DETECTING SUSPICIOUS TRANSACTIONS ON BITCOIN NETWORKUSING UNSUPERVISED LEARNING

dc.contributorYOSSAPOL WITAYANONTen
dc.contributorยศพล วิทยานนท์th
dc.contributor.advisorWaraporn Viyanonen
dc.contributor.advisorวราภรณ์ วิยานนท์th
dc.contributor.coadvisorWaraporn Viyanonen
dc.contributor.coadvisorวราภรณ์ วิยานนท์th
dc.contributor.emailadvisorwaraporn@swu.ac.th
dc.contributor.emailcoadvisorwaraporn@swu.ac.th
dc.contributor.otherSrinakharinwirot Universityen
dc.date.accessioned2024-12-11T08:25:08Z
dc.date.available2024-12-11T08:25:08Z
dc.date.created2024
dc.date.issued19/7/2024
dc.description.abstractThis research is the study and development of unsupervised learning algorithms to detect suspicious entities on the Bitcoin network. The objective is to develop a practical model for detecting anomalies in the Bitcoin network. This study was divided into two tasks, which are transaction and wallet address. The statistical techniques are applied for feature engineering and a Histogram-based Outlier Score (HBOS) and Isolation Forest (IForest) algorithms are trained and evaluated. The evaluations utilized were visualization, dual, and known-thieves evaluations.  The result showed a similar detection for both algorithms. While HBOS has a higher wallet visualization score at 0.423, Isolation Forest yields better scores on transaction visualization, dual, and known-thieves evaluations with scores of 0.713, 0.681, and 0.035, respectively.en
dc.description.abstract-th
dc.description.degreedisciplineDepartment of Computer Scienceen
dc.description.degreedisciplineภาควิชาวิทยาการคอมพิวเตอร์th
dc.description.degreelevel-en
dc.description.degreelevel-th
dc.description.degreenameMASTER OF SCIENCE (M.Sc.)en
dc.description.degreenameวิทยาศาสตรมหาบัณฑิต (วท.ม.)th
dc.identifier.urihttp://ir-ithesis.swu.ac.th/dspace/handle/123456789/2979
dc.language.isoen
dc.publisherSrinakharinwirot University
dc.rightsSrinakharinwirot University
dc.subjectAnomaly Detectionen
dc.subjectUnsupervised Learningen
dc.subjectBitcoinen
dc.subject.classificationComputer Scienceen
dc.subject.classificationProfessional, scientific and technical activitiesen
dc.subject.classificationComputer scienceen
dc.titleDETECTING SUSPICIOUS TRANSACTIONS ON BITCOIN NETWORKUSING UNSUPERVISED LEARNINGen
dc.titleการตรวจจับธุรกรรมต้องสงสัยบนเครือข่ายบิทคอยน์ด้วยการเรียนรู้แบบไม่มีผู้สอนth
dc.typeThesisen
dc.typeปริญญานิพนธ์th

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gs631130119.pdf
Size:
2.25 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
160 B
Format:
Plain Text
Description: