EXAMINING PERFORMANCE OF IDINVERT GAN MODEL ON IMITATING REAL HUMAN FACES

dc.contributorPATTANADEJ CHAENGSRISUKen
dc.contributorพัฒนเดช แจ้งศรีสุขth
dc.contributor.advisorNapa Sae-baeen
dc.contributor.advisorนภา แซ่เบ๊th
dc.contributor.coadvisorNapa Sae-baeen
dc.contributor.coadvisorนภา แซ่เบ๊th
dc.contributor.emailadvisornapasa@swu.ac.th
dc.contributor.emailcoadvisornapasa@swu.ac.th
dc.contributor.otherSrinakharinwirot Universityen
dc.date.accessioned2023-09-26T06:39:44Z
dc.date.available2023-09-26T06:39:44Z
dc.date.created2023
dc.date.issued19/5/2023
dc.description.abstractThis study evaluates the performance of IDInvert, a variant of the generative adversarial network (GAN) models, in terms of ability to generate synthetic face images that resemble real ones, while also preserving personal identity. The main focus of the study is to investigate whether current techniques can detect the subtle differences between real and synthetic face images generated by the IDInvert model. The findings reveal that although the IDInvert model produces highly realistic facial images, they do not preserve personal identity, and they can be identified using feature extraction techniques and standard classification models. Overall, the study highlighted the potential risks of using GAN inversion models and emphasized the importance of developing more robust and secure algorithms to prevent the misuse of such technology.en
dc.description.abstract-th
dc.description.degreedisciplineDepartment Of Computer Scienceen
dc.description.degreedisciplineภาควิชาวิทยาการคอมพิวเตอร์th
dc.description.degreelevel-en
dc.description.degreelevel-th
dc.description.degreenameMASTER OF SCIENCE (M.Sc.)en
dc.description.degreenameวิทยาศาสตรมหาบัณฑิต (วท.ม.)th
dc.identifier.urihttp://ir-ithesis.swu.ac.th/dspace/handle/123456789/2232
dc.language.isoen
dc.publisherSrinakharinwirot University
dc.rightsSrinakharinwirot University
dc.subjectGenerative modelen
dc.subjectGANen
dc.subjectGAN inversionen
dc.subjectFacial recognitionen
dc.subjectFake face detectionen
dc.subject.classificationComputer Scienceen
dc.subject.classificationInformation and communicationen
dc.subject.classificationComputer scienceen
dc.titleEXAMINING PERFORMANCE OF IDINVERT GAN MODEL ON IMITATING REAL HUMAN FACESen
dc.titleการตรวจจับภาพใบหน้าปลอมที่สร้างจากโครงข่ายประสาทเทียมก่อกำเนิดแบบมีคู่ปรปักษ์th
dc.typeMaster’s Projecten
dc.typeสารนิพนธ์th

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gs641130058.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
160 B
Format:
Plain Text
Description: