Please use this identifier to cite or link to this item: http://ir-ithesis.swu.ac.th/dspace/handle/123456789/1699
Full metadata record
DC FieldValueLanguage
dc.contributorPAKAPOL ANUPOOMCHAIYAen
dc.contributorภคพล อนุภูมิชัยยาth
dc.contributor.advisorVera Sa-ingen
dc.contributor.advisorวีระ สอิ้งth
dc.contributor.otherSrinakharinwirot Universityen
dc.date.accessioned2023-02-08T05:47:50Z-
dc.date.available2023-02-08T05:47:50Z-
dc.date.created2022
dc.date.issued8/8/2022
dc.identifier.urihttp://ir-ithesis.swu.ac.th/dspace/handle/123456789/1699-
dc.description.abstractThrombosis is the main cause of blood clots that obstruct the flow of blood in an artery or venous thrombosis. Thus, venous thromboembolism (VTE) is the most serious cause of cardiovascular disease. Furthermore, this disease is a leading cause of death in Thailand because of a lack of caution and understanding. In this research, an automatic diagnosis model was proposed by using effective machine learning to predict the important risk factors for VTE. The raw data were collected from the medical ward at King Chulalongkorn Memorial Hospital, Thailand. Before the analysis, this data consisted of 1,290 rows and 65 columns that were analyzed, solved, and transformed into prepared data. By resampling algorithms to import into each model, this research splits the prepared data into the training dataset and the testing dataset with a ratio of 75:25, 70:30, and 67:33. In these experiments, this research compared the effectiveness of the three machine learning models, consisting of Adaptive Boosting (AdaBoost), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) to find the best diagnostic model. According to the experimental results, the Random Forest model was computed by the class weight and oversampled by the sampling strategy with 0.50 technique is the most efficient model to represent the prediction accuracy of 99.61%. Therefore, the Random Forest and the proposed setting will assist medical doctors in determining the risk of symptomatic venous thromboembolism. In addition, the proposed model can be used to forecast the likelihood of VTE based on a combination of the important risk factors.en
dc.description.abstractการเกิดลิ่มเลือดอุดตันเป็นสาเหตุหลักของลิ่มเลือดที่ขัดขวางการไหลเวียนของเลือดทั้งในหลอดเลือดแดงหรือหลอดเลือดดำ ดังนั้นการเกิดลิ่มเลือดอุดตันในหลอดเลือดดำ (Venous Thromboembolism - VTE) จึงเป็นสาเหตุที่ร้ายแรงที่สุดของโรคหัวใจและหลอดเลือด นอกจากนี้โรคนี้ยังเป็นสาเหตุการเสียชีวิตอันดับต้นๆ ในประเทศไทย เนื่องจากขาดความระมัดระวังและความเข้าใจ ในงานวิจัยนี้ขอเสนอแบบจำลองการวินิจฉัยภาวะลิ่มเลือดอุดตันในหลอดเลือดดำด้วยหลักการเรียนรู้ของเครื่องที่มีประสิทธิภาพในการทำนายปัจจัยเสี่ยงที่สำคัญสำหรับ VTE เก็บข้อมูลจากหอผู้ป่วยที่โรงพยาบาลจุฬาลงกรณ์ ประเทศไทย ข้อมูลประกอบด้วย 1,290 แถวและ 65 คอลัมน์ งานวิจัยนี้จะแยกข้อมูลที่เตรียมไว้ออกเป็นชุดข้อมูลการฝึกอบรมและชุดข้อมูลการทดสอบด้วยอัตราส่วน 75:25, 70:30 และ 67:33 และเปรียบเทียบประสิทธิภาพของแบบจำลองทั้งสามแบบ ประกอบด้วย Adaptive Boosting (AdaBoost), Random Forest (RF) และ Extreme Gradient Boosting (XGBoost) เพื่อหาแบบจำลองที่ดีที่สุด จากผลการทดลอง แบบจำลอง Random Forest โดยใช้พารามิเตอร์ Class Weight แบบคำนวณ ใช้วิธีการแก้ปัญหาความไม่สมดุลของข้อมูลด้วยวิธี Oversampling กับพารามิเตอร์ sampling_strategy เท่ากับ 0.50 เป็นแบบจำลองที่มีประสิทธิภาพที่ดีที่สุด โดยความแม่นยำในการทำนายอยู่ที่ 99.61% ดังนั้น Random Forest จะเป็นวิธีที่จะช่วยให้แพทย์พิจารณาความเสี่ยงของการเกิดลิ่มเลือดอุดตันหลอดเลือดดำ นอกจากนี้ยังสามารถใช้เพื่อคาดการณ์การเกิด VTE โดยพิจารณาจากปัจจัยเสี่ยงที่สำคัญร่วมกันth
dc.language.isoth
dc.publisherSrinakharinwirot University
dc.rightsSrinakharinwirot University
dc.subjectภาวะลิ่มเลือดอุดตันในหลอดเลือดดำth
dc.subjectปัญหาความไม่สมดุลของข้อมูลth
dc.subjectหลักการเรียนรู้ของเครื่องth
dc.subjectวิธีการแก้ปัญหาความไม่สมดุลของข้อมูลth
dc.subjectVENOUS THROMBOEMBOLISMen
dc.subjectMACHINE LEARNINGen
dc.subjectIMBALANCED DATAen
dc.subjectRESAMPLING DATA METHODen
dc.subject.classificationComputer Scienceen
dc.subject.classificationProfessional, scientific and technical activitiesen
dc.subject.classificationComputer scienceen
dc.titleVENOUS THROMBOEMBOLISM DIAGNOSIS BASED ON MACHINE LEARNINGen
dc.titleการวินิจฉัยภาวะลิ่มเลือดอุดตันในหลอดเลือดดำด้วยหลักการเรียนรู้ของเครื่องth
dc.typeThesisen
dc.typeปริญญานิพนธ์th
dc.contributor.coadvisorVera Sa-ingen
dc.contributor.coadvisorวีระ สอิ้งth
dc.contributor.emailadvisorvera@swu.ac.th
dc.contributor.emailcoadvisorvera@swu.ac.th
dc.description.degreenameMASTER OF SCIENCE (M.Sc.)en
dc.description.degreenameวิทยาศาสตรมหาบัณฑิต (วท.ม.)th
dc.description.degreelevel-en
dc.description.degreelevel-th
dc.description.degreedisciplineDepartment Of Computer Scienceen
dc.description.degreedisciplineภาควิชาวิทยาการคอมพิวเตอร์th
Appears in Collections:Faculty of Science

Files in This Item:
File Description SizeFormat 
gs631130115.pdf16.7 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.