leibniz algebra. Then

$$
\operatorname{hol}(\mathrm{A}) /\left(I_{\mathrm{A}} \oplus I\right) \cong \mathrm{A} / I_{\mathrm{A}} \oplus \operatorname{Der}(\mathrm{~A}) / I
$$

Proof. Since I_{A} and I are ideals of A and $\operatorname{Der}(A)$, respectively, we have $I_{A} \oplus I$ is an ideal of hol(A). By the trivial isomorphism φ defined by $\varphi\left(x+\delta+I_{A} \oplus I\right)=x+I_{A}+\delta+I$ for all $x+$ $\delta \in \operatorname{hol}(A)$, it follows that hol $(A) /\left(I_{A} \oplus I\right) \cong A / I_{A} \oplus \operatorname{Der}(A) / I$.

For two subspaces M and N of hol(A), the left centralizer of M in N is defined to be $Z^{\ell}{ }_{N}(M)=\{x \in N \mid[x, M]=0\}$. The following results were obtained in (9).

Proposition 3.12. (9) Let A be a Leibniz algebra. Then $Z_{\text {nol(A) }}^{\ell}(A)=\left\{x-L_{x} \mid x \in A\right\}$.

Proposition 3.13. (9) Let A be a Leibniz algebra. Then $A \cap Z_{\text {nol(A) }}^{\ell}(A)=Z^{\ell}(A)$.

Then the following follows immediately from Proposition 3.3 and Proposition 3.13.

Corollary 3.14. Let A be a Leibniz algebra. Then

$$
A / \operatorname{Leib}(A) \cap Z_{\text {nol (ALeib(A)) }}^{\ell}(A \operatorname{Leib}(A)) \cong I_{A} / \operatorname{Leib}(A) .
$$

Next, we study properties of the decompositions of Leibniz algebras. These results will also be useful for proving properties of complete Leibniz algebras in the next chapter. We assume the Leibniz algebra A is the direct sum of two ideals, i.e., $A=A_{1} \oplus A_{2}$ where A_{1} and A_{2} are ideals of A. In (6), Meng proved that for a Lie algebra L if $L=L_{1} \oplus L_{2}$ where L_{1} and L_{2} are ideals of L, then $Z(L)=Z\left(L_{1}\right) \oplus Z\left(L_{2}\right)$. Moreover, $\operatorname{Der}(L)=\operatorname{Der}\left(L_{1}\right) \oplus$ $\operatorname{Der}\left(\mathrm{L}_{2}\right)$ if $Z(\mathrm{~L})=\{0\}$. In the following theorems we obtain some analogous results for Leibniz algebras.

Theorem 3.15. Let the Leibniz algebra $A=A_{1} \oplus A_{2}$ where A_{1} and A_{2} are ideals of A. Then
(i) $\operatorname{Leib}(A)=\operatorname{Leib}\left(A_{1}\right) \oplus \operatorname{Leib}\left(A_{2}\right)$,
(ii) For any $a_{1} \in \mathrm{~A}_{1}$ and $a_{2} \in \mathrm{~A}$, if $a_{1}+a_{2} \in \operatorname{Leib}(\mathbf{A})$, then $a_{1} \in \operatorname{Leib}\left(\mathrm{~A}_{1}\right)$ and $a_{2} \in \operatorname{Leib}\left(\mathrm{~A}_{2}\right)$,
(iii) $\quad Z(A)=Z\left(A_{1}\right) \oplus Z\left(A_{2}\right)$,
(iv) $L(A)=L\left(A_{1}\right) \oplus L\left(\mathrm{~A}_{2}\right)$,
(v) $A^{2}=A_{1}^{2} \oplus A_{2}^{2}$,
(vi) $I_{A}=I_{A_{1}} \oplus I_{A_{2}}$.

Proof. (i) If $a \in \operatorname{Leib}\left(A_{1}\right) \cap \operatorname{Leib}\left(A_{2}\right)$, then $a \in A_{1} \cap A_{2}=\{0\}$ hence $a=0$ which implies $\operatorname{Leib}\left(\mathbf{A}_{1}\right) \cap \operatorname{Leib}\left(\mathrm{A}_{2}\right)=\{0\}$. Let $a \in \mathrm{~A}$. Then there exist $a_{1} \in \mathrm{~A}_{1}$ and $a_{2} \in \mathrm{~A}_{2}$ such that $a=a_{1}+$ a_{2}. Since $\left[A_{1}, A_{2}\right],\left[A_{2}, A_{1}\right] \subseteq A_{1} \cap A_{2}=\{0\}$, we have that

$$
\begin{aligned}
{[a, a] } & =\left[a_{1}+a_{2}, a_{1}+a_{2}\right] \\
& =\left[a_{1}, a_{1}\right]+\left[a_{1}, a_{2}\right]+\left[a_{2}, a_{1}\right]+\left[a_{2}, a_{2}\right] \\
& =\left[a_{1}, a_{1}\right]+\left[a_{2}, a_{2}\right] \\
& \in \operatorname{Leib}\left(\mathbf{A}_{1}\right)+\operatorname{Leib}\left(A_{2}\right) .
\end{aligned}
$$

Hence $\operatorname{Leib}(A)=\operatorname{span}\{[a, a] \mid a \in A\} \subseteq \operatorname{Leib}\left(A_{1}\right)+\operatorname{Leib}\left(A_{2}\right)$. Since the reverse inclusion is clear, we have that $\operatorname{Leib}(A)=\operatorname{Leib}\left(A_{1}\right) \oplus \operatorname{Leib}\left(A_{2}\right)$.
(ii) Let $a_{1} \in \mathrm{~A}_{1}$ and $a_{2} \in \mathrm{~A}_{2}$. Assume that $a_{1}+a_{2} \in \operatorname{Leib}(\mathbf{A})$. If $a_{1}+a_{2}=0$, then $a_{1}=-a_{2} \in \mathrm{~A}_{2}$. Since $A_{1} \cap A_{2}=\{0\}$, it follows that $a_{1}=a_{2}=0$. Suppose that $a_{1}+a_{2} \neq 0$. By (i), $a_{1}+a_{2} \in$ $\operatorname{Leib}(\mathbf{A})=\operatorname{Leib}\left(\mathbf{A}_{1}\right) \oplus \operatorname{Leib}\left(\mathbf{A}_{2}\right)$. There exist $b_{1} \in \operatorname{Leib}\left(\mathbf{A}_{1}\right)$ and $b_{2} \in \operatorname{Leib}\left(\mathbf{A}_{2}\right)$ such that $a_{1}+a_{2}$ $=b_{1}+b_{2}$. Thus, $a_{1}-b_{1}=b_{2}-a_{2} \in A_{1} \cap A_{2}=\{0\}$. Hence $a_{1}=b_{1} \in \operatorname{Leib}\left(A_{1}\right)$ and $a_{2}=b_{2} \in$ Leib(A_{2}).
(iii) Since $A_{1} \cap A_{2}=\{0\}, Z\left(\mathbf{A}_{1}\right) \cap Z\left(\boldsymbol{A}_{2}\right)=\{0\}$. Let $a_{1} \in Z\left(\mathbf{A}_{1}\right)$ and $a_{2} \in Z\left(\boldsymbol{A}_{2}\right)$. Let $b \in \boldsymbol{A}$. Then there exist $b_{1} \in \mathrm{~A}_{1}$ and $b_{2} \in \mathrm{~A}_{2}$ such that $b=b_{1}+b_{2}$. Then we have

$$
\begin{array}{rlr}
{\left[a_{1}+a_{2}, b\right]} & =\left[a_{1}+a_{2}, b_{1}+b_{2}\right] \\
& =\left[a_{1}, b_{1}\right]+\left[a_{2}, b_{1}\right]+\left[a_{1}, b_{2}\right]+\left[a_{2}, b_{2}\right] \\
& =\left[a_{1}, b_{1}\right]+\left[a_{2}, b_{2}\right] \quad & \left(\because\left[\mathrm{A}_{1}, \mathrm{~A}_{2}\right]=\{0\}\right) \\
& =0 . & \left(\because a_{1} \in Z\left(\mathbf{A}_{1}\right) \text { and } a_{2} \in Z\left(\mathbf{A}_{2}\right)\right) .
\end{array}
$$

Similarly, $\left[b, a_{1}+a_{2}\right]=\left[b_{1}+b_{2}, a_{1}+a_{2}\right]=\left[b_{1}, a_{1}\right]+\left[b_{2}, a_{2}\right]=0$. Then $a_{1}+a_{2} \in Z(A)$. Hence $Z\left(\mathrm{~A}_{1}\right) \oplus Z\left(\mathrm{~A}_{2}\right) \subseteq Z(\mathrm{~A})$. To show that $Z(\mathrm{~A}) \subseteq Z\left(\mathrm{~A}_{1}\right) \oplus Z\left(\mathrm{~A}_{2}\right)$, let $a \in Z(\mathrm{~A})$. Then there exist a_{1} $\in A_{1}$ and $a_{2} \in A_{2}$ such that $a=a_{1}+a_{2}$. For any $b_{1} \in A_{1}$, we have $\left[a_{1}, b_{1}\right]=\left[a-a_{2}, b_{1}\right]=\left[a, b_{1}\right]$ $-\left[a_{2}, b_{1}\right]=0$ and $\left[b_{1}, a_{1}\right]=\left[b_{1}, a-a_{2}\right]=\left[b_{1}, a\right]-\left[b_{1}, a_{2}\right]=0$ because $a \in Z(A)$ and $\left[A_{1}, A_{2}\right]=$ $\{0\}$. Hence $a_{1} \in Z\left(\mathbf{A}_{1}\right)$. Similarly, we have $a_{2} \in Z\left(A_{2}\right)$. Therefore, $Z(\mathbf{A})=Z\left(\mathbf{A}_{1}\right) \oplus Z\left(\mathbf{A}_{2}\right)$.
(iv) Let $a \in A$. Then $L_{a} \in L(\mathbf{A})$ and there exist $a_{1} \in \mathrm{~A}_{1}$ and $a_{2} \in \mathrm{~A}_{2}$ such that $a=a_{1}+a_{2}$. Thus, for any $x \in A$, we have $L_{a}(x)=L_{a_{1}+a_{2}}(x)=\left[a_{1}+a_{2}, x\right]=\left[a_{1}, x\right]+\left[a_{2}, x\right]=L_{a_{1}}(x)+L_{a_{2}}(x)=$ $L_{a_{1}}\left(x_{1}+x_{2}\right)+L_{a_{2}}\left(x_{1}+x_{2}\right)=L_{a_{1}}\left(x_{1}\right)+L_{a_{2}}\left(x_{2}\right)$ for some $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$. This implies that L_{a} $\in L\left(A_{1}\right)+L\left(A_{2}\right)$. It is clear that $L\left(A_{1}\right)+L\left(A_{2}\right) \subseteq L(A)$ and $L\left(A_{1}\right) \cap L\left(A_{2}\right)=\{0\}$. Hence $L(A)=$ $L\left(A_{1}\right) \oplus L\left(A_{2}\right)$.
(v) Let $a, b \in A$ and $\alpha \in \mathbb{F}$. Since $A=A_{1} \oplus A_{2}$, there exist $a_{1}, b_{1} \in A_{1}$ and $a_{2}, b_{2} \in A_{2}$ such that $a=a_{1}+a_{2}$ and $b=b_{1}+b_{2}$. Then $\alpha[a, b]=\alpha\left[a_{1}+a_{2}, b_{1}+b_{2}\right]=\left[\alpha a_{1}+\alpha a_{2}, b_{1}+b_{2}\right]=$ $\left[\alpha a_{1}, b_{1}\right]+\left[\alpha a_{1}, b_{2}\right]+\left[\alpha a_{2}, b_{1}\right]+\left[\alpha a_{2}, b_{2}\right]=\left[\alpha a_{1}, b_{1}\right]+\left[\alpha a_{2}, b_{2}\right] \in\left[A_{1}, A_{1}\right]+\left[A_{2}, A_{2}\right]=A_{1}^{2}+$ A_{2}^{2}. Thus, $A^{2} \subseteq A_{1}^{2}+A_{2}^{2}$. Clearly, $A_{1}^{2}+A_{2}^{2} \subseteq A^{2}$ and $A_{1}^{2} \cap A_{2}^{2}=\{0\}$. Hence $A^{2}=A_{1}^{2} \oplus A_{2}^{2}$. (vi) Observe that $I_{A_{1}}+I_{A_{2}} \subseteq I_{A}$ and $I_{A_{1}} \cap I_{A_{2}}$. $=\{0\}$. Let $x \in I_{A}$. Since $x \in A$, there exist $x_{1} \in A_{1}$ and $x_{2} \in \mathrm{~A}_{2}$ such that $x=x_{1}+x_{2}$. It follows that $L_{x_{1}}(\mathrm{~A})+L_{x_{2}}(\mathrm{~A})=L_{x_{1}+x_{2}}(\mathrm{~A})=L_{x}(\mathrm{~A}) \subseteq \operatorname{Leib}(\mathrm{A})$ $=\operatorname{Leib}\left(\mathrm{A}_{1}\right) \oplus \operatorname{Leib}\left(\mathrm{A}_{2}\right)$. By (ii), we have $L_{x_{i}}(\mathrm{~A}) \subseteq \operatorname{Leib}\left(\mathrm{A}_{\mathrm{i}}\right)$ for $i=1$, 2. Hence $I_{\mathrm{A}}=I_{\mathrm{A}_{1}} \oplus I_{\mathrm{A}_{2}}$.

Corollary 3.16. Let the Leibniz algebra $A=A_{1} \oplus A_{2}$ where A_{1} and A_{2} are ideals of A. Then

$$
Z(A / \operatorname{Leib}(A))=\{0\} \text { if and only if } Z\left(A_{i} / \operatorname{Leib}\left(A_{i}\right)\right)=\{0\} \text { for all } i=1,2 \text {. }
$$

Proof. By Theorem 3.15, we have

$$
Z(A / \operatorname{Leib}(A))=Z\left(\frac{A_{1} \oplus A_{2}}{\operatorname{Leib}\left(A_{1}\right) \oplus \operatorname{Leib}\left(\mathrm{A}_{2}\right)}\right) \cong Z\left(\mathrm{~A}_{1} / \operatorname{Leib}\left(\mathrm{A}_{1}\right)\right) \oplus Z\left(\mathrm{~A}_{2} / \operatorname{Leib}\left(\mathrm{A}_{2}\right)\right)
$$

Hence the result follows.

Let the Leibniz algebra $A=A_{1} \oplus A_{2}$ where A_{1} and A_{2} are ideals of A. For $\delta \in$ $\operatorname{Der}\left(\mathrm{A}_{1}\right)$, we can extend δ to be a derivation on A by defining $\delta\left(x_{1}+x_{2}\right)=\delta\left(\mathrm{x}_{1}\right)$ for any $x_{1} \in$ A_{1} and $x_{2} \in \mathrm{~A}_{2}$. Similarly, for $\delta \in \operatorname{Der}\left(\mathrm{A}_{2}\right)$, we can extend δ to be a derivation on A by defining $\delta\left(x_{1}+x_{2}\right)=\delta\left(x_{2}\right)$ for any $x_{1} \in \mathrm{~A}_{1}$ and $x_{2} \in \mathrm{~A}_{2}$. Hence, we can and do consider $\delta \in$
$\operatorname{Der}\left(\mathrm{A}_{1}\right)$ and $\delta \in \operatorname{Der}\left(\mathrm{A}_{2}\right)$ as derivations on A and $\operatorname{view} \operatorname{Der}\left(\mathrm{A}_{j}\right) \subseteq \operatorname{Der}(\mathrm{A})$ for $i=1$, 2. The following theorem is one of our main results.

Theorem 3.17. Let the Leibniz algebra $A=A_{1} \oplus A_{2}$ where A_{1} and A_{2} are ideals of A. Then

$$
\operatorname{Der}(\mathrm{A})=\left(\operatorname{Der}\left(\mathrm{A}_{1}\right)+I_{1}\right) \oplus\left(\operatorname{Der}\left(\mathrm{A}_{2}\right)+I_{2}\right.
$$

where

$$
\begin{aligned}
& I_{1}=\left\{\delta \in \operatorname{Der}(\mathrm{A}) \mid \delta\left(\mathrm{A}_{2}\right)=\{0\} \text { and } \delta\left(\mathrm{A}_{1}\right) \subseteq \mathrm{A}_{2} \cap Z(\mathrm{~A})\right\} \text { and } \\
& I_{2}=\left\{\delta \in \operatorname{Der}(\mathrm{A}) \mid \delta\left(\mathrm{A}_{1}\right)=\{0\} \text { and } \delta\left(\mathrm{A}_{2}\right) \subseteq \mathrm{A}_{1} \cap Z(\mathrm{~A})\right\} .
\end{aligned}
$$

Proof. First we observe that if $\delta \in\left(\operatorname{Der}\left(\mathrm{A}_{1}\right)+I_{1}\right) \cap\left(\operatorname{Der}\left(\mathrm{A}_{2}\right)+I_{2}\right)$, then $\delta \in\left(\operatorname{Der}\left(\mathrm{A}_{i}\right)+I_{i}\right), i=$ 1, 2. So $\delta(A) \subseteq \mathrm{A}_{1} \cap \mathrm{~A}_{2}=\{0\}$ which implies $\delta=0$ and hence $\left(\operatorname{Der}\left(\mathrm{A}_{1}\right) \oplus I_{1}\right) \cap\left(\operatorname{Der}\left(\mathrm{A}_{2}\right) \oplus I_{2}\right)$ $=\{0\}$. To show that $\operatorname{Der}(A) \subseteq\left(\operatorname{Der}\left(A_{1}\right)+I_{1}\right) \oplus\left(\operatorname{Der}\left(A_{2}\right)+I_{2}\right)$, let $0 \neq \delta \in \operatorname{Der}(A)$. Suppose there exists $x \in \mathrm{~A}_{1}$ such that $0 \neq \delta(x) \in \mathrm{A}_{2}$. Then we have that $\left[\delta(x), x_{1}\right]=0=\left[x_{1}, \delta(x)\right]$ for all $x_{1} \in A_{1}$. Thus, $\delta(x) \in Z\left(A_{1}\right) \subseteq Z(A)$ which implies that $\delta(x) \in Z(A) \cap A_{2}$. Similarly, if there exists $x \in \mathrm{~A}_{2}$ such that $0 \neq \delta(x) \in \mathrm{A}_{1}$, then $\delta(x) \in Z(\mathrm{~A}) \cap \mathrm{A}_{1}$. Set

$$
\begin{aligned}
& S_{11}=\left\{x_{1} \in A_{1} \mid \delta\left(x_{1}\right) \in A_{1}\right\}, \\
& S_{12}=\left\{x_{1} \in A_{1} \mid \delta\left(x_{1}\right) \in A_{2}\right\}, \\
& S_{21}=\left\{x_{2} \in A_{2} \mid \delta\left(x_{2}\right) \in A_{1}\right\}, \\
& S_{22}=\left\{x_{2} \in A_{2} \mid \delta\left(x_{2}\right) \in A_{2}\right\} .
\end{aligned}
$$

Clearly, $A_{1}=S_{11} \cup S_{12}, A_{2}=S_{21} \cup S_{22}, \delta\left(S_{11}\right) \subseteq A_{1}, \delta\left(S_{12}\right) \subseteq Z(A) \cap A_{2}, S_{11} \cap S_{12}=\{0\}, \delta\left(S_{21}\right)$ $\subseteq Z(A) \cap A_{1}, \delta\left(S_{22}\right) \subseteq A_{2}$ and $S_{21} \cap S_{22}=\{0\}$. For any $x=x_{1}+x_{2} \in A$ where $x_{1} \in A_{1}$ and $x_{2} \in$ A_{2} we define $\delta_{11}, \delta_{12}, \delta_{21}$ and δ_{22} as follows:

$$
\begin{aligned}
& \delta_{11}(x)=\delta\left(x_{1}\right) \text { if } x=x_{1} \in S_{11}, \\
& \delta_{12}(x)=\delta\left(x_{1}\right) \text { if } x=x_{1} \in S_{12}, \\
& \delta_{21}(x)=\delta\left(x_{2}\right) \text { if } x=x_{2} \in S_{21}, \\
& \delta_{22}(x)=\delta\left(x_{2}\right) \text { if } x=x_{2} \in S_{22},
\end{aligned}
$$

and $\delta_{i j}(x)=0$ otherwise, for $i, j=1,2$. Then we have that $\delta_{11}, \delta_{12}, \delta_{21}, \delta_{22} \in \operatorname{Der}(\mathrm{~A})$. In particular, $\delta_{11} \in \operatorname{Der}\left(\mathrm{~A}_{1}\right), \delta_{12} \in I_{1}, \delta_{21} \in I_{2}$ and $\delta_{22} \in \operatorname{Der}\left(\mathrm{~A}_{2}\right)$. By definition, any $\delta \in \operatorname{Der}(\mathrm{A})$ can be written as $\delta=\delta_{11}+\delta_{12}+\delta_{21}+\delta_{22}$. Hence we have $\operatorname{Der}(\mathrm{A}) \subseteq\left(\operatorname{Der}\left(\mathrm{A}_{1}\right)+I_{1}\right) \oplus\left(\operatorname{Der}\left(\mathrm{A}_{2}\right)+\right.$ $\left.I_{2}\right)$. Since the reverse inclusion is clear, we have $\operatorname{Der}(A)=\left(\operatorname{Der}\left(A_{1}\right)+I_{1}\right) \oplus\left(\operatorname{Der}\left(A_{2}\right)+I_{2}\right)$.

Corollary 3.18. Let the Leibniz algebra $A=A_{1} \oplus A_{2}$ where A_{1} and A_{2} are ideals of A. Then
(i) if $Z(A)=\{0\}$, then $\operatorname{Der}(A)=\operatorname{Der}\left(A_{1}\right) \oplus \operatorname{Der}\left(A_{2}\right)$,
(ii) if $\mathrm{A}^{2}=\mathrm{A}_{i}$ for all $i=1,2$, then $\operatorname{Der}(\mathrm{A})=\operatorname{Der}\left(\mathrm{A}_{1}\right) \oplus \operatorname{Der}\left(\mathrm{A}_{2}\right)$,
(iii) \quad if $Z(A) \cap A_{i} \neq\{0\}$ and $A_{j}^{2} \neq A_{j}$ for $i \neq j$, then $\operatorname{Der}(A) \neq \operatorname{Der}\left(A_{1}\right) \oplus \operatorname{Der}\left(A_{2}\right)$.

Proof. (i) Assume that $Z(A)=\{0\}$. Then we have $\left\{\delta \in \operatorname{Der}(A) \mid \delta\left(A_{2}\right)=\{0\}\right.$ and $\left.\delta\left(A_{1}\right)=\{0\}\right\}$ and $\left\{\delta \in \operatorname{Der}(\mathbf{A}) \mid \delta\left(\mathrm{A}_{1}\right)=\{0\}\right.$ and $\left.\delta\left(\mathrm{A}_{2}\right)=\{0\}\right\}$. Hence $I_{1}=\{0\}=I_{2}$ which implies $\operatorname{Der}(\mathrm{A})=$ $\operatorname{Der}\left(\mathrm{A}_{1}\right) \oplus \operatorname{Der}\left(\mathrm{A}_{2}\right)$.
(ii) If $\mathrm{A}_{i}^{2}=\mathrm{A}_{i}$ for all $i=1,2$, then for $\delta \in \operatorname{Der}(\mathrm{A})$ we have $\delta\left(\mathrm{A}_{i}\right)=\delta\left(\mathrm{A}_{i}^{2}\right)=\delta\left(\left[\mathrm{A}_{i}, \mathrm{~A}_{i}\right]\right)=\left[\delta\left(\mathrm{A}_{i}\right)\right.$, $\left.\mathrm{A}_{i}\right]+\left[\mathrm{A}_{i}, \delta\left(\mathrm{~A}_{i}\right)\right] \subseteq \mathrm{A}_{i}+\mathrm{A}_{i} \subseteq \mathrm{~A}_{i}$ for $i=1$, 2. This implies that $I_{i}=\{0\}$ for $i=1$, 2. Hence, $\operatorname{Der}(\mathrm{A})$ $=\operatorname{Der}\left(\mathrm{A}_{1}\right) \oplus \operatorname{Der}\left(\mathrm{A}_{2}\right)$.
(iii) Assume that $Z(A) \cap A_{1} \neq\{0\}$ and $A_{2}^{2} \neq A_{2}$. Then there exist $0 \neq x_{1} \in Z(A) \cap A_{1}$ and 0 $\neq x_{2} \in A_{2} \backslash A_{2}^{2}$. Suppose that $x_{2} \in A^{2}=A_{1}^{2} \oplus A_{2}^{2}$. Then $x_{2} \in A_{1}^{2} \cap A_{2} \subseteq A_{1} \cap A_{2}=\{0\}$. Thus, x_{2} $=0$ which is a contradiction. Hence $x_{2} \notin \mathrm{~A}^{2}$. Define $\delta: \mathrm{A} \rightarrow \mathrm{A}$ by $\delta\left(x_{2}\right)=x_{1}$ and $\delta(x)=0$ for all $x \neq x_{2}$. Clearly, for any $x, y \in \mathrm{~A}$ we have $[x, y] \neq x_{2}$ and hence $\delta[x, y]=0$. Consider

$$
\begin{aligned}
& x=x_{2}, y=x_{2},[\delta(x), y]+[x, \delta(y)]=\left[\delta\left(x_{2}\right), x_{2}\right]+\left[x_{2}, \delta\left(x_{2}\right)\right]=\left[x_{1}, x_{2}\right]+\left[x_{2}, x_{1}\right]=0, \\
& x=x_{2}, y \neq x_{2},[\delta(x), y]+[x, \delta(y)]=\left[\delta\left(x_{2}\right), y\right]+\left[x_{2}, \delta(y)\right]=\left[x_{1}, y\right]+\left[x_{2}, 0\right]=0, \\
& x \neq x_{2}, y=x_{2},[\delta(x), y]+[x, \delta(y)]=\left[\delta(x), x_{2}\right]+\left[x, \delta\left(x_{2}\right)\right]=\left[0, x_{2}\right]+\left[x, x_{1}\right]=0, \\
& x \neq x_{2}, y \neq x_{2},[\delta(x), y]+[x, \delta(y)]=[\delta(x), y]+[x, \delta(y)]=[0, y]+[x, 0]=0 .
\end{aligned}
$$

This implies $\delta[x, y]=[\delta(x), y]+[x, \delta(y)]$ for all $x, y \in A$. Thus, δ is a derivation of A. Since $\delta\left(\mathrm{A}_{1}\right)=\{0\}$ and $\delta\left(\mathrm{A}_{2}\right)=\operatorname{span}\left\{x_{1}\right\} \subseteq Z(\mathrm{~A}) \cap \mathrm{A}_{1}, \delta \in I_{2}$ which implies $\emptyset \neq I_{2} \neq\{0\}$. Hence $\operatorname{Der}(\mathrm{A}) \neq \operatorname{Der}\left(\mathrm{A}_{1}\right) \oplus \operatorname{Der}\left(\mathrm{A}_{2}\right)$.

Example 3.19. Consider the Leibniz algebra $A=A_{1} \oplus A_{2}$ where $A_{1}=\operatorname{span}\{x, y, z\}$ and $A_{2}=$ $\operatorname{span}\{a, b, c\}$ with the non-zero multiplications in A given by $[x, z]=\alpha z, \alpha \in \mathbb{F} \backslash\{0\},[x, y]=$ $y,[y, x]=-y,[a, a]=c,[a, b]=b$ and $[b, a]=-b$. By direct calculations, we have that $\operatorname{Der}(\mathrm{A})=\operatorname{span}\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}\right\}$ where

$$
\begin{array}{lllll}
\delta_{1}(x)=y, & \delta_{1}(y)=0, & \delta_{1}(z)=0, & \delta_{1}(a)=0, & \delta_{1}(b)=0,
\end{array} \delta_{1}(c)=0,0, ~\left(z, ~ \delta_{2}(a)=0, \quad \delta_{2}(b)=0, \quad \delta_{2}(c)=0, ~ \$\right.
$$

$$
\begin{array}{llllll}
\delta_{3}(x)=0, & \delta_{3}(y)=0, & \delta_{3}(z)=z, & \delta_{3}(a)=0, & \delta_{3}(b)=0, & \delta_{3}(c)=0, \\
\delta_{4}(x)=0, & \delta_{4}(y)=0, & \delta_{4}(z)=0, & \delta_{4}(a)=b, & \delta_{4}(b)=0, & \delta_{4}(c)=0, \\
\delta_{5}(x)=0, & \delta_{5}(y)=0, & \delta_{5}(z)=0, & \delta_{5}(a)=c, & \delta_{5}(b)=0, & \delta_{5}(c)=0, \\
\delta_{6}(x)=0, & \delta_{6}(y)=0, & \delta_{6}(z)=0, & \delta_{6}(a)=0, & \delta_{6}(b)=b, & \delta_{6}(c)=0, \\
\delta_{7}(x)=c, & \delta_{7}(y)=0, & \delta_{7}(z)=0, & \delta_{7}(a)=0, & \delta_{7}(b)=0, & \delta_{7}(c)=0 .
\end{array}
$$

In this case, $Z(A)=\operatorname{span}\{c\}$. Hence, $\operatorname{Der}\left(\mathrm{A}_{1}\right)=\operatorname{span}\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}, \operatorname{Der}\left(\mathrm{A}_{2}\right)=\operatorname{span}\left\{\delta_{4}, \delta_{5}, \delta_{6}\right\}$ and $\delta_{7} \in I_{1}$. Note that and $Z(A) \cap A_{2}=\operatorname{span}\{c\} \neq\{0\}$ and $A_{1}^{2}=\operatorname{span}\{y, z\} \neq A_{1}$.

Example 3.20. Consider the Leibniz algebra $\mathbf{A}=\mathrm{A}_{1} \oplus \mathrm{~A}_{2}$ where $\mathrm{A}_{1}=\operatorname{span}\{x, y, z\}$ and $\mathbf{A}_{2}=$ $\operatorname{span}\{a, b, c\}$ with non-zero brackets defined by $[x, z]=2 z, \alpha \in \mathbb{F},[y, y]=z,[x, y]=y,[y, x]$ $=-y,[a, c]=\alpha c, \alpha \in \mathbb{F},[a, b]=b$ and $[b, a]=-b$. Observe that $Z(A)=\{0\}$. By direct calculations, we can see that $\operatorname{Der}(\mathrm{A})=\operatorname{span}\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}\right\}$ where

$\delta_{1}(x)=y$,	$\delta_{1}(y)=-z$,	$\delta_{1}(z)=0$,	$\delta_{1}(a)=0$,	$\delta_{1}(b)=0$,	$\delta_{1}(c)=0$,
$\delta_{2}(x)=z$,	$\delta_{2}(y)=y$,	$\delta_{2}(z)=2 z$,	$\delta_{2}(a)=0$,	$\delta_{2}(b)=0$,	$\delta_{2}(c)=0$,
$\delta_{3}(x)=0$,	$\delta_{3}(y)=0$,	$\delta_{3}(z)=0$,	$\delta_{3}(a)=b$,	$\delta_{3}(b)=0$,	$\delta_{3}(c)=0$,
$\delta_{4}(x)=0$,	$\delta_{4}(y)=0$,	$\delta_{4}(z)=0$,	$\delta_{4}(a)=0$,	$\delta_{4}(b)=b$,	$\delta_{4}(c)=0$,
$\delta_{5}(x)=0$,	$\delta_{5}(y)=0$,	$\delta_{5}(z)=0$,	$\delta_{5}(a)=0$,	$\delta_{5}(b)=0$,	$\delta_{5}(c)=c$.

In this case, $\operatorname{Der}\left(\mathrm{A}_{1}\right)=\operatorname{span}\left\{\delta_{1}, \delta_{2}\right\}$ and $\operatorname{Der}\left(\mathrm{A}_{2}\right)=\operatorname{span}\left\{\delta_{3}, \delta_{4}, \delta_{5}\right\}$. Thus, $\operatorname{Der}(\mathrm{A})=\operatorname{Der}\left(\mathrm{A}_{1}\right)$ $\oplus \operatorname{Der}\left(\mathrm{A}_{2}\right)$.

In (6), Meng proved that for a Lie algebra $L=L_{1} \oplus L_{2}$ where L_{1} and L_{2} are ideals of L and for any subspace M of L such that $L_{1} \subseteq M, M=L_{1} \oplus\left(L_{2} \cap M\right)$ and M is an ideal of L if and only if $L_{2} \cap M$ is an ideal of L_{2}. The following lemma is the analog for Leibniz algebras.

Lemma 3.21. Let the Leibniz algebra $A=A_{1} \oplus A_{2}$ where A_{1} and A_{2} are ideals of A.
Let M be a subalgebra of A and $A_{1} \subseteq M$. Then

$$
M=\mathrm{A}_{1} \oplus\left(\mathrm{~A}_{2} \cap M\right)
$$

and M is an ideal of A if and only if $A_{2} \cap M$ is an ideal of A_{2}.
Proof. It is clear that $M=\mathrm{A} \cap M=\left(\mathrm{A}_{1} \oplus \mathrm{~A}_{2}\right) \cap M=\mathrm{A}_{1} \oplus\left(\mathrm{~A}_{2} \cap M\right)$ because $\mathrm{A}_{1} \subseteq M$. Suppose that M is an ideal of A. Then $A_{2} \cap M$ is an ideal of A, hence an ideal of A_{2}. Conversely, assume that $A_{2} \cap M$ is an ideal of A_{2}. To show M is an ideal of A, let $a \in A$ and $h \in M=A_{1} \oplus\left(A_{2} \cap M\right)$. Then there exist $a_{1} \in A_{1}, a_{2} \in A_{2}, b_{1} \in A_{1}$ and $b_{2} \in A_{2} \cap M$ such that $a=a_{1}+a_{2}$ and $h=b_{1}+b_{2}$. Then we have $[a, h]=\left[a, b_{1}+b_{2}\right]=\left[a, b_{1}\right]+\left[a_{1}, b_{2}\right]+\left[a_{2}, b_{2}\right]$ and $[h, a]=\left[b_{1}, a\right]+\left[b_{2}, a_{1}\right]+\left[b_{2}, a_{2}\right]$. Since A_{1} is an ideal of $A,\left[a, b_{1}\right],\left[a_{1}, b_{2}\right],\left[b_{1}, a\right],\left[b_{2}, a_{1}\right]$ $\in A_{1} \subseteq M$. Since $A_{2} \cap M$ is an ideal of $A_{2},\left[a_{2}, b_{2}\right],\left[b_{2}, a_{2}\right] \in A_{2} \cap M \subseteq M$. Therefore, [a,h], $[h, a] \in M$ which implies M is an ideal of A.

In (10), Tôgô studied the properties of inner derivations of Lie algebras by comparing them with the set of central derivations. Here, we delve into similar findings for left Leibniz algebras. Note that Shermatova and Khudoyberdiyev, in (19), also studied central derivations by comparing them with inner derivations. However, their focus was on right Leibniz algebras, employing the definition of inner derivations provided in (8).

Definition 3.22. Let A be a Leibniz algebra. A derivation $d \in \operatorname{Der}(A)$ is called a central derivation if $\mathrm{im}(d) \subseteq Z(\mathrm{~A})$.

We denote $\operatorname{CDer}(\mathrm{A})$ to be the set of all central derivations of A. It is easy to see that $\operatorname{CDer}(\mathrm{A})$ is a subalgebra of $\operatorname{Der}(\mathrm{A})$. We start by examining derivations of Leibniz algebras that are both inner and central. For a Leibniz algebra A, by Theorem 3.7, we have that $\operatorname{IDer}(\mathrm{A})=L(\mathrm{~A})+I$ where $I=\{d \in \operatorname{Der}(\mathrm{~A}) \mid \operatorname{im}(d) \subseteq \operatorname{Leib}(\mathrm{A})\}$. The following proposition is the Leibniz algebra analogue of the result in [(10), Lemma 2].

Proposition 3.23. (18) Let A be a Leibniz algebra and $\mathrm{J}=\mathrm{I} \cap \operatorname{CDer}(\mathrm{A})$. Then
(i) $\quad \operatorname{IDer}(\mathrm{A}) \cap \operatorname{CDer}(\mathrm{A})=L\left(Z_{1}\right)+J$ where $Z_{1}=\{x \in \mathrm{~A} \mid[x, \mathrm{~A}] \subseteq Z(\mathrm{~A})\}$,
(ii) $\quad \operatorname{Der}(A) \cap \operatorname{CDer}(A) \subseteq L\left(Z_{2}\right)+J$ where $Z_{2}=\left\{r \in \operatorname{rad}(A) \mid\left[r, \operatorname{rad}\left(A^{2}\right)\right]=0\right\}$.

Proof. (i) $\operatorname{IDer}(\mathrm{A}) \cap \operatorname{CDer}(\mathrm{A})=L(\mathrm{~A}) \cap \operatorname{CDer}(\mathrm{A})+I \cap \operatorname{CDer}(\mathrm{~A})=\left\{L_{x} \mid \operatorname{im}\left(L_{x}\right) \subseteq Z(\mathrm{~A})\right\}+J=$ $L\left(Z_{1}\right)+J$ where $Z_{1}=\{x \in \mathrm{~A} \mid[x, \mathrm{~A}] \subseteq Z(\mathrm{~A})\}$.
(ii) Let $d \in \operatorname{IDer}(\mathrm{~A}) \cap \operatorname{CDer}(\mathrm{A})$. By (i), there exist $z \in Z_{1}$ and $h \in J$ such that $d=L_{2}+h$. By Theorem 2.18, there exists a semisimple Lie algebra S such that $A=S+\operatorname{rad}(\mathrm{A})$ and $S \cap$ $\operatorname{rad}(\mathrm{A})=\{0\}$. Thus, $\mathrm{A}^{2}=S+\operatorname{rad}\left(\mathrm{A}^{2}\right)$ and there exist $s \in S$ and $r \in \operatorname{rad}(\mathrm{~A})$ such that $z=s+$ r. Since $\operatorname{im}(h) \subseteq Z(A)$, we have $h(S)=h([S, S])=0$ and hence $h\left(\operatorname{rad}\left(A^{2}\right)\right)=h\left(A^{2}\right)=0$. Since $\operatorname{im}(d) \subseteq Z(\mathrm{~A})$, we also have $d(S)=0$ and $d\left(\mathrm{~A}^{2}\right)=0$ which implies that $d\left(\operatorname{rad}\left(\mathrm{~A}^{2}\right)\right)=0$. It follows that $0=L_{s+r}(S)=[s+r, S]=[s, S]+[r, S]$. Hence, $[s, S]=0$, and so $s=0$. Therefore, $d=L_{r}+h$ and $\left[r, \operatorname{rad}\left(\mathrm{~A}^{2}\right)\right]=0$.

Example 3.24. Consider the Leibniz algebra $\mathrm{A}=\operatorname{span}\{w, x, y, z\}$ with non-zero brackets defined by $[w, x]=y,[x, w]=z,[w, y]=z$ and $[x, x]=z$. Clearly Leib $(A)=\operatorname{span}\{y, z\}$ and $Z(A)=\operatorname{span}\{z\}$. By direct calculations, we have that $\operatorname{Der}(A)=\operatorname{span}\left\{d_{1}, d_{2}, d_{3}\right\}=\operatorname{IDer}(\mathbf{A})=1$ where

$$
\begin{array}{llll}
d_{1}(w)=z, & d_{1}(x)=0, & d_{1}(y)=0, & d_{1}(z)=0, \\
d_{2}(w)=0, & d_{2}(x)=y, & d_{2}(y)=z, & d_{2}(z)=0, \\
d_{3}(w)=0, & d_{3}(x)=z, & d_{3}(y)=0, & d_{3}(z)=0 .
\end{array}
$$

Then $\operatorname{CDer}(\mathrm{A})=\operatorname{span}\left\{d_{1}, d_{3}\right\}=J$ and $Z_{1}=\operatorname{span}\{x, y, z\}$. Then $\operatorname{IDer}(\mathrm{A}) \cap \operatorname{CDer}(\mathrm{A})=L\left(Z_{1}\right)+$ J. Moreover, we can see that $A=\operatorname{rad}(A), \operatorname{rad}\left(A^{2}\right)=\operatorname{span}\{y, z\}$ and $Z_{2}=\operatorname{span}\{x, y, z\}$. Therefore, $\operatorname{IDer}(\mathrm{A}) \cap \operatorname{CDer}(\mathrm{A}) \subseteq L\left(Z_{2}\right)+J$.

Following this, we delve into Leibniz algebras in which all central derivations are inner, resulting in the Leibniz algebra analogue of [(10), Lemma 3].

Theorem 3.25. (18) Let A be a Leibniz algebra satisfying $\operatorname{CDer}(A) \subseteq \operatorname{IDer}(A)$. If rad (A) is abelian, then either $Z(A)=\{0\}$ or $A=A^{2}$.

Proof. Let A be a Leibniz algebra satisfying $\operatorname{CDer}(\mathrm{A}) \subseteq \operatorname{IDer}(\mathrm{A})$. By Theorem 2.18, there exists a semisimple Lie algebra S such that $A=S+\operatorname{rad}(A)$ and $S \cap \operatorname{rad}(A)=\{0\}$. Suppose that $Z(A) \neq\{0\}$ and $A \neq A^{2}$. Since $A^{2}=S+[S, \operatorname{rad}(A)]+[\operatorname{rad}(A), S]$, we have $[S$, $\operatorname{rad}(\mathrm{A})]+[\operatorname{rad}(\mathrm{A}), S] \subsetneq \operatorname{rad}(\mathrm{A})$. Choose a subspace U of $\operatorname{rad}(\mathrm{A})$ such that $\operatorname{rad}(\mathrm{A})=U+[S$, $\operatorname{rad}(\mathrm{A})]+[\operatorname{rad}(\mathrm{A}), \mathrm{S}]$ and $\cup \cap([S, \operatorname{rad}(\mathrm{~A})]+[\operatorname{rad}(\mathrm{A}), S])=\{0\}$. Define a nonzero linear map $d: \mathrm{A} \rightarrow \mathrm{A}$ such that $d(U) \subseteq Z(\mathrm{~A})$ and $d(S+[S, \operatorname{rad}(\mathrm{~A})]+[\operatorname{rad}(\mathrm{A}), S])=0$. Clearly, d is a central derivation of A. Since $\operatorname{CDer}(A) \subseteq \operatorname{IDer}(A)=L(A)+I$ and $A=S+\operatorname{rad}(A)$, there exist $s \in S, r \in \operatorname{rad}(\mathrm{~A})$ and $h \in I$ such that $d=L_{s+r}+h$. Since $d(S)=0$ and $[r, S]+h(S) \subseteq$ $\operatorname{rad}(\mathrm{A})$, we have $[s, S]=0$, and hence $s=0$. This implies that $d(U)=[r, U]+h(U) \subseteq \operatorname{Leib}(\mathrm{A})$ since $[r, U] \subseteq[\operatorname{rad}(A), \operatorname{rad}(A)]=\{0\}$. Let $0 \neq u \in U$. Then $d(u)=\alpha[x, x]$ for some $\alpha \in \mathbb{F}$ and x $\in A$. Since S is a subalgebra, $x \notin S$ which implies $x \in \operatorname{rad}(A)$. Hence, $d(u)=\alpha[x, x] \in$ $[\operatorname{rad}(A), \operatorname{rad}(A)]=\{0\}$ which contradicts our definition of d. Therefore, we have either $Z(A)$ $=\{0\}$ or $A=A^{2}$.

Corollary 3.26. Let A be a Leibniz algebra satisfying $\operatorname{CDer}(A) \subseteq I \operatorname{Der}(A)$. If $Z(A) \neq\{0\}$ and $\operatorname{CDer}(\mathrm{A}) \neq\{0\}$, then $\operatorname{rad}(\mathrm{A})$ is not abelian.

Proof. Let A be a Leibniz algebra such that $\operatorname{CDer}(A) \subseteq \operatorname{IDer}(A)$. Suppose that $Z(A) \neq\{0\}$ and $\operatorname{CDer}(A) \neq\{0\}$. If $\operatorname{rad}(A)$ is abelian, then by Theorem 6.4, $A=A^{2}$. Hence for all $d \in$ $\operatorname{CDer}(\mathrm{A}), d(\mathrm{~A})=d([\mathrm{~A}, \mathrm{~A}])=\{0\}$ which implies that $d=0$. It follows that $\operatorname{CDer}(\mathrm{A})=\{0\}$, a contradiction. Hence, $\operatorname{rad}(A)$ is not abelian.

Example 3.27. Consider the Leibniz algebra $A=\operatorname{span}\{x, y, z\}$ with non-zero multiplications defined by $[x, y]=y,[y, x]=-y$ and $[x, x]=z$. From Example 3.9, we have that $\operatorname{Der}(\mathrm{A})=\operatorname{span}\left\{d_{1}, d_{2}, d_{3}\right\}=I \operatorname{Der}(\mathrm{~A})$ where

$$
\begin{array}{lll}
d_{1}(x)=y, & d_{1}(y)=0, & d_{1}(z)=0, \\
d_{2}(x)=z, & d_{2}(y)=0, & d_{2}(z)=0, \\
d_{3}(x)=0, & d_{3}(y)=y, & d_{3}(z)=0 .
\end{array}
$$

It is easy to see that $Z(A)=\operatorname{span}\{z\} \neq\{0\}$ and $\operatorname{CDer}(A)=\operatorname{span}\left\{d_{2}, d_{3}\right\} \subseteq \operatorname{IDer}(A)$. In this case, $\operatorname{rad}(A)=A$ because $A^{(3)}=\{0\}$. Hence, $\operatorname{rad}(A)$ is not abelian.

To conclude, we investigate Leibniz algebras in which all inner derivations are central, thereby establishing the Leibniz algebra analogue of [(10), Theorem 3].

Theorem 3.28. (18) Let A be a Leibniz algebra. Then
(i) $\quad \operatorname{IDer}(A) \subseteq C \operatorname{Der}(A)$ if and only if $A^{2} \subseteq Z(A)$ if and only if $A^{3}=\{0\}$,
(ii) If $Z(A) \neq\{0\}$ and $\operatorname{IDer}(A)=\operatorname{CDer}(A)$, then $A^{2}=Z(A)$.

Proof. (i) Suppose that $\operatorname{IDer}(\mathrm{A}) \subseteq \operatorname{CDer}(\mathrm{A})$. Then for all $x, y \in \mathrm{~A}, L_{x} \in \operatorname{IDer}(\mathrm{~A}) \subseteq \operatorname{CDer}(\mathrm{A})$ and $[x, y]=L_{x}(y) \in Z(A)$. Conversely, assume that $A^{2} \subseteq Z(A)$. If $d \in \operatorname{IDer}(A)$, then there exists $a \in A$ such that $d(x)-L_{a}(x) \in \operatorname{Leib}(\mathbf{A})$ for any $x \in \mathrm{~A}$ which implies that $d(x) \in \mathrm{A}^{2} \subseteq$ $Z(A)$ and $d \in \operatorname{CDer}(A)$. Hence, $\mid \operatorname{Der}(A) \subseteq \operatorname{CDer}(A)$. Clearly, $A^{2} \subseteq Z(A)$ if and only if $A^{3}=$ $[\mathrm{A},[\mathrm{A}, \mathrm{A}]]=0$.
(ii) Suppose that $Z(A) \neq\{0\}$ and $I \operatorname{Der}(A)=C \operatorname{Der}(A)$. $B y(i), A^{2} \subseteq Z(A)$. If $A^{2} \neq Z(A)$, then by [(20), Theorem 3.6], A has an outer central derivation which contradicts our assumption. Thus, $A^{2}=Z(A)$.

Note that [(10), Theorem 3 (iii)] is also valid in our case. In [(10), Theorem 3 (ii)], Tôgô proved that for a Lie algebra L, if $Z(L) \neq 0$, then $\operatorname{IDer}(\mathrm{L})=\operatorname{CDer}(\mathrm{L})$ if and only if $\mathrm{L}^{2}=$ $Z(L)$ and $\operatorname{dim}(Z(L))=1$. However, as the following example shows, there exists a Leibniz algebra A where $Z(A) \neq\{0\}$ and $I \operatorname{Der}(A)=\operatorname{CDer}(A)$, but $\operatorname{dim}(Z(A))>1$.

Example 3.29. Consider the Leibniz algebra $\mathrm{A}=\operatorname{span}\{w, x, y, z\}$ with non-zero brackets defined by $[w, w]=z,[w, x]=y$ and $[x, w]=-y$. We can see that $Z(A)=A^{2}=\operatorname{span}\{y, z\}$, $\operatorname{Leib}(\mathbf{A})=\operatorname{span}\{z\}$ and $\operatorname{Der}(\mathrm{A})=\operatorname{span}\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}\right\}$ where

$$
\begin{array}{llll}
d_{1}(w)=w, & d_{1}(x)=0, & d_{1}(y)=y, & d_{1}(z)=2 z, \\
d_{2}(w)=0, & d_{2}(x)=x, & d_{2}(y)=y, & d_{2}(z)=0,
\end{array}
$$

$d_{3}(w)=x$,	$d_{3}(x)=0$,	$d_{3}(y)=0$,	$d_{3}(z)=0$,
$d_{4}(w)=y$,	$d_{4}(x)=0$,	$d_{4}(y)=0$,	$d_{4}(z)=0$,
$d_{5}(w)=z$,	$d_{5}(x)=0$,	$d_{5}(y)=0$,	$d_{5}(z)=0$,
$d_{6}(w)=0$,	$d_{6}(x)=y$,	$d_{6}(y)=0$,	$d_{6}(z)=0$,
$d_{7}(w)=0$,	$d_{7}(x)=z$,	$d_{7}(y)=0$,	$d_{7}(z)=0$.

Then $I \operatorname{Der}(A)=\operatorname{span}\left\{d_{4}, d_{5}, d_{6}, d_{7}\right\}=\operatorname{CDer}(A)$.

CHAPTER 4

COMPLETE LEIBNIZ ALGEBRAS

A Lie algebra L is said to be complete if its center is trivial and all derivations are inner, i.e., for each derivation δ on L , there exists $x \in \mathrm{~L}$ such that $\delta=\mathrm{ad}_{x}$. Otherwise, the derivation is called outer. In 2013, Ancochea and Campoamor (8) gave a definition of complete Leibniz algebras analogous to complete Lie algebras, i.e., a Leibniz algebra A is said to be complete if $Z(A)=\{0\}$ and for each derivation δ on A, there exists $x \in A$ such that $\delta=L_{x}$. However, the signature properties of a complete Lie algebra did not extend to complete Leibniz algebras under this definition. Motivated by this, in 2020, Boyle, Misra, and Stitzinger (9) defined a complete Leibniz algebra as follows.

Definition 4.1. (9) A Leibniz algebra A is complete if
(i) $Z(A / \operatorname{Leib}(A))=\{0\}$ and
(ii) all derivations of A are inner, i.e., $\operatorname{Der}(A)=I \operatorname{Der}(A)$.

Let A be a Lie algebra and hence a Leibniz algebra. If A is complete as a Leibniz algebra, then it is complete as a Lie algebra because $\operatorname{Leib}(\mathbf{A})=\{0\}$ and for each derivation δ on A , there exists $x \in \mathrm{~A}$ such that $\delta=L_{x}=\mathrm{ad}_{x}$. Throughout this work, we will refer to complete Leibniz algebras of Leibniz algebras that satisfy Definition 4.1.

Example 4.2. (12) Consider the Leibniz algebra $\mathrm{A}=\operatorname{span}\{x, y, z\}$ with non-zero brackets defined by $[x, z]=z$. We can see that $Z(A)=\operatorname{span}\{y\}$ and $\operatorname{Leib}(A)=\operatorname{span}\{z\}$. Hence $Z(A / \operatorname{Leib}(A))=A / \operatorname{Leib}(A)$ which is not trivial. Then A is not complete.

Example 4.3. (12) Consider the Leibniz algebra $\mathrm{A}=\operatorname{span}\{x, y, z\}$ with non-zero brackets defined by $[x, z]=\alpha z,[x, y]=y$ and $[y, x]=-y$ for some $\alpha \in \mathbb{F} \backslash\{0\}$. We can see that $Z(A)=$ $\{0\}$ and $\operatorname{Leib}(A)=\operatorname{span}\{z\}$. Then $Z(A / \operatorname{Leib}(A))=\{0\}$ and $\operatorname{Der}(A)=\operatorname{span}\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ where

$$
\begin{aligned}
& \delta_{1}(x)=y, \delta_{1}(y)=0, \delta_{1}(z)=0, \\
& \delta_{2}(x)=0, \delta_{2}(y)=y, \delta_{2}(z)=0,
\end{aligned}
$$

$$
\delta_{3}(x)=0, \delta_{3}(y)=0, \delta_{3}(z)=z
$$

Since $\operatorname{im}\left(\delta_{1}-L_{-\gamma}\right) \subseteq \operatorname{Leib}(A), \operatorname{im}\left(\delta_{2}-L_{x}\right) \subseteq \operatorname{Leib}(A)$ and $\operatorname{im}\left(\delta_{3}-L_{0}\right) \subseteq \operatorname{Leib}(A)$, we have that A is complete.

Example 4.4. (12) Consider the Leibniz algebra $A=\operatorname{span}\{x, y, z\}$ with non-zero brackets defined by $[x, x]=z,[x, y]=y$ and $[y, x]=-y$. We can see that $Z(A)=\operatorname{span}\{z\}=\operatorname{Leib}(A)$, $Z(A / \operatorname{Leib}(A))=\{0\}$ and $\operatorname{Der}(A)=\operatorname{span}\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ where
$\delta_{1}(x)=y$,
$\delta_{1}(y)=0$,
$\delta_{1}(z)=0$,
$\delta_{2}(x)=z$,
$\delta_{2}(y)=0$,
$\delta_{2}(z)=0$,
$\delta_{3}(x)=0$,
$\delta_{3}(y)=y$,
$\delta_{3}(z)=0$.

Since $\operatorname{im}\left(\delta_{1}-L_{-y}\right) \subseteq \operatorname{Leib}(A), \operatorname{im}\left(\delta_{2}-L_{z}\right) \subseteq \operatorname{Leib}(A)$ and $\operatorname{im}\left(\delta_{3}-L_{x}\right) \subseteq \operatorname{Leib}(A)$, we have that A is complete.

Example 4.5. (12) Consider the Leibniz algebra $A=\operatorname{span}\{x, y, z\}$ with non-zero brackets defined by $[x, z]=2 z,[y, y]=y,[x, x]=z,[x, y]=y$ and $[y, x]=-y$. We can see that $Z(A)=$ $\{0\}$ and $\operatorname{Leib}(A)=\operatorname{span}\{z\}$. Then $Z(A / \operatorname{Leib}(A))=\{0\}$ and $\operatorname{Der}(A)=\operatorname{span}\left\{\delta_{1}, \delta_{2}\right\}$ where

$$
\begin{array}{lll}
\delta_{1}(x)=y, & \delta_{1}(y)=-z, & \delta_{1}(z)=0 \\
\delta_{2}(x)=z, & \delta_{2}(y)=y, & \delta_{2}(z)=2 z
\end{array}
$$

Since $\operatorname{im}\left(\delta_{1}-L_{-y}\right) \subseteq \operatorname{Leib}(A)$ and $\operatorname{im}\left(\delta_{2}-L_{x}\right) \subseteq$ Leib (A), we have that A is complete.

Remark 4.6. It should be noted that the Leibniz algebra in Example 4.5 is complete, whereas Examples 4.2, 4.3, and 4.4 are not complete in the sense of (8). This is because the centers of Examples 4.2 and 4.4 are not trivial, and there exists an outer derivation in Example 4.3 by the definition in (8).

It is known that semisimple Lie algebras are complete. In (9), Boyle, Misra, and Stitzinger proved that semisimple Leibniz algebras are also complete using Definition 4.1. The following example shows that there exists a semisimple Leibniz algebra which is not complete in the sense of (8).

Example 4.7. (9) Let $S=s /(2, \mathbb{C})$ and $V=\mathbb{C}^{2}$. It is known that V is an irreducible S module under the matrix multiplication. Define $A=S \oplus V$ with brackets in A given by $[x, y]=x y-$ $y x=-[y, x],[x, u]=x u,[u, x]=0=[v, u]$ for all $x, y \in S, u, v \in V$. Then A is a simple, hence semisimple Leibniz algebra with $\operatorname{Leib}(A)=V$. Define the linear operator $T: A \times A$ $\rightarrow \mathrm{A}$ by $T(x)=0, T(u)=u$ for all $x \in S, u \in V$. Then for $x+u, y+v \in A, T[x+u, y+v]=$ $T(x y+x v)=x v,[T(x+u), y+v]=0$ and $[x+u, T(y+v)]=[x+u, v]=x v$. Hence T is a derivation. If $T=L_{x+u}$ for some $x+u \in A$, then for all $y+v \in A, v \neq 0$ we have $v=$ $T(y+v)=[x+u, y+v]=[x, y]+x v$ which implies $[x, y]=0, x v=v$ for all $y \in S, v \in V$. This implies $x \in Z(S)=\{0\}$ which is a contradiction since $v=x v=0 v=0$. Therefore, T is not inner and A is not complete by the definition in (8).

It is known that non-zero nilpotent Lie algebras are not complete (6). In (9), Boyle, Misra, and Stitzinger proved that the statement also holds for non-zero nilpotent Leibniz algebras. It is also known that a nilpotent Lie algebra contains outer derivations (7). However, the example below shows that there exist nilpotent Leibniz algebras that do not have outer derivations.

Example 4.8. (9) Consider the Leibniz algebra $A=\operatorname{span}\{w, x, y, z\}$ with non-zero brackets $[x, x]=z,[w, x]=[x, w]=-y+z,[w, y]=-z . \operatorname{Clearly}, \operatorname{Leib}(A)=\operatorname{span}\{z\} \subseteq A^{2}=\operatorname{span}\{y, z\}$ and $A^{4}=\{0\}$. So A is nilpotent. By direct calculations, we have that $\operatorname{Der}(A)=\operatorname{span}\left\{\delta_{1}, \delta_{2}\right.$, $\left.\delta_{3}, \delta_{4}\right\}$ where

$$
\begin{array}{llll}
\delta_{1}(w)=y, & \delta_{1}(x)=0, & \delta_{1}(y)=0, & \delta_{1}(z)=0, \\
\delta_{2}(w)=z, & \delta_{2}(x)=0, & \delta_{2}(y)=0, & \delta_{2}(z)=0, \\
\delta_{3}(w)=0, & \delta_{3}(x)=y, & \delta_{3}(y)=z, & \delta_{3}(z)=0, \\
\delta_{4}(w)=0, & \delta_{4}(x)=z, & \delta_{4}(y)=0, & \delta_{4}(z)=0 .
\end{array}
$$

Note that $L_{w}=\delta_{3}, L_{x}=-\delta_{1}+\delta_{2}+\delta_{4}$ and $L_{y}=-\delta_{2}$. By definition $\operatorname{im}\left(\delta_{j}\right) \subseteq \operatorname{Leib}(\mathrm{A})$ for $i=2,4$. Also $\operatorname{im}\left(\delta_{3}-L_{w}\right) \subseteq \operatorname{Leib}(A)$ and $\operatorname{im}\left(\delta_{1}+L_{x}\right)=\operatorname{im}\left(\delta_{2}+\delta_{4}\right) \subseteq$ Leib(A). Hence by linearity all derivations of A are inner.

Consider the Leibniz algebra $A_{n}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{n}, e\right\}$ with non-zero brackets $\left[e_{1}, e_{i}\right]=e_{i+1},\left[e_{1}, e\right]=e_{1}$ and $\left[e, e_{i}\right]=-i e_{i}$ for $i=1, \ldots, n . \ln (8)$, it is proved that $\operatorname{Der}\left(\boldsymbol{A}_{n}\right)=L\left(\boldsymbol{A}_{n}\right)$, A_{n} is solvable and complete for all $n \geqslant 1$ by the definition of completeness in (8). Here we show that this solvable Leibniz algebra A_{n} remains complete under Definition 4.1.

Proposition 4.9. The Leibniz algebra A_{n} is complete for all $\mathrm{n} \geqslant 1$.
Proof. Let $n \geqslant 1$. Since $\operatorname{Der}\left(\mathbf{A}_{n}\right)=L\left(\mathbf{A}_{n}\right)$, all derivations of A_{n} are inner. For all $x=\alpha_{1} e_{1}+$ $\alpha_{2} e_{2}+\cdots+\alpha_{n} e_{n}+\alpha e \in \mathrm{~A}_{n}$, we have that

$$
\begin{aligned}
{[x, x] } & =\left[\alpha_{1} e_{1}+\alpha_{2} e_{2}+\cdots+\alpha_{n} e_{n}+\alpha e, \alpha_{1} e_{1}+\alpha_{2} e_{2}+\cdots+\alpha_{n} e_{n}+\alpha e\right] \\
& =\left[\alpha_{1} e_{1}, \sum_{i=1}^{n} \alpha_{i} e_{i}+\alpha e\right]+\left[\alpha e, \sum_{i=1}^{n} \alpha_{i} e_{i}\right] \\
& \left.=\left(\sum_{i=1}^{n-1} \alpha_{1} \alpha_{i} e_{i+1}+\alpha_{1} \alpha e\right)-\sum_{i=1}^{n} \alpha \alpha_{i} e_{i}\right] \\
& =\sum_{i=1}^{n-1} \alpha_{1} \alpha_{i} e_{i+1}-\sum_{i=2}^{n} \alpha \alpha_{i} e_{i} .
\end{aligned}
$$

Thus, $\operatorname{Leib}\left(\mathrm{A}_{n}\right)=\operatorname{span}\left\{e_{2}, e_{3}, \ldots, e_{n}\right\}$ and hence $\mathrm{A}_{n} / \operatorname{Leib}\left(\mathrm{A}_{n}\right)=\operatorname{span}\left\{e_{1}+\operatorname{Leib}\left(\mathrm{A}_{n}\right), e+\right.$ $\left.\operatorname{Leib}\left(A_{n}\right)\right\}$. It is easy to see that $Z\left(A_{n} / \operatorname{Leib}\left(A_{n}\right)\right)=\{0\}$. Therefore, A_{n} is complete.

Proposition 4.10. Let A be a Leibniz algebra and $A^{2}=\operatorname{Leib}(A)$. Then A is complete if and only if $A=A^{2}$.

Proof. If $A=A^{2}$, then $A=\operatorname{Leib}(A)$. It is easy to see that $Z(A / \operatorname{Leib}(A))=\{0\}$. Clearly, for any $\delta \in \operatorname{Der}(A), \operatorname{im}(\delta) \subseteq A=\operatorname{Leib}(A)$. Therefore, A is complete. Conversely, if $A^{2} \subsetneq A$, then there exists $0 \neq x \in A \backslash A^{2}$ such that $[x+\operatorname{Leib}(A), y+\operatorname{Leib}(A)]=[x, y]+\operatorname{Leib}(A)=\operatorname{Leib}(A)$ for any $y \in A$ because $\operatorname{Leib}(A)=A^{2}$. This means $\operatorname{Leib}(A) \neq x+\operatorname{Leib}(A) \in Z(A / \operatorname{Leib}(A))$ which implies that A is not complete.

In (6), Meng proved that for a Lie algebra $L=L_{1} \oplus L_{2}$, then L is complete if and only if L_{1} and L_{2} are complete. The following theorem is the Leibniz algebra analog of the Lie algebra result.

Theorem 4.11. Let the Leibniz algebra $A=A_{1} \oplus A_{2}$ where A_{1} and A_{2} are ideals of A. Then A is a complete Leibniz algebra if and only if A_{1} and A_{2} are complete.

Proof. Assume that A is complete. Then $Z(\mathrm{~A} / \operatorname{Leib}(\mathrm{A}))=\{0\}$. By Corollary 3.16, for $i=1,2$, $Z\left(\mathrm{~A}_{i} / \operatorname{Leib}\left(\mathrm{A}_{j}\right)\right)=\{0\}$. Let $\delta_{1} \in \operatorname{Der}\left(\mathrm{~A}_{1}\right)$ and $\delta_{2} \in \operatorname{Der}\left(\mathrm{~A}_{2}\right)$. Since all derivations of A are inner, for each $i=1,2$, there exists $x_{i} \in \mathrm{~A}$ such that $\operatorname{im}\left(\delta_{i}-L_{x_{i}}\right) \subseteq \operatorname{Leib}(\mathrm{A})$. Let $b_{1} \in \mathrm{~A}_{1}$ and $b_{2} \in \mathrm{~A}_{2}$. Then $\delta_{1}\left(b_{1}\right)-L_{x_{1}}\left(b_{1}\right) \in \operatorname{Leib}(\mathrm{A})$ and $\delta_{2}\left(b_{2}\right)-L_{x_{2}}\left(b_{2}\right) \in \operatorname{Leib}(\mathrm{A})$. Thus, $\delta_{1}\left(b_{1}\right)-L_{x_{1}}\left(b_{1}\right)+$ $\delta_{2}\left(b_{2}\right)-L_{x_{2}}\left(b_{2}\right) \in \operatorname{Leib}(\mathrm{A})$. Since $x_{i} \in \mathrm{~A}$, there exist $x_{i 1} \in \mathrm{~A}_{1}$ and $x_{i 2} \in \mathrm{~A}_{2}$ such that $x=x_{i 1}+x_{i 2}$. Note that

$$
\begin{aligned}
\delta_{1}\left(b_{1}\right)-L_{x_{1}}\left(b_{1}\right)+\delta_{2}\left(b_{2}\right)-L_{x_{2}}\left(b_{2}\right) & =\delta_{1}\left(b_{1}\right)-L_{x_{11}+x_{12}}\left(b_{1}\right)+\delta_{2}\left(b_{2}\right)-L_{x_{21}+x_{22}}\left(b_{2}\right) \\
& =\delta_{1}\left(b_{1}\right)-L_{x_{11}}\left(b_{1}\right)-L_{x_{12}}\left(b_{1}\right)+\delta_{2}\left(b_{2}\right)-L_{x_{21}}\left(b_{2}\right)-L_{x_{22}}\left(b_{2}\right) \\
& =\delta_{1}\left(b_{1}\right)-L_{x_{11}}\left(b_{1}\right)+\delta_{2}\left(b_{2}\right)-L_{x_{22}}\left(b_{2}\right) .
\end{aligned}
$$

This is because $\left[A_{1}, A_{2}\right] \subseteq A_{1} \cap A_{2}=\{0\}$ implies that $L_{x_{12}}\left(b_{1}\right)=0=L_{x_{21}}\left(b_{2}\right)$. Thus, we have $\delta_{1}\left(b_{1}\right)-L_{x_{11}}\left(b_{1}\right)+\delta_{2}\left(b_{2}\right)-L_{x_{22}}\left(b_{2}\right) \in \operatorname{Leib}(\mathbf{A})=\operatorname{Leib}\left(\mathrm{A}_{1}\right) \oplus \operatorname{Leib}\left(\mathrm{A}_{2}\right)$. By Theorem 3.15 (ii), $\delta_{1}\left(b_{1}\right)-L_{x_{11}}\left(b_{1}\right) \in \operatorname{Leib}\left(\mathrm{A}_{1}\right)$ and $\delta_{1}\left(b_{2}\right)-L_{x_{22}}\left(b_{2}\right) \in \operatorname{Leib}\left(\mathrm{A}_{2}\right)$. This implies that δ_{1} and δ_{2} are inner. Hence, A_{1} and A_{2} are complete. Conversely, assume that A_{1} and A_{2} are complete. Then $Z\left(A_{i} / \operatorname{Leib}\left(A_{i}\right)\right)=\{0\}$ for $i=1$, 2. By Corollary 3.16, $Z(A / \operatorname{Leib}(A))=\{0\}$. Let $\delta \in \operatorname{Der}(A)$ $=\left(\operatorname{Der}\left(\mathrm{A}_{1}\right)+I_{1}\right) \oplus\left(\operatorname{Der}\left(\mathrm{A}_{2}\right)+I_{2}\right)$. Then $\delta=\delta_{11}+\delta_{12}+\delta_{21}+\delta_{22}$ where $\delta_{11} \in \operatorname{Der}\left(\mathrm{~A}_{1}\right), \delta_{12} \in I_{1}$, $\delta_{21} \in I_{2}, \delta_{22} \in \operatorname{Der}\left(\mathrm{~A}_{2}\right)$. Since δ_{11} and δ_{22} are inner, there exist $x_{1} \in \mathrm{~A}_{1}$ and $x_{2} \in \mathrm{~A}_{2}$ such that $\delta_{11}\left(y_{1}\right)-L_{x_{1}}\left(y_{1}\right) \in \operatorname{Leib}\left(A_{1}\right)$ and $\delta_{22}\left(y_{2}\right)-L_{x_{2}}\left(y_{2}\right) \in \operatorname{Leib}\left(A_{2}\right)$ for all $y_{1} \in A_{1}, y_{2} \in A_{2}$. Since $\delta_{12}\left(y_{1}\right), \delta_{21}\left(y_{2}\right) \in Z(A)$, for all $x \in A$ we have that

$$
\begin{gathered}
{\left[\delta_{12}\left(y_{1}\right)+\operatorname{Leib}(A), x+\operatorname{Leib}(A)\right]=\left[\delta_{12}(y), x\right]+\operatorname{Leib}(A)=\operatorname{Leib}(A),} \\
{\left[\delta_{21}\left(y_{2}\right)+\operatorname{Leib}(A), x+\operatorname{Leib}(A)\right]=\left[\delta_{21}(y), x\right]+\operatorname{Leib}(A)=\operatorname{Leib}(A) .}
\end{gathered}
$$

This implies $\delta_{12}\left(y_{1}\right)+\operatorname{Leib}(\mathrm{A}), \delta_{21}\left(y_{2}\right)+\operatorname{Leib}(\mathrm{A}) \in Z(\mathrm{~A} / \operatorname{Leib}(\mathrm{A}))=\{0\}$ and hence $\delta_{12}\left(y_{1}\right)$, $\delta_{21}\left(y_{2}\right) \in \operatorname{Leib}(\mathbf{A})$. Let $x=x_{1}+x_{2}$. Then, for all $y=y_{1}+y_{2}$ where $y_{1} \in \mathrm{~A}_{1}$ and $y_{2} \in \mathrm{~A}_{2}$, we have that

$$
\begin{aligned}
\delta(y)-L_{x}(y)= & \delta\left(y_{1}+y_{2}\right)-L_{x_{1}+x_{2}}\left(y_{1}+y_{2}\right) \\
= & \delta\left(y_{1}\right)+\delta\left(y_{2}\right)-L_{x_{1}}\left(y_{1}+y_{2}\right)-L_{x_{2}}\left(y_{1}+y_{2}\right) \\
= & \delta_{11}\left(y_{1}\right)+\delta_{12}\left(y_{1}\right)+\delta_{21}\left(y_{1}\right)+\delta_{22}\left(y_{1}\right)+\delta_{11}\left(y_{2}\right)+\delta_{12}\left(y_{2}\right) \\
& +\delta_{21}\left(y_{2}\right)+\delta_{22}\left(y_{2}\right)-L_{x_{1}}\left(y_{1}\right)-L_{x_{1}}\left(y_{2}\right)-L_{x_{2}}\left(y_{1}\right)-L_{x_{2}}\left(y_{2}\right) \\
= & \left(\delta_{11}\left(y_{1}\right)-L_{x_{1}}\left(y_{1}\right)\right)+\left(\delta_{22}\left(y_{2}\right)-L_{x_{2}}\left(y_{2}\right)\right)+\delta_{12}\left(y_{1}\right)+\delta_{12}\left(y_{2}\right) \\
& +\delta_{21}\left(y_{1}\right)+\delta_{21}\left(y_{2}\right) \in \operatorname{Leib}(\mathrm{A}) .
\end{aligned}
$$

Thus, δ is an inner which completes the proof.

Example 4.12. Consider the Leibniz algebra $A=A_{1} \oplus A_{2}$ where $A_{1}=\operatorname{span}\{x, y, z\}$ and A_{2} $=\operatorname{span}\{a, b, c\}$ with the non-zero multiplications in A given by $[x, z]=\alpha z, \alpha \in \mathbb{F} \backslash\{0\},[x, y]=$ $y,[y, x]=-y,[a, a]=c,[a, b]=b$ and $[b, a]=-b$. It is easy to see that $Z(A / \operatorname{Leib}(A))$, $Z\left(A_{1} / \operatorname{Leib}\left(A_{1}\right)\right)$ and $Z\left(A_{2} / \operatorname{Leib}\left(A_{2}\right)\right)$ are trivial. From Example 3.19, we know that $\operatorname{Der}(A)=$ $\operatorname{span}\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}\right\}$ where

$\delta_{1}(x)=y$,	$\delta_{1}(y)=0$,	$\delta_{1}(z)=0$,	$\delta_{1}(a)=0$,	$\delta_{1}(b)=0$,	$\delta_{1}(c)=0$,
$\delta_{2}(x)=0$,	$\delta_{2}(y)=y$,	$\delta_{2}(z)=0$,	$\delta_{2}(a)=0$,	$\delta_{2}(b)=0$,	$\delta_{2}(c)=0$,
$\delta_{3}(x)=0$,	$\delta_{3}(y)=0$,	$\delta_{3}(z)=z$,	$\delta_{3}(a)=0$,	$\delta_{3}(b)=0$,	$\delta_{3}(c)=0$,
$\delta_{4}(x)=0$,	$\delta_{4}(y)=0$,	$\delta_{4}(z)=0$,	$\delta_{4}(a)=b$,	$\delta_{4}(b)=0$,	$\delta_{4}(c)=0$,
$\delta_{5}(x)=0$,	$\delta_{5}(y)=0$,	$\delta_{5}(z)=0$,	$\delta_{5}(a)=c$,	$\delta_{5}(b)=0$,	$\delta_{5}(c)=0$,
$\delta_{6}(x)=0$,	$\delta_{6}(y)=0$,	$\delta_{6}(z)=0$,	$\delta_{6}(a)=0$,	$\delta_{6}(b)=b$,	$\delta_{6}(c)=0$,
$\delta_{7}(x)=c$,	$\delta_{7}(y)=0$,	$\delta_{7}(z)=0$,	$\delta_{7}(a)=0$,	$\delta_{7}(b)=0$,	$\delta_{7}(c)=0$,

Observe that $\operatorname{im}\left(\delta_{1}-L_{-\gamma}\right), \operatorname{im}\left(\delta_{2}-L_{x}\right), \operatorname{im}\left(\delta_{3}-L_{0}\right), \operatorname{im}\left(\delta_{4}-L_{-b}\right), \operatorname{im}\left(\delta_{5}-L_{a}\right), \operatorname{im}\left(\delta_{6}-L_{a}\right), \operatorname{im}\left(\delta_{7}-\right.$ $\left.L_{0}\right) \subseteq \operatorname{Leib}(A)$. Therefore, $\operatorname{Der}(A)=I \operatorname{Der}(A)$, i.e., A is complete. Moreover, we can see that $\operatorname{Der}\left(\mathrm{A}_{1}\right)=I \operatorname{Der}\left(\mathrm{~A}_{1}\right)$ and $\operatorname{Der}\left(\mathrm{A}_{2}\right)=I \operatorname{Der}\left(\mathrm{~A}_{2}\right)$. Hence A_{1} and A_{2} are also complete.

In (11), Rakhimov, Masutova, and Omirov established that every derivation of a simple Leibniz algebra can be expressed as a combination of three derivations. Here, we provide an alternative approach to this proof, specifically adapted for semisimple Leibniz algebras.

Theorem 4.13. (18) Let A be a semisimple Leibniz algebra. Then any derivation d of A can be written as $d=L_{\mathrm{a}}+\alpha+\delta$ where $\mathrm{a} \in S, \alpha: \operatorname{Leib}(\mathrm{A}) \rightarrow \operatorname{Leib}(\mathrm{A}), \delta: S \rightarrow \operatorname{Leib}(\mathrm{~A})$ where S is a semisimple Lie algebra and $\alpha([x, y])=[x, \alpha(y)]$ for all $x, y \in \mathrm{~A}$. Moreover, if A is simple, then the α is either zero or $\alpha(\operatorname{Leib}(\mathrm{A}))=\operatorname{Leib}(\mathrm{A})$.

Proof. Let A be a semisimple Leibniz algebra. By Theorem 2.18, $A=S+\operatorname{Leib}(A)$ where S is a semisimple Lie algebra. Since $L(A)=L(S)+L(\operatorname{Leib}(A))$ and $L(\operatorname{Leib}(A))=\{0\}$, then $L(A)$ $=L(S)$. By [(9), Theorem 3.3], A is complete, and so $\operatorname{Der}(\mathrm{A})=\operatorname{IDer}(\mathrm{A})$. Let $d \in \operatorname{Der}(\mathrm{~A})$. By Theorem 3.7, $d=L_{a}+h$ for some $a \in S$ and $h \in I$. Set $\alpha=\left.h\right|_{\text {Leib(A) }}$ and $\delta=\left.h\right|_{S}$. Then we can extend α to be a derivation on A by defining $\alpha(x+y)=\alpha(y)$ for any $x \in S$ and $y \in \operatorname{Leib}(\mathrm{~A})$. Similarly, we can extend δ to be a derivation on A by defining $\delta(x+y)=\delta(x)$ for any $x \in S$ and $y \in \operatorname{Leib}(\mathrm{~A})$. Thus, $d=\operatorname{L}_{a}+\alpha+\delta, \alpha(\operatorname{Leib}(\mathrm{A})) \subseteq \operatorname{Leib}(\mathrm{A})$ and $\delta(S) \subseteq \operatorname{Leib}(\mathrm{A})$ as Leib (A) is a characteristic ideal of A . Since $\operatorname{Leib}(\mathrm{A}) \subseteq Z^{\ell}(\mathrm{A}), \alpha([x, y])=[\alpha(x), y]-[x, \alpha(y)]=[x, \alpha(y)]$ for all $x, y \in \mathrm{~A}$. If A is simple, then $\alpha(\operatorname{Leib}(\mathrm{A}))$ is either $\{0\}$ or Leib(A$)$ which implies that α is either zero or $\alpha(\operatorname{Leib}(\mathrm{A}))=\operatorname{Leib}(\mathrm{A})$.

Example 4.14. Let $S=\operatorname{span}\{e, f, h\} \oplus \operatorname{span}\{a, b, c\}$ and $V=\operatorname{span}\{x, y\}$. Define $A=S \oplus V$ with brackets in A given by $[e, f]=h,[f, e]=-h,[h, e]=2 e,[e, h]=-2 e,[h, f]=-2 f,[f, h]=$ $2 f,[e, y]=x,[f, x]=y,[h, x]=x,[h, y]=-y,[a, b]=c,[b, a]=-c,[c, a]=2 a,[a, c]=-2 a,[c, b]=$ $-2 b,[b, c]=2 b$. Then A is a semisimple Leibniz algebra with Leib $(A)=V$. By direct calculations, we have that $\operatorname{Der}(\mathrm{A})=\operatorname{span}\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}\right\}=I \operatorname{Der}(\mathrm{~A})$ where

$$
\begin{aligned}
& d_{1}(e)=e, \quad d_{1}(f)=-f, d_{1}(h)=0, \quad d_{1}(x)=x, d_{1}(y)=0, \quad d_{1}(a)=0, d_{1}(b)=0, \quad d_{1}(c)=0, \\
& d_{2}(e)=-e, d_{2}(f)=f, d_{2}(h)=0, \quad d_{2}(x)=0, d_{2}(y)=y, d_{2}(a)=0, d_{2}(b)=0, \quad d_{2}(c)=0, \\
& d_{3}(e)=0, \quad d_{3}(f)=h, d_{3}(h)=-2 e, d_{3}(x)=0, d_{3}(y)=x, d_{3}(a)=0, d_{3}(b)=0, \quad d_{3}(c)=0, \\
& d_{4}(e)=-h, d_{4}(f)=0, d_{4}(h)=2 f, \quad d_{4}(x)=y, d_{4}(y)=0, d_{4}(a)=0, d_{4}(b)=0, \quad d_{4}(c)=0, \\
& d_{5}(e)=0, \quad d_{5}(f)=0, d_{5}(h)=0, \quad d_{5}(x)=0, d_{5}(y)=0, d_{5}(a)=a, d_{5}(b)=-b, d_{5}(c)=0, \\
& d_{6}(e)=0, \quad d_{6}(f)=0, d_{6}(h)=0, \quad d_{6}(x)=0, d_{6}(y)=0, d_{6}(a)=0, \quad d_{6}(b)=c, \quad d_{6}(c)=-2 a, \\
& d_{7}(e)=0, \quad d_{7}(f)=0, d_{7}(h)=0, \quad d_{7}(x)=0, d_{7}(y)=0, d_{7}(a)=c, \quad d_{7}(b)=0, \quad d_{7}(c)=-2 b .
\end{aligned}
$$

Since $d_{1}-d_{2}=L_{h}, d_{3}=L_{e}, d_{4}=L_{p}, d_{5}=L-_{c / 2}, d_{6}=L_{a^{\prime}}, d_{7}=L_{b}$, we have $L(A)=\operatorname{span}\left\{d_{1}-d_{2}, d_{3}\right.$, $\left.d_{4}, d_{5}, d_{6}, d_{7}\right\}=L(S)$. Let $k=d_{1}+d_{2}$. Then $k \in I$ and $d_{1}=L_{h 2}+\left.k\right|_{v}+\left.k\right|_{s}$ and $d_{2}=L_{-h / 2}+\left.k\right|_{v}+$ $k \mid s$.

In (6), Meng proved that the following three statements are equivalent.

Proposition 4.15. (6) Let L be a Lie algebra. Then the following conditions are equivalent:
(i) L is complete.
(ii) Any extension G by L is a trivial extension, and $G=L \oplus Z_{G}(\mathrm{~L})$ where $Z_{G}(\mathrm{~L})=$ $\{a \in G \mid[a, x]=0$ for all $x \in L\}$.
(iii) hol(L) has the decomposition, hol(L) $=\mathrm{L} \oplus Z_{\text {hol(L) }}(\mathrm{L})$ where $Z_{\text {hol }(\mathrm{L})}(\mathrm{L})=\{a \in$ $\operatorname{hol}(\mathrm{L}) \mid[a, x]=0$ for all $x \in \mathrm{~L}\}$.

Recently, in (9), Boyle, Misra and Stitzinger proved some analog for Leibniz algebras.

Theorem 4.16. (9) Let A be a Leibniz algebra. Then A is complete if and only if hol $(A)=$ $A+\left(Z^{\ell}{ }_{\text {hol }}(\mathrm{A})(\mathrm{A}) \oplus I\right)$ and $\mathrm{A} \cap\left(Z_{\text {hol }(\mathrm{A})}^{\ell}(\mathrm{A}) \oplus I\right)=\operatorname{Leib}(\mathrm{A})$ where $I=\{\delta \in \operatorname{Der}(\mathrm{A}) \mid \operatorname{im}(\delta) \subseteq$ Leib(A) \}.

In the following theorem, we prove another necessary and sufficient condition for the Leibniz algebra A to be complete.

Theorem 4.17. Let A be a Leibniz algebra. Then the following conditions are equivalent:
(i) $\quad \mathrm{A}$ is complete.
(ii) For any extension B of $\mathrm{A}, B=\mathrm{A}+X$ where $X=\{x \in B \mid[x, \mathrm{~A}] \subseteq$ Leib(A) $\}$ and $A \cap X=\operatorname{Leib}(A)$.

Proof. (i) \Rightarrow (ii) Suppose that A is complete. Let B be an extension of A. It is clear that $\operatorname{Leib}(A) \subseteq A \cap X$. To show that $A \cap X \subseteq \operatorname{Leib}(A)$, we let $x \in A \cap X$. Then for all $a \in A,[x+$ $\operatorname{Leib}(A), a+\operatorname{Leib}(A)]=[x, a]+\operatorname{Leib}(A)=\operatorname{Leib}(A)$ and hence $x+\operatorname{Leib}(A) \in Z(A / \operatorname{Leib}(A))=$ $\{0\}$ which implies $x \in \operatorname{Leib}(A)$. Therefore, $A \cap X=\operatorname{Leib}(A)$. Let $x \in B$. Since A is an ideal of $B,\left.a d_{x}\right|_{A} \in \operatorname{Der}(A)$. Thus, there exists $b \in A$ such that $\operatorname{im}\left(\left.a d_{x}\right|_{A}-L_{b}\right) \subseteq \operatorname{Leib}(A)$. So, we have
$[x-b, \mathrm{~A}] \subseteq \operatorname{Leib}(\mathrm{A})$ and $x-b \in X$. Hence, $x \in \mathrm{~A}+X$ which implies $B \subseteq \mathrm{~A}+X$. Since the reverse inclusion is clear, we have $B=\mathrm{A}+X$.
(ii) \Rightarrow (i) Suppose that (ii) holds. Since hol(A) is an extension of A, hol $(\mathrm{A})=\mathrm{A}+X$ where X $=\{x+\delta \in \operatorname{hol}(\mathbf{A}) \mid[x+\delta, A]=[x, A]+\delta(A) \subseteq \operatorname{Leib}(A)\}$. Set $I=\{\delta \in \operatorname{Der}(\mathbf{A}) \mid \operatorname{im}(\delta) \subseteq$ $\operatorname{Leib}(A)\}$. To show $A+\left(Z^{\ell}{ }_{\text {hol }}^{(A)}(A) \oplus I\right) \subseteq A+X$, let $a \in A+\left(Z^{\ell}\right.$ hol(A) $\left.(A) \oplus I\right)$. Then by Proposition 3.12, $a=b+c-L_{c}+\delta$ for some $b, c \in A$ and $\delta \in I$. For all $d \in A$, we have [c $\left.-L_{c}+\delta, d\right]=[c, d]-L_{c}(d)+\delta(d)=\delta(d) \in \operatorname{Leib}(A)$. Hence $c-L_{c}+\delta \in X$ which implies a $=b+c-L_{c}+\delta \in \mathrm{A}+X$. Conversely, let $a \in \mathrm{~A}+X=\operatorname{hol}(\mathrm{A})=\mathrm{A} \oplus \operatorname{Der}(\mathrm{A})$. Then $a=b+c$ $+\delta_{1}=d+\delta_{2}$ for some $b, d \in \mathrm{~A}, c+\delta_{1} \in X$ and $\delta_{2} \in \operatorname{Der}(\mathrm{~A})$. This implies $\delta_{1}=\delta_{2}$ and $b+c$ $=d$. Note that $\operatorname{im}\left(L_{c}+\delta_{2}\right)=\operatorname{im}\left(L_{c}+\delta_{1}\right) \subseteq \operatorname{Leib}(\mathbf{A})$ and hence $L_{c}+\delta_{2} \in I$. Thus, $a=d+\delta_{2}=$ $d-c+c-L_{c}+L_{c}+\delta_{2} \in A+\left(Z_{\text {hol(A) }}^{\ell}(A) \oplus I\right)$ which implies $A+X \subseteq A+\left(Z^{\ell}\right.$ hol(A) $\left.(A) \oplus I\right)$. Therefore, we have that $\operatorname{hol}(\mathrm{A})=\mathrm{A}+X \subseteq \mathrm{~A}+\left(\mathrm{Z}_{\text {hol(}(\mathrm{A})}(\mathrm{A}) \oplus I\right)$. Also, we have that $\mathrm{A} \cap$ $\left(Z^{\ell}{ }_{\text {hol }}(\mathrm{A})(\mathrm{A}) \oplus I\right)=\mathrm{A} \cap X=\operatorname{Leib}(\mathrm{A})$. By Theorem 4.16, it follows that A is complete.

Therefore, by Theorem 4.16 and Theorem 4.17, we have the following full Leibniz algebra analog of the Lie algebra result given in (6).

Corollary 4.18. Let A be a Leibniz algebra. Then the following conditions are equivalent:
(i) A is complete.
(ii) For any extension B of $A, B=A+X$ where $X=\{x \in B \mid[x, A] \subseteq \operatorname{Leib}(A)\}$ and $\mathrm{A} \cap X=\operatorname{Leib}(\mathrm{A})$.
(iii) $\quad \operatorname{hol}(\mathrm{A})=\mathrm{A}+\left(Z_{\text {hol }(\mathrm{A})}^{\ell}(\mathrm{A}) \oplus I\right)$ and $\mathrm{A} \cap\left(Z_{\text {hol(A) }}^{\ell}(\mathrm{A}) \oplus I\right)=\operatorname{Leib}(\mathrm{A})$ where $\quad I=$ $\{\delta \in \operatorname{Der}(\mathrm{A}) \mid \operatorname{im}(\delta) \subseteq \operatorname{Leib}(\mathrm{A})\}$.

In (21), Ayupov, Khudoyberdiyev and Shermatova gave a conjecture that if a complete Leibniz algebra A is an ideal of the Leibniz algebra B, then $B=\mathrm{A} \oplus I$, where I is an ideal of B. By our definition of completeness, this conjecture is not true as shown in the following example.

Example 4.19. Consider the Leibniz algebra $B=\operatorname{span}\{x, y, z, a\}$ with non-zero brackets defined by $[x, y]=y,[y, x]=-y,[x, z]=2 z$ and $[x, a]=z$ and the complete Leibniz algebra $\mathbf{A}=\operatorname{span}\{x, y, z\}$ with non-zero brackets defined by $[x, y]=y,[y, x]=-y,[x, z]=2 z$. Then \mathbf{A} is an ideal of B and $B=A \oplus \operatorname{span}\{a\}$. However, $\operatorname{span}\{a\}$ is not an ideal of B.

In (6), Meng proved that if a Lie algebra L has a trivial center and $\operatorname{ad}(\mathrm{L})$ is a characteristic ideal of $\operatorname{Der}(\mathrm{L})$, then $\operatorname{Der}(\mathrm{L})$ is a complete Lie algebra. Consequently, for a complete Lie algebra L, $\operatorname{Der}(\mathrm{L})$ is also complete. However, this statement does not hold for some Leibniz algebras. The following example illustrates that there exists a complete Leibniz algebra A for which $\operatorname{Der}(\mathrm{A})$ is not complete.

Example 4.20. (12) From Example 4.3, for the complete Leibniz algebra $\mathrm{A}=\operatorname{span}\{x, y, z\}$ with non-zero brackets defined by $[x, z]=\alpha z,[x, y]=y$ and $[y, x]=-y$ for some $\alpha \in \mathbb{F} \backslash\{0\}$, we have that $\operatorname{Der}(\mathrm{A})=\operatorname{span}\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ where

$$
\begin{array}{lll}
\delta_{1}(x)=y, & \delta_{1}(y)=0, & \delta_{1}(z)=0, \\
\delta_{2}(x)=0, & \delta_{2}(y)=y, & \delta_{2}(z)=0, \\
\delta_{3}(x)=0, & \delta_{3}(y)=0, & \delta_{3}(z)=z .
\end{array}
$$

Since $\left[\delta_{1}, \delta_{2}\right]=-\delta_{1},\left[\delta_{1}, \delta_{3}\right]=0$ and $\left[\delta_{2}, \delta_{3}\right]=0$, we have that $\delta_{3} \in Z(\operatorname{Der}(\mathrm{~A}))$ which implies that $Z(\operatorname{Der}(A)) \neq\{0\}$. Therefore, $\operatorname{Der}(A)$ is not complete.

Recall that $I=\{\delta \in \operatorname{Der}(\mathrm{A}) \mid \operatorname{im}(\delta) \subseteq \operatorname{Leib}(\mathrm{A})\}$ is an ideal of $\operatorname{Der}(\mathrm{A})$. The following theorem is one of our main results.

Theorem 4.21. (18) Let A be a complete Leibniz algebra. If $A / \operatorname{Leib}(A)$ is a complete Lie algebra, then $\operatorname{Der}(\mathrm{A}) / /$ is complete and $\operatorname{Der}(\mathrm{A}) / / \cong \operatorname{Der}(\mathrm{A} / \operatorname{Leib}(\mathrm{A}))$.

Proof. Let A be a complete Leibniz algebra. Suppose that A/Leib(A) is a complete Lie algebra. Then $\operatorname{Der}(\mathrm{A} / \operatorname{Leib}(\mathrm{A}))$ is complete. Define a linear map $\varphi: \operatorname{Der}(\mathrm{A}) \rightarrow$ $\operatorname{Der}(\mathrm{A} / \operatorname{Leib}(\mathrm{A}))$ by $\varphi(\delta)=\delta^{\prime}$ where $\delta^{\prime}(x+\operatorname{Leib}(\mathrm{A}))=\delta(x)+\operatorname{Leib}(\mathrm{A})$ for any $\delta \in \operatorname{Der}(\mathrm{A})$ and $x \in \mathrm{~A}$. Let $\delta_{1}, \delta_{2} \in \operatorname{Der}(\mathrm{~A})$. Then for all $x \in \mathrm{~A}$,

$$
\begin{aligned}
\varphi\left(\left[\delta_{1}, \delta_{2}\right]\right)(x+\operatorname{Leib}(\mathrm{A})) & =\varphi\left(\delta_{1} \delta_{2}-\delta_{2} \delta_{1}\right)(x+\operatorname{Leib}(\mathrm{A})) \\
& =\left(\delta_{1} \delta_{2}-\delta_{2} \delta_{1}\right)^{\prime}(x+\operatorname{Leib}(\mathrm{A})) \\
& =\left(\delta_{1} \delta_{2}\right)(x)-\left(\delta_{2} \delta_{1}\right)(x)+\operatorname{Leib}(\mathrm{A}) \\
& =\delta_{1}\left(\delta_{2}(x)\right)-\delta_{2}\left(\delta_{1}(x)\right)+\operatorname{Leib}(\mathrm{A}) \\
& =\delta_{1}^{\prime}\left(\delta_{2}(x)+\operatorname{Leib}(\mathrm{A})\right)-{\delta_{2}^{\prime}}_{2}\left(\delta_{1}(x)+\operatorname{Leib}(\mathrm{A})\right) \\
& =\delta_{1}^{\prime}\left(\delta_{2}^{\prime}(x+\operatorname{Leib}(\mathrm{A}))-\delta_{2}^{\prime}\left(\delta_{1}^{\prime}(x+\operatorname{Leib}(\mathrm{A}))\right.\right. \\
& =\left({\delta_{1}^{\prime}{ }_{1} \delta_{2}^{\prime}-{\left.\delta^{\prime}{ }_{2} \delta_{1}^{\prime}\right)(x+\operatorname{Leib}(\mathrm{A}))}}=\left[\varphi\left(\delta_{1}\right), \varphi\left(\delta_{2}\right)\right](x+\operatorname{Leib}(\mathrm{A})) .\right.
\end{aligned}
$$

Hence, $\varphi\left(\left[\delta_{1}, \delta_{2}\right]\right)=\left[\varphi\left(\delta_{1}\right), \varphi\left(\delta_{2}\right)\right]$. Clearly, $I=\{d \in \operatorname{Der}(\mathrm{~A}) \mid \operatorname{im}(d) \subseteq \operatorname{Leib}(\mathrm{A})\} \subseteq \operatorname{ker}(\varphi)$. Let $\delta \in \operatorname{ker}(\varphi)$. Then for all $x \in A, \delta(x)+\operatorname{Leib}(A)=\delta^{\prime}(x+\operatorname{Leib}(A))=\operatorname{Leib}(A)$ hence $\delta(x) \in$ Leib(A) which implies that $\delta \in I$. Therefore, $\operatorname{ker}(\varphi)=I$. To show that φ is onto, let $\delta^{\prime} \in$ $\operatorname{Der}(A / \operatorname{Leib}(A))$. Since $A / \operatorname{Leib}(A)$ is a complete Lie algebra, there exists $a+\operatorname{Leib}(A) \in A$ $/ \operatorname{Leib}(A)$ such that $\delta^{\prime}=L_{a+\operatorname{Leib}(A)}$. Then $L_{a}(x)+\operatorname{Leib}(A)=[a, x]+\operatorname{Leib}(A)=[a+\operatorname{Leib}(A), x+$ $\operatorname{Leib}(A)]=L_{a+\operatorname{Leib}(A)}(x+\operatorname{Leib}(A))$. This implies that $\varphi\left(L_{a}\right)=\delta^{\prime}$ and φ is onto. Hence $\operatorname{Der}(\mathrm{A}) / I \cong \operatorname{Der}(\mathrm{~A} / \operatorname{Leib}(\mathrm{A}))$.

In (9), it is proved that for a Leibniz algebra A, if $A / \operatorname{Leib}(A)$ is a complete Lie algebra, then A is complete. We examine the Leibniz algebra A such that $A / L e i b(A)$ is complete and obtain the following results.

Corollary 4.22. (18) Let A be a Leibniz algebra such that $A / L e i b(A)$ is a complete Lie algebra. Then
(i) $\quad I_{\mathrm{A}}=\operatorname{Leib}(\mathrm{A})$ and $\mathrm{A} / I_{\mathrm{A}}$ is a complete Lie algebra,
(ii) $\quad \mathrm{hol}(\mathrm{A}) /\left(I_{\mathrm{A}} \oplus I\right)$ is a complete Lie algebra,
(iii) $\quad(L(A)+I) / I \cong I \operatorname{Der}(A) / I \cong \operatorname{Der}(A) / I \cong \operatorname{Der}(A / \operatorname{eib}(A)) \cong \mathrm{ALeib}(\mathrm{A})$,
(iv) $\quad \operatorname{dim}(\operatorname{Leib}(A))=\operatorname{dim}\left(I_{A}\right)=\operatorname{dim}\left(Z^{\ell}(A)\right)=\operatorname{dim}(A)-\operatorname{dim}(L(A))=\operatorname{dim}(A)+\operatorname{dim}(/)-$ $\operatorname{dim}(\operatorname{Der}(A))$.

Proof. Let A be a Leibniz algebra. Assume that $A / \operatorname{Leib}(A)$ is a complete Lie algebra.
(i) Since A is complete, by Corollary 3.5, we have that $A / I_{A} \cong L(A / \operatorname{Leib}(A))=\operatorname{ad}(A /$ $\operatorname{Leib}(A)) \cong A / \operatorname{Leib}(A)$. Hence, $I_{A}=\operatorname{Leib}(A)$ and A / I_{A} is a complete Lie algebra.
(ii) By Proposition 3.11, we have $h o l(A) /\left(I_{\mathrm{A}} \oplus I\right)=\mathrm{A} / I_{\mathrm{A}} \oplus \operatorname{Der}(\mathrm{A}) / I$. By (i), $\mathrm{A} / I_{\mathrm{A}}$ is complete and by Theorem 4.21, $\operatorname{Der}(A) / I$ is complete. Therefore, by Theorem 4.11, hol(A) $/\left(I_{\mathrm{A}} \oplus I\right)$ is complete.
(iii) Since A is complete by (9), it follows that $\operatorname{Der}(A)=I \operatorname{Der}(A)=L(A)+I$. Then the statement holds.
(iv) The results follow immediately from (i), (iii) and Theorem 3.4.

Example 4.23. Consider the Leibniz algebra $A=\operatorname{span}\{x, y, z\}$ with non-zero multiplications defined by $[x, y]=y,[y, x]=-y$ and $[x, x]=z$. From Example 3.9, we have that $\operatorname{Der}(\mathrm{A})=\operatorname{span}\left\{d_{1}, d_{2}, d_{3}\right\}=I \operatorname{Der}(\mathrm{~A})$ where

$$
\begin{array}{lll}
d_{1}(x)=y, & d_{1}(y)=0, & d_{1}(z)=0, \\
d_{2}(x)=z, & d_{2}(y)=0, & d_{2}(z)=0, \\
d_{3}(x)=0, & d_{3}(y)=y, & d_{3}(z)=0 .
\end{array}
$$

Since $Z(A / \operatorname{Leib}(A))$ is trivial, A is complete. By (12), it is known that $A / \operatorname{Leib}(A)$ and $\operatorname{Der}(\mathrm{A}) / I$ are complete Lie algebras. In this case, we have $I_{\mathrm{A}}=\operatorname{span}\{z\}=\operatorname{Leib}(\mathrm{A})$ and $I=$ $\operatorname{span}\left\{d_{2}\right\}$. Thus, $\operatorname{dim}(\operatorname{Der}(A))=3=3-1+1=\operatorname{dim}(A)-\operatorname{dim}(\operatorname{Leib}(A))+\operatorname{dim}(/)$.

CHAPTER 5

GENERALIZATIONS OF DERIVATIONS OF LEIBNIZ ALGEBRAS

In 2021, Chang, Chen and Zhang (21) studied a generalization of derivations of finite dimensional Lie algebras over an algebraically closed field of characteristic zero. Specifically, they introduced the notion of (σ, τ)-derivations which connects with the automorphism group when specializing in the case where σ and τ are automorphisms. Motivated by these results, we introduce the notion of a generalization of derivations of Leibniz algebras and explore its properties. Let A be a Leibniz algebra. We denote $\operatorname{Aut}(\mathrm{A})$ to be the automorphism group of A .

Definition 5.1. Let G be a subgroup of $\operatorname{Aut}(A)$. A linear map $D: A \rightarrow A$ is called a G derivation of A if there exist two automorphisms $\sigma, \tau \in G$ such that $D[x, y]=[D(x), \sigma(y)]+$ $[\tau(x), D(y)]$ for all $x, y \in \mathrm{~A}$. In this case, σ and τ are called associated automorphisms of D.

We denote $\operatorname{Der}_{G}(\mathbf{A})$ to be the set of all G-derivations of A . Given two elements σ, τ $\in G$, we denote $\operatorname{Der}_{\sigma, \tau}(\mathrm{A})$ to be the set of all G-derivations associated to σ and τ. Clearly, $\operatorname{Der}_{\sigma, \tau}(\mathrm{A}) \subseteq \operatorname{Der}_{G}(\mathrm{~A})$ is a vector space and in particular, $\operatorname{Der}_{\mathrm{id}, \mathrm{id}}(\mathrm{A})=\operatorname{Der}(\mathrm{A})$. For simplicity of notation, we denote $\operatorname{Der}_{\sigma, i d}(\mathrm{~A})$ as $\operatorname{Der}_{\sigma}(\mathrm{A})$. The following proposition is the Leibniz algebra analogue of the result in [21, Proposition 2.1].

Proposition 5.2. Let A be a Leibniz algebra and let $\sigma, \tau \in \operatorname{Aut}(\mathrm{A})$. Then $\left.\operatorname{Der}_{\sigma, \mathrm{T}} \mathrm{A}\right) \cong$ $\operatorname{Der}_{\tau^{-1} \sigma}(\mathrm{~A})$.
Proof. Define a map $\varphi_{\tau}: \operatorname{Der}_{\sigma, \tau}(\mathrm{A}) \rightarrow \operatorname{Der}_{\tau^{-1} \sigma}(\mathrm{~A})$ by $\varphi_{\tau}(D)=\tau^{-1} \circ D$ for all $D \in \operatorname{Der}_{\sigma, \tau}(\mathrm{A})$. Since $D \in \operatorname{Der}_{\sigma, \tau}(\mathrm{A})$, for any $x, y \in A, D[x, y]=[D(x), \sigma(y)]+[\tau(x), D(y)]$. It follows that $\tau^{-1} \circ D([x, y])=\tau^{-1}(D[x, y])=\tau^{-1}([D(x), \sigma(y)]+[\tau(x), D(y)])=\left[\tau^{-1} \circ D(x), \tau^{-1} \circ \sigma(y)\right]+\left[\tau^{-1} \circ \tau(x)\right.$, $\left.\tau^{-1} \circ D(y)\right]$ and hence $\tau^{-1} \circ D \in \operatorname{Der}_{\tau^{-1}}(\mathrm{~A})$. For all $D_{1}, D_{2} \in \operatorname{Der}_{\sigma, \tau}(\mathrm{A})$ and $\alpha \in \mathbb{F}$, we have that $\tau^{-1} \circ\left(\alpha D_{1}+D_{2}\right)=\alpha\left(\tau^{-1} \circ D_{1}\right)+\tau^{-1} \circ D_{2}$. Hence φ_{τ} is a linear map. Define a map ϕ_{τ} : $\operatorname{Der}_{\tau^{-1} \sigma}(\mathrm{~A})$
$\rightarrow \operatorname{Der}_{\sigma, \tau}(\mathrm{A})$ by $\phi_{\tau}(D)=\tau \circ D$ for all $D \in \operatorname{Der}_{\tau^{-1} \sigma}(\mathrm{~A})$. Then ϕ_{τ} is also linear and $\varphi_{\tau^{-1}}=\phi_{\tau}$. Therefore, φ_{τ} is an isomorphism and $\operatorname{Der}_{\sigma, \tau}(\mathrm{A}) \cong \operatorname{Der}_{\tau^{-1} \sigma}(\mathrm{~A})$.

By Proposition 5.2, the study of $\operatorname{Der}_{\sigma, \tau}(\mathrm{A})$ with two automorphisms σ, τ can be turned to the study of $\operatorname{Der}_{\sigma^{\prime}}(\mathrm{A})$ with one automorphism σ^{\prime}. In the case that $\sigma=\tau$, we have that $\operatorname{Der}_{\sigma, \sigma}(\mathrm{A}) \cong \operatorname{Der}_{\sigma^{-1} \sigma}=\operatorname{Der}(\mathrm{A})$. In general, the vector space $\operatorname{Der}_{\sigma}(\mathrm{A})$ may not be a Lie subalgebra of $\mathrm{gl}(\mathrm{A})$. The following proposition shows that under some conditions, $\operatorname{Der}_{\sigma}(\mathrm{A})$ and $\operatorname{Der}(\mathbf{A})$ coincide. It is the Leibniz algebra analogue of the result in [(21), Proposition 2.4].

Proposition 5.3. Let A be a Leibniz algebra and let $\sigma, \tau \in \operatorname{Aut}(\mathrm{A})$. If $\mathrm{im}(\sigma-\tau) \subseteq Z(\mathrm{~A})$, then $\operatorname{Der}_{\sigma}(\mathrm{A})=\operatorname{Der}_{\tau}(\mathrm{A})$. In particular, if $\mathrm{im}(\sigma-\mathrm{id}) \subseteq Z(\mathrm{~A})$, then $\operatorname{Der}_{\sigma}(\mathrm{A})=\operatorname{Der}(\mathrm{A})$.

Proof. Assume that $\mathrm{im}(\sigma-\tau) \subseteq Z(\mathrm{~A})$. Then for all $a \in \mathrm{~A}, \sigma(a)-\tau(a) \in Z(\mathrm{~A})$. For any $x \in \mathrm{~A}$, $D \in \operatorname{Der}(\mathrm{~A})$, we have that $[D(x), \sigma(a)-\tau(a)]=0$ which implies that $[D(x), \sigma(a)]=[D(x)$, $\tau(a)]$. Therefore, for any $D \in \operatorname{Der}_{\sigma}(A)$, we have that $D[x, y]=[D(x), \sigma(y)]+[x, D(y)]=[D(x)$, $\tau(y)]+[x, D(y)]$ which implies that $D \in \operatorname{Der}_{\tau}(A)$. $\operatorname{Thus}, \operatorname{Der}_{\sigma}(A) \subseteq \operatorname{Der}_{\tau}(A)$. It can be shown similarly that $\operatorname{Der}_{\tau}(\mathrm{A}) \subseteq \operatorname{Der}_{\sigma}(\mathrm{A})$. Therefore, $\operatorname{Der}_{\sigma}(\mathrm{A})=\operatorname{Der}_{\tau}(\mathrm{A})$. Clearly, if $\tau=\mathrm{id}$, then $\operatorname{Der}_{\sigma}(\mathrm{A})=\operatorname{Der}(\mathrm{A})$.

The following results are the Leibniz algebra analogue of the results in [(21), Lemma 3.21 and Proposition 2.6].

Lemma 5.4. Let A be a Leibniz algebra, $\sigma \in \operatorname{Aut}(A)$ and $D \in \operatorname{Der}_{\sigma}(A)$. Then $\left[D, L_{x}\right]$ $=\sigma \circ L_{\sigma^{-1}} \circ D(x)$ for all $x \in \mathrm{~A}$.
Proof. Let $x, y \in A$. Then $\left[D, L_{x}\right](y)=D \circ L_{x}(y)-L_{x} \circ D(y)=D[x, y]-[x, D(y)]=[D(x), \sigma(y)]+$ $\left.[x, D(y)]-[x, D(y)]=[D(x), \sigma(y)]=\sigma\left[\sigma^{-1}(D(x)), y\right]\right)=\sigma \circ L_{\sigma^{-1}} \circ D(x)(y)$ Thus, $\left[D, L_{x}\right]=\sigma \circ L_{\sigma^{-1} \circ D(x)}$.

Proposition 5.5. Let A be a Leibniz algebra such that $A^{2} \neq 0$. If $\sigma \in \operatorname{Aut}(\mathrm{A})$ and $D \in$ $\operatorname{Der}_{\sigma}(\mathrm{A})$ such that $[D, \sigma](\mathrm{A}) \subseteq Z(\mathrm{~A})$, then $\mathrm{A}^{2} \subseteq \operatorname{ker}([D, \sigma])$.

Proof. Assume that $A^{2} \neq\{0\}$. Let $\sigma \in \operatorname{Aut}(A)$ and $D \in \operatorname{Der}_{\sigma}(A)$ such that $[D, \sigma](A) \subseteq Z(A)$. Then for any $x, y \in A$, we have that

$$
\begin{aligned}
{[D, \sigma]([x, y]) } & =D(\sigma([x, y]))-\sigma(D([x, y])) \\
& =D([\sigma(x), \sigma(y)])-\sigma([D(x), \sigma(y)]+[x, D(y)]) \\
& =[D(\sigma(x)), \sigma(\sigma(y))]-[\sigma(x), D(\sigma(y))]-[\sigma(D(x)), \sigma(\sigma(y))]+[\sigma(x), \sigma(D(y))] \\
& =\left[D(\sigma(x))-\sigma(D(x)), \sigma^{2}(y)\right]+[\sigma(x), D(\sigma(y))-\sigma(D(y))] \\
& =\left[[D, \sigma](x), \sigma^{2}(y)\right]+[\sigma(x),[D, \sigma](y)] \\
& =0
\end{aligned}
$$

Hence, $\mathrm{A}^{2} \subseteq \operatorname{ker}([D, \sigma])$.

In 2017, Said Husain, Rakhimov and Basri (22) studied centroids of Leibniz algebras and their properties. Here, we investigate comparisons and connections between G-derivations and centroids.

Definition 5.6. (22) Let A be a Leibniz algebra. The centroid $C(A)$ of A is the set of all linear maps $D: A \rightarrow A$ such that $D[x, y]=[D(x), y]=[x, D(y)]$ for all $x, y \in \mathrm{~A}$.

We obtain the following result which is the Leibniz algebra analogue of the result in [(21), Proposition 3.15].

Proposition 5.7. Let A be a Leibniz algebra, $\sigma \in \operatorname{Aut}(\mathrm{A})$ and $D \in \mathrm{C}(\mathrm{A}) \cap \operatorname{Der}_{\sigma}(\mathrm{A})$. Then $L_{D(x)}$ $=0$ for all $x \in A$. In particular, if $Z^{\ell}(A)=0$, then $C(A) \cap \operatorname{Der}(A)=\{0\}$.

Proof. Let A be a Leibniz algebra, $\sigma \in \operatorname{Aut}(\mathrm{A})$ and $D \in \mathrm{C}(\mathrm{A}) \cap \operatorname{Der}_{\sigma}(\mathrm{A})$. Then for any $x, y \in$ A, we have that $D[x, y]=[D(x), \sigma(y)]+[x, D(y)]$. Since $D \in C(A),[x, D(y)]=[D(x), \sigma(y)]+$ $[x, D(y)]$ and so $[D(x), \sigma(y)]=0$. Hence, $[D(x), \mathrm{A}]=0$ because $\sigma \in \operatorname{Aut}(\mathrm{A})$. This means that $L_{D(x)}=0$ for all $x \in A$. In particular, if $Z^{\ell}(A)=0$, then $D(x)=0$ for all $x \in A$ hence $D=0$. Therefore, $C(A) \cap \operatorname{Der}(A)=\{0\}$.

We consider a subalgebra M of A and an automorphism of A such that $\sigma(M) \subseteq$ M. We denote $\operatorname{Der}_{\sigma, M}(\mathrm{~A})$ to be the set of all σ-derivations of A which stabilizes M, i.e., $\operatorname{Der}_{\sigma, M}(\mathrm{~A})=\left\{D \in \operatorname{Der}_{\sigma}(\mathrm{A}) \mid D(M) \subseteq M\right\}$. The following proposition is the Leibniz algebra analogue of the result in [(21), Proposition 3.17].

Proposition 5.8. Let A be a Leibniz algebra. Let M be a subalgebra of A and $\sigma \in \operatorname{Aut}(\mathrm{A})$ such that $\sigma(M) \subseteq M$. Then $\operatorname{Der}_{\sigma, M}(\mathrm{~A})$ is a subspace of $\operatorname{Der}_{\sigma}(\mathrm{A})$. Moreover, if M is an ideal of A and $M^{2}=M$, then $\operatorname{Der}_{\sigma, M}(\mathrm{~A})=\operatorname{Der}_{\sigma}(\mathrm{A})$.
Proof. Let A be a Leibniz algebra. Let M be a subalgebra of A and $\sigma \in \operatorname{Aut}(\mathrm{A})$ such that $\sigma(M) \subseteq M$. Let $S, T \in \operatorname{Der}_{\sigma, M}(\mathrm{~A})$ and $\alpha, b \in \mathbb{F}$. Clearly, $\alpha S+B T \in \operatorname{Der}_{\sigma}(\mathrm{A})$. Also, for any a \in M, we have that $(\alpha S+B T)(a)=\alpha S(a)+B T(a) \in M$. Thus, $\operatorname{Der}_{\sigma, M}(A)$ is a subspace of $\operatorname{Der}_{\sigma}(\mathrm{A})$. Assume that M is an ideal of A such that $M^{2}=M$. To show that $\operatorname{Der}_{\sigma}(\mathrm{A}) \subseteq$ $\operatorname{Der}_{\sigma, M}(\mathrm{~A})$, let $D \in \operatorname{Der}_{\sigma}(\mathrm{A})$ and $a \in M$. Since $M=M^{2}$, there exist $b, c \in M$ such that $a=$ $[b, c]$. Then $D(a)=D([b, c])=[D(b), \sigma(c)]+[b, D(c)]$. Since $\sigma(c) \in M$ and M is an ideal of A, we have $D(a) \in M$ hence $D \in \operatorname{Der}_{\sigma, M}(A)$. This means that $\operatorname{Der}_{\sigma}(A) \subseteq \operatorname{Der}_{\sigma, M}(A)$. Since the reverse inclusion is clear, $\operatorname{Der}_{\sigma, M}(A)=\operatorname{Der}_{\sigma}(A)$.

REFERENCES

1. Cheng T-P, Li L-F, Gross D. Gauge Theory of Elementary Particle Physics. Physics Today - PHYS TODAY. 1985;38.
2. Georgi H. Lie Algebras In Particle Physics: from Isospin To Unified Theories.

Revised and updated edition. ed. United States: CRC Press; 1999.
3. Lipkin HJ, editor Lie groups for pedestrians1965.
4. Dobrev V. Lie Theory and Its Applications in Physics Varna, Bulgaria, June 2019: Varna, Bulgaria, June 20192020.
5. Loday J-L, editor Une version non commutative des algèbres de Lie : les algèbres de Leibniz1993.
6. Meng D. Some results on complete lie algebras. Communications in Algebra. 1994;22:5457-507.
7. Jacobson N, editor A note on automorphisms and derivations of Lie algebras1955.
8. Ancochea Bermúdez JM, Campoamor-Stursberg R. On a complete rigid Leibniz non-Lie algebra in arbitrary dimension. Linear Algebra and its Applications. 2013;438(8):3397-407.
9. Boyle K, Misra KC, Stitzinger E. Complete Leibniz algebras. Journal of Algebra. 2020;557:172-80.
10. Tôgô S. On the Derivation Algebras of Lie Algebras. Canadian Journal of Mathematics. 1961;13:201-16.
11. Rakhimov IS, Masutova KK, Omirov BA. On Derivations of Semisimple Leibniz Algebras. Bulletin of the Malaysian Mathematical Sciences Society. 2014;40:295-306.
12. Kongsomprach Y, Pongprasert S, Rungratgasame T, Tiansa-ard S. Completeness of low-dimensional Leibniz algebras: Annual Meeting in Mathematics 2023. Thai Journal of Mathematics. 2024;22(1):165-78--78.
13. Jacobson N. Lie Algebras: Dover; 1979.
14. Ayupov S, Omirov B, Rakhimov I. Leibniz algebras: structure and classification: Chapman and Hall/CRC; 2019.
15. Barnes DW. Some Theorems on Leibniz Algebras. Communications in Algebra. 2011;39(7):2463-72.
16. Demir I, Misra K, Stitzinger E. On some structures of Leibniz algebras.

Contemporary Mathematics. 2014;623:41-54.
17. Barnes D. On Levi's Theorem for Leibniz algebras. Bulletin of the Australian Mathematical Society. 2011;86.
18. Patlertsin S, Pongprasert S, Rungratgasame T. On Inner Derivations of Leibniz Algebras. Mathematics. 2024;12(8):1152.
19. Shermatova Z, Khudoyberdiyev A. On special subalgebras of derivations of Leibniz algebras. Algebra and Discrete Mathematics. 2022;34:326-36.
20. Biyogmam G, Tcheka C. A note on outer derivations of Leibniz algebras.

Communications in Algebra. 2021;49:1-12.
21. Ayupov S, Khudoyberdiyev A, Shermatova Z. On complete Leibniz algebras.

International Journal of Algebra and Computation. 2022;32:1-24.

Appendix A

For readers' convenience, Appendix A provides a list of notations and definitions used in this work.

A Lie algebra L is a vector space over \mathbb{F} with a bilinear map $[]:, L \times L \longrightarrow L$ such that following axioms are satisfied:
(i) $\quad[a, a]=0$ for all $a \in L$ and
(ii) $[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0$ for all $a, b, c \in L \quad$ (Jacobi Identity).

For a Lie algebra L, a derivation $d: L \rightarrow L$ is inner if there exists $x \in L$ such that $d=\operatorname{ad}_{x}$ where $\operatorname{ad}_{x}: L \longrightarrow \mathrm{~L}$ is defined by $\operatorname{ad}_{x}(y)=[x, y]$ for all $y \in \mathrm{~L}$. Otherwise, the derivation is called outer. A Lie algebra L is said to be complete if its center is trivial and all derivations are inner.

A (left) Leibniz algebra A is a vector space over \mathbb{F} with a bilinear map (called bracket) [,]: A $\times \mathrm{A} \rightarrow \mathrm{A}$ that satisfies the Leibniz identity

$$
[a,[b, c]]=[[a, b], c]+[b,[a, c]] \text { for all } a, b, c \in A \text {. }
$$

Let A be a Leibniz algebra. For subsets M and N of A, we define the product of M and N to be the subspace spanned by all brackets $[a, b]$, where $a \in M$ and $b \in N$, denoted by $[M, N]$. A subspace M of A is called a subalgebra of A if $[M, M] \subseteq M$. A subspace M of A is called an ideal of A if $[M, A] \subseteq M$ and $[A, M] \subseteq M$. The left center of A is $Z^{\ell}(A)=\{x \in A \mid[x, a]=0$ for all $a \in A\}$. The right center of A is $Z^{r}(A)=\{x \in A \mid[a, x]=0$ for all $a \in A\}$. The center of A is $Z(A)=Z^{\ell}(A) \cap Z^{r}(A)$. We denote Leib $(A)=\operatorname{span}\{[x, x] \mid x \in$ $A\}$. For any ideal M of A, we define the quotient space by $A / M=\{a+M \mid a \in A\}$ with the bracket $[x+M, y+M]=[x, y]+M$, for all $x, y \in A$.

A linear transformation $\delta: A \rightarrow A$ is a derivation of A if $\delta[a, b]=[\delta(a), b]+[a$, $\delta(b)]$ for all $a, b \in A$. We denote $\operatorname{Der}(\mathrm{A})$ to be the set of all derivations of A with the
commutator bracket $\left[\delta_{1}, \delta_{2}\right]:=\delta_{1} \circ \delta_{2}-\delta_{2} \circ \delta_{1}$ for any $\delta_{1}, \delta_{2} \in \operatorname{Der}(\mathrm{~A})$. An ideal M of A is a characteristic ideal if $\delta(M) \subseteq M$ for all $\delta \in \operatorname{Der}(\mathrm{A})$. For any a $\in \mathrm{A}$, we define the left multiplication operator $L_{a}: A \rightarrow A$ by $L_{a}(b)=[a, b]$ for all $b \in A$. We denote $L(A)=\operatorname{span}\left\{L_{a} \mid\right.$ $a \in A\}, I=\{d \in \operatorname{Der}(A) \mid \operatorname{im}(d) \subseteq \operatorname{Leib}(A)\}$, and $I_{A}=\left\{x \in A \mid \operatorname{im}\left(L_{x}\right) \subseteq \operatorname{Leib}(A)\right\}$. A derivation δ $\in \operatorname{Der}(\mathrm{A})$ is said to be inner if there exists $x \in A$ such that $i m\left(\delta-L_{x}\right) \subseteq$ Leib(A). We denote $\operatorname{IDer}(\mathrm{A})$ be the set of all inner derivations of A . A Leibniz algebra A is complete if $Z(\mathrm{~A} /$ $\operatorname{Leib}(A))=\{0\}$ and all derivations of A are inner, i.e., $\operatorname{Der}(A)=I \operatorname{Der}(A)$.

We define the ideals $A^{(1)}=A=A^{1}, A^{(i)}=\left[A^{(i-1)}, A^{(i-1)}\right]$ and $A^{i}=\left[A, A^{i-1}\right]$ for $i \in \mathbb{Z}_{\geq 2} . A$ Leibniz algebra \mathbf{A} is said to be solvable (resp. nilpotent) if $\boldsymbol{A}^{(m)}=\{0\}$ (resp. $\boldsymbol{A}^{m}=\{0\}$) for some positive integer m. The maximal solvable (resp. nilpotent) ideal of A is called the radical (resp. nilradical) denoted by $\operatorname{rad}(\mathrm{A})($ resp. nilrad(A)). A Leibniz algebra A is called simple if its ideals are only $\{0\}$, $\operatorname{Leib}(A), A$ and $[A, A] \neq \operatorname{Leib}(A)$. A Leibniz algebra A is semisimple if $\operatorname{rad}(A)=\operatorname{Leib}(A)$.

A holomorph of the Leibniz algebra A is defined to be the vector space hol(A) := $\mathrm{A} \oplus \operatorname{Der}(\mathrm{A})$, with the bracket defined by $\left[x+\delta_{1}, y+\delta_{2}\right]=[x, y]+\delta_{1}(y)+\left[L_{x}, \delta_{2}\right]+\left[\delta_{1}, \delta_{2}\right]$ for all $x, y \in A$ and $\delta_{1}, \delta_{2} \in \operatorname{Der}(\mathrm{~A})$. For two subspaces M and N of hol(A), the left centralizer of M in N is defined to be $Z^{\ell}{ }_{N}(M)=\{x \in N \mid[x, M]=0\}$.

A derivation $d \in \operatorname{Der}(A)$ is called a central derivation if $\operatorname{im}(d) \subseteq Z(A)$. We denote $\operatorname{CDer}(\mathrm{A})$ to be the set of all central derivations of A . The centroid $C(\mathrm{~A})$ of A is the set of all linear maps $D: A \rightarrow A$ such that $D[x, y]=[D(x), y]=[x, D(y)]$ for all $x, y \in \mathrm{~A}$. We denote Aut(A) to be the automorphism group of A. Let G be a subgroup of Aut(A). A linear map $D: A \rightarrow \mathrm{~A}$ is called a G-derivation of A if there exist two automorphisms $\sigma, \tau \in G$ such that $D[x, y]=[D(x), \sigma(y)]+[\tau(x), D(y)]$ for all $x, y \in \mathrm{~A}$. In this case, σ and τ are called associated automorphisms of D.

We denote $\operatorname{Der}_{G}(\mathbf{A})$ to be the set of all G-derivations of A . Given two elements σ, τ $\in G$, we denote $\operatorname{Der}_{\sigma, \tau}(\mathrm{A})$ to be the set of all G-derivations associated to σ and τ in particular, $\operatorname{Der}_{i d, i d}(\mathrm{~A})=\operatorname{Der}(\mathrm{A})$. For simplicity of notation, we denote $\operatorname{Der}_{\sigma, i d}(\mathrm{~A})$ as $\operatorname{Der}_{\sigma}(\mathrm{A})$. For a subalgebra M of A and an automorphism of A such that $\sigma(M) \subseteq M$, we denote $\operatorname{Der}_{\sigma, M}(\mathrm{~A})$ to be the set of all σ-derivations of A which stabilizes M, i.e., $\operatorname{Der}_{\sigma, M}(\mathrm{~A})=\{D \in$ $\left.\operatorname{Der}_{\sigma}(\mathrm{A}) \mid D(M) \subseteq M\right\}$.

VITA

