Please use this identifier to cite or link to this item: http://ir-ithesis.swu.ac.th/dspace/handle/123456789/2232
Title: EXAMINING PERFORMANCE OF IDINVERT GAN MODEL ON IMITATING REAL HUMAN FACES
การตรวจจับภาพใบหน้าปลอมที่สร้างจากโครงข่ายประสาทเทียมก่อกำเนิดแบบมีคู่ปรปักษ์
Authors: PATTANADEJ CHAENGSRISUK
พัฒนเดช แจ้งศรีสุข
Napa Sae-bae
นภา แซ่เบ๊
Srinakharinwirot University
Napa Sae-bae
นภา แซ่เบ๊
napasa@swu.ac.th
napasa@swu.ac.th
Keywords: Generative model
GAN
GAN inversion
Facial recognition
Fake face detection
Issue Date:  19
Publisher: Srinakharinwirot University
Abstract: This study evaluates the performance of IDInvert, a variant of the generative adversarial network (GAN) models, in terms of ability to generate synthetic face images that resemble real ones, while also preserving personal identity. The main focus of the study is to investigate whether current techniques can detect the subtle differences between real and synthetic face images generated by the IDInvert model. The findings reveal that although the IDInvert model produces highly realistic facial images, they do not preserve personal identity, and they can be identified using feature extraction techniques and standard classification models. Overall, the study highlighted the potential risks of using GAN inversion models and emphasized the importance of developing more robust and secure algorithms to prevent the misuse of such technology.
-
URI: http://ir-ithesis.swu.ac.th/dspace/handle/123456789/2232
Appears in Collections:Faculty of Science

Files in This Item:
File Description SizeFormat 
gs641130058.pdf2.12 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.