

RESOLVABILITY OF GRAPHS BASED ON REPRESENTATIONS
 AND MULTIREPRESENTATIONS

SUPACHOKE ISARIYAPALAKUL

Graduate School Srinakharinwirot University

การจำแนกของกราฟโดยอิงตัวแทนและตัวแทนเชิงซ้ำ

ศุภใชค อิสริยปาลกุล

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปรัชญาดุษฎีบัณฑิต สาขาวิชาคณิตศาสตร์
คณะวิทยาศาสตร์ มหาวิทยาลัยศรี่นครินทรวิโรฒ
ปีการศึกษา 2562
ลิขสิทธิ์ของมหาวิทยาลัยศรีนครินทรวิโรฒ

RESOLVABILITY OF GRAPHS BASED ON REPRESENTATIONS AND MULTIREPRESENTATIONS

SUPACHOKE ISARIYAPALAKUL

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY
(Mathematics)
Faculty of Science, Srinakharinwirot University
2019
Copyright of Srinakharinwirot University

BY
SUPACHOKE ISARIYAPALAKUL

HAS BEEN APPROVED BY THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT

 OF THE REQUIREMENTS FOR THE DOCTOR OF PHILOSOPHY IN MATHEMATICS AT SRINAKHARINWIROT UNIVERSITY(Assoc. Prof. Dr. Chatchai Ekpanyaskul, MD.)
Dean of Graduate School

ORAL DEFENSE COMMITTEE

Major-advisor
Chair
(Assoc. Prof.Varanoot Khemmani, Ph.D.) (Chariya Uiyyasathian)
\qquad Committee
(SERMSRI THAITHAE)

Author	SUPACHOKE ISARIYAPALAKUL
Degree	DOCTOR OF PHILOSOPHY
Academic Year	2019
Thesis Advisor	Associate Professor Varanoot Khemmani , Ph.D.

Let G be a connected graph and let $W=\left\{W_{1}, W_{2}, \ldots, W_{k}\right\}$ be an ordered set of vertices of G. For the vertex v of G, the representation of v with respect to W is the k vector $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$, where $d\left(v, w_{j}\right)$ for $i=1,2, \ldots, k$ is the distance between v and w_{i} in G. An ordered set W is a connected local resolving set of G if the representations of every two adjacent vertices of G with respect to W are distinct and the induced subgraph $<W\rangle$ of G is connected. A connected local resolving set of G with minimum cardinality is a minimum connected local resolving set or a connected local basis of G, and this cardinality is the connected local dimension of G. For a set $W=\left\{W_{1}, W_{2}, \ldots, W_{k}\right\}$ of vertices of G, the multirepresentation of vertex v of G with respect to W is the k-multiset $\operatorname{mr}(v \mid W)=\left\{d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right\}$. The set W is a multiresolving set of G if the multirepresentations of every two vertices of G with respect to W are distinct. A multiresolving set of G with minimum cardinality is a minimum multiresolving set or a multibasis of G, and this cardinality is the multidimension of G. In this work, we studied the connected local dimensions of some well-known graphs and the relationships between connected local bases and local bases in a connected graph, and some realization results. Next, the relationship between the elements in multirepresentations of vertices that belonged to the same multisimilar class was investigated. Moreover, the caterpillars were characterized with multidimension 3 and studying the multiresolving sets of symmetric caterpillars.

ACKNOWLEDGEMENTS

The author would like to express my sincere thanks to Assoc. Prof. Dr. Varanoot Khemmani for suggestion and helping in every aspect along studying in this curriculum, including thanks to the committee of dissertation oral defense for suggestion and idea in making this work, and thanks to all of my teachers for helping. Moreover, the author would like to express my gratitude to Dr. Witsarut Pho-on for concepts of reserching, and Dr. Supitch Khemmani for the advice in presenting.

TABLE OF CONTENTS

Page
ABSTRACT D
ACKNOWLEDGEMENTS E
TABLE OF CONTENTS F
TABLE OF FIGURES H
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Some Known Results on the Dimension of Graphs 4
1.3 Some Known Results on the Local Dimension of Graphs 5
1.4 Some Known Results on the Connected Dimension of Graphs 7
CHAPTER 2 THE CONNECTED LOCAL DIMENSION OF GRAPHS 9
2.1 Introduction 9
2.2 The connected local dimensions of some well-known graphs 11
2.3 Graphs with prescribed connected local dimensions and other parameters 14
2.4 Connected local bases and local bases in graphs 18
CHAPTER 3 THE MULTIDIMENSION OF GRAPHS 22
3.1 Introduction 22
3.2 Preliminaries 24
3.3 The multisimilar classes of graphs 28
3.4 The characterization of caterpillars with multidimension 3 33
3.5 The multidimension of symmetric caterpillars 45
CHAPTER 4 CONCLUSION AND OPEN PROBLEMS 54
4.1 Conclusion 54
4.1.1 The connected local dimension of graphs 54
4.1.1.1 The connected local dimensions of some well-known graphs, 54
4.1.1.2 Graphs with prescribed connected local dimensions and other parameters 54
4.1.1.3 Connected local bases and local bases in graphs 55
4.1.2 The multidimension of graphs 55
4.1.2.1 The multisimilar classes of graphs 55
4.1.2.2 The characterization of caterpillars with multidimension 3 55
4.1.2.3 The multidimension of symmetric caterpillars 56
4.2 Open problems 56
REFERENCES 58
VITA 61

TABLE OF FIGURES

Page
Figure 1: The graph G 1
Figure 2: A laboratory consisting of four rooms 3
Figure 3: A graph representing a laboratory with four rooms 4
Figure 4: The tree T with $\sigma(T)=8$ and $\operatorname{ex}(T)=4$ 5
Figure 5: A connected graph G 6
Figure 6: The graph G 7
Figure 7: The graph G 9
Figure 8: A graph G 18
Figure 9: A graph G for $k=3$ 20
Figure 10: The cycle C_{6} 23
Figure 11: A connected graph G in Case 1 27
Figure 12: A connected graph H in Case 2 28
Figure 13: The graph G 29
Figure 14: The caterpillar $\mathrm{ca}(1,2,0,2,0,2)$ with the second end-set $\Psi=\{2,4,6\}$ 34
Figure 15: The caterpillars $\mathrm{ca}(2), \mathrm{ca}(1,1), \mathrm{ca}(1,2)$ and $\mathrm{ca}(2,2)$ 36
Figure 16: The caterpillar $T_{1}=\mathrm{ca}(2,0,2,1,0,1,0,2)$ with $\Psi=\{1,3,8\}$ 37
Figure 17: The caterpillar $T_{2}=\mathrm{ca}(2,0,1,2,0,1,1,0,2)$ with $\Psi=\{1,4,9\}$ 37
Figure 18: The symmetric caterpillar ca(2, $0,2,1,2,0,2)$ 45
Figure 19: The symmetric caterpillar $\mathrm{ca}(2), \mathrm{ca}(1,1)$ and $\mathrm{ca}(2,2)$ 45

CHAPTER 1

INTRODUCTION

In the mathematical field of graph theory, one of the problems is to provide representations of the vertices in a connected graph in such a way that distinguishing vertices have distinct representations.

1.1 Background

The distance from a vertex u to a vertex v in a connected graph G is the length of a shortest $u-v$ path in G, which is denoted by $d(u, v)$. For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of vertices and a vertex v of G, the representation of v with respect to W is the k-vector $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$. An ordered set W is called a resolving set of G if every pair of two distinct vertices of G have distinct representations with respect to W. A resolving set of G containing a minimum number of vertices is called a minimum resolving set or a basis of G. The cardinality of basis of G is the dimension of G, which is denoted by $\operatorname{dim}(G)$. To illustrate this concept, consider the graph G of Figure 1.

G:

Figure 1: The graph G

For the ordered set $W_{1}=\{w, x\}$, since $r\left(u \mid W_{1}\right)=(2,1)=r\left(y \mid W_{1}\right)$, it follows that W_{1} is not a resolving set of G. On the other hand, consider the ordered set $W_{2}=\{w, x, z\}$. The representations of vertices of G with respect to W_{2} are

$$
\begin{array}{lll}
r\left(u \mid W_{2}\right)=(2,1,3), & r\left(v \mid W_{2}\right)=(3,2,2), & r\left(w \mid W_{2}\right)=(0,1,3), \\
r\left(x \mid W_{2}\right)=(1,0,2), & r\left(y \mid W_{2}\right)=(2,1,1), & r\left(z \mid W_{2}\right)=(3,2,0) .
\end{array}
$$

Since these representations are distinct, it follows that W_{2} is a resolving set of G. However, W_{2} is not a basis of G. To see this, consider the set $W_{3}=\{w, z\}$. The representations of vertices of G with respect to W_{3} are

$$
\begin{array}{lll}
r\left(u \mid W_{3}\right)=(2,3), & r\left(v \mid W_{3}\right)=(3,2), & r\left(w \mid W_{3}\right)=(0,3), \\
r\left(x \mid W_{3}\right)=(1,2), & r\left(y \mid W_{3}\right)=(2,1), & r\left(z \mid W_{3}\right)=(3,0) .
\end{array}
$$

Thus, W_{3} is a resolving set of G. Since G has no resolving set consisting of a single vertex, it follows that W_{3} is a resolving set of G having minimum cardinality. Hence, W_{3} is a basis of G and so $\operatorname{dim}(G)=2$.

For every ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of vertices of a connected graph G of order $n \geq 2$, since the only vertex of G whose representation with respect to W contains 0 in its $i^{\text {th }}$ coordinate is w_{i}, it follows that the vertices of W necessarily have distinct representations. Therefore, when determining whether an ordered set W of G is a resolving set of G, we need only be concerned with the vertices of $V(G)-W$. Consequently, for a vertex v of a nontrivial connected graph $G, V(G)$ and $V(G)-\{v\}$ are resolving sets of G. This implies that the dimension of G is at most $n-1$. Indeed, for every connected graph of order $n \geq 2$,

$$
\begin{equation*}
1 \leq \operatorname{dim}(G) \leq n-1 \tag{1.1}
\end{equation*}
$$

The concepts of resolving sets and minimum resolving sets were introduced by Slater in (1) and (2). He used a locating set for what we have called a resolving set and referred to the cardinality of a basis of a connected graph as its location number. He described the usefulness of these ideas when working with U.S. sonar and coast guard LORAN (long range aids to navigation) stations. Following Slater and others (3-5), we can think of a resolving set as the set W of vertices in a graph G so that each vertex in G is uniquely determined by its distances to the vertices of W.

To illustrate this concept, we consider a somewhat simplified example. Suppose that a certain laboratory consists of four rooms R_{1}, R_{2}, R_{3} and R_{4} as shown in Figure 2. The distance from R_{1} to R_{3} is 2 and the distance from R_{2} to R_{4} is also 2 . The
distance between all other pairs of distinct rooms is 1 . The distance between a room and itself is 0 . Suppose that a (red) gas sensor is placed in one of the rooms. If a gas leak occurs in one of the rooms, then the sensor is able to detect the distance from the room with the red gas sensor to the room having the gas leak. For example, suppose that the sensor is placed in R_{1}. If the sensor alerts us that a gas leak occurs in a room at distance 2 from R_{1}, then a gas leak is in R_{3} since R_{3} is the only one room at distance 2 from R_{1}. If the sensor indicates that a gas leak occurs in a room at distance 0 from R_{1}, then a gas leak is in R_{1}. However, if the sensor presents that a gas leak has occurred in a room at distance 1 from R_{1}, then there are two rooms R_{2} and R_{4} having distance 1 from R_{1}. For this information, we cannot tell exactly in which room a gas leak has occurred. In fact, there is no room in which the (red) gas sensor can be placed to identify the exact location of a gas leak in every instance.

Figure 2: A laboratory consisting of four rooms

On the other hand, if we place the red and blue gas sensors in R_{1} and R_{2}, respectively and a gas leak occurs in R_{4}, then the red gas sensor tells us that a gas leak occurs in a room at distance 1 from R_{1}, while the blue gas sensor tells us that a gas leak is in a room at distance 2 from R_{2}, that is, the ordered pair $(1,2)$ is produced for R_{4}. Since these ordered pairs are distinct for all rooms, it follows that the minimum number of gas sensors required to detect the exact location of a gas leak is 2 . Care must be taken, however, as to where the two gas sensors are placed. For example, we cannot place gas sensors in R_{1} and R_{3} since, in this case, the ordered pairs of R_{2} and R_{4} are $(1,1)$. This means that we cannot distinguish the precise location of the gas leak.

The laboratory that we have just described can be modeled by a graph of Figure 3 , whose vertices are the rooms and whose edges represent two rooms having distance 1.

Figure 3: A graph representing a laboratory with four rooms

Harary and Melter (6) discovered these concepts independently as well but used the term metric dimension rather than location number, the terminology that we have adopted. These concepts were rediscovered by Johnson (7) of the Pharmacia Company while attempting to develop a capability of large datasets of chemical graphs. He and his coauthors (8) used the term resolving set for locating set and used metric dimension for location number. Wang, Miao and Liu (9) characterized the dimension of a connected graph by using metric matrix. We refer to the book (10) for graphicaltheoretical notation and terminology not described in this dissertation.

1.2 Some Known Results on the Dimension of Graphs

The dimensions of some well-known classes of graphs have been determined in $(1,8,11,12)$. We state these in the next three results.

Theorem A. Let G be a connected graph of order $n \geq 2$. Then
(i) $\operatorname{dim}(G)=1$ if and only if $G=P_{n}$, the path of order n,
(ii) $\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$, the complete graph of order n,
(iii) $\operatorname{dim}\left(C_{n}\right)=2$, where C_{n} is the cycle of order $n \geq 3$,
(iv) $\operatorname{dim}(G)=n-2$, where $n \geq 4$ if and only if $G=K_{s, t}$, where $s, t \geq 1$ or $G=K_{s}+\overline{K_{t}}$, where $s \geq 1, t \geq 2$ or $G=K_{s}+\left(K_{1} \cup K_{t}\right)$, where $s, t \geq 1$.

To determine the dimension of tree that is not a path, we need some additional definitions and notation. A vertex of degree at least 3 of a connected graph G is called a major vertex of G. Every end-vertex u of G is a terminal vertex of a major vertex v of G if $d(u, v)<d(u, w)$ for every other major vertex w of G. The number of terminal vertices of v is the terminal degree of v, which is denoted by $\operatorname{ter}(v)$. A major vertex v is called an exterior major vertex of G if $\operatorname{ter}(v) \geq 1$. Let $\sigma(G)$ be the sum of the terminal degrees of the major vertices of G and let $\operatorname{ex}(G)$ be the number of exterior
major vertices of G. For example, consider the tree T of Figure 4. The vertices $v, v_{1}, v_{2}, v_{3}, v_{4}$ are five major vertices of T and the vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}$ are terminal vertices of T. Since $\operatorname{ter}(v)=0, \operatorname{ter}\left(v_{i}\right)=2$, where $1 \leq i \leq 4$, it follows that $\sigma(T)=8$ and $\operatorname{ex}(T)=4$.

Figure 4: The tree T with $\sigma(T)=8$ and $\operatorname{ex}(T)=4$

Theorem B. If T is a tree that is not a path, then $\operatorname{dim}(T)=\sigma(T)-\operatorname{ex}(T)$.
Moreover, all bases of a tree that is not a path have been characterized in (12), as we state next.

Theorem C. Let T be a tree with p exterior major vertices $v_{1}, v_{2}, \ldots, v_{p}$. For each integer i with $1 \leq i \leq p$, let $u_{i 1}, u_{i 2}, \ldots, u_{i k_{i}}$ be the terminal vertices of v_{i}, and let $P_{i j}$ be the $v_{i}-u_{i j}$ path for $1 \leq j \leq k_{i}$. Suppose that W is a set of vertices of T. Then W is a basis of T if and only if W contains exactly one vertex from each of the path $P_{i j}-v_{i}$, where $1 \leq j \leq k_{i}$ and $1 \leq i \leq p$, with exactly one exception for each i with $1 \leq i \leq p$ and W contains no other vertices of T.

1.3 Some Known Results on the Local Dimension of Graphs

Let W be an ordered set of vertices of a connected graph G. For every pair u and v of adjacent vertices in G, if $r(u \mid W) \neq r(v \mid W)$, then W is called a local resolving set of G. A local resolving set of G having minimum cardinality is a minimum local resolving set or a local basis of G and this cardinality is the local dimension of G, which is denoted by $\operatorname{ld}(G)$. To illustrate this concept, consider a connected graph G of Figure 5.

Figure 5: A connected graph G

Considering an ordered set $W_{1}=\{v, w\}$, there are six representations of vertices of G with respect to W_{1} :

$$
\left.\begin{array}{ll}
r\left(u \mid W_{1}\right)=(2,1), & r\left(v \mid W_{1}\right)=(0,3), \\
r\left(x \mid W_{1}\right)=(1,2), & r\left(y \mid W_{1}\right)=(2,1),
\end{array} \quad r\left(z \mid W_{1}\right)=(2,0), ~ 子\right) . ~ \$
$$

Observe that $r\left(u \mid W_{1}\right)=r\left(y \mid W_{1}\right)$. Then W_{1} is not a resolving set of G. However, since representations of any two adjacent vertices of G with respect to W_{1} are distinct, it follows that W_{1} is a local resolving set of G. However, W_{1} is not a local basis of G. Let $W_{2}=\{u\}$. Then the representations of vertices of G with respect to W_{2} are

$$
\begin{array}{ll}
r\left(u \mid W_{2}\right)=(0), & r\left(v \mid W_{2}\right)=(2), \\
r\left(x \mid W_{2}\right)=(1), & r\left(y \mid W_{2}\right)=(2)=(1), \\
r\left(z \mid W_{2}\right)=(2) .
\end{array}
$$

For any two adjacent vertices of G, since their representations with respect to W_{2} are distinct, it follows that W_{2} is also a local resolving set of G. In fact, W_{2} is a local basis of G and so $\operatorname{ld}(G)=1$. Observe that W_{2} is not a resolving set of G since $r\left(v \mid W_{2}\right)=(2)=r\left(y \mid W_{2}\right)$. This implies that every resolving set of G is also a local resolving set of G but every local resolving set of G need not be a resolving set of G, that is,

$$
\begin{equation*}
1 \leq \operatorname{ld}(G) \leq \operatorname{dim}(G) \leq n-1 . \tag{1.2}
\end{equation*}
$$

Okamoto, Crosse, Phinezy and Zhang (13) presented the idea of a local resolving set and the local dimension of graphs. They characterized all nontrivial connected graphs of order n having the local dimension $1, n-2$ or $n-1$.

Theorem D. Let G be a nontrivial connected graph of order n. Then $\operatorname{ld}(G)=n-1$ if and only if $G=K_{n}$ and $\operatorname{ld}(G)=1$ if and only if G is bipartite.

A clique in a graph G is a complete subgraph of G. The order of the largest clique in a graph G is its clique number, which is denoted by $\omega(G)$.

Theorem E. A connected graph G of order $n \geq 3$ has local dimension $n-2$ if and only if $\omega(G)=n-1$.

1.4 Some Known Results on the Connected Dimension of Graphs

A subgraph H of a graph G is called an induced subgraph of G if whenever u and v are vertices of H and $u v$ is an edge of G, then $u v$ is an edge of H as well. If S is a nonempty set of vertices of a graph G, then the subgraph of G induced by S is the induced subgraph with vertex set S. This induced subgraph is denoted by $\langle S\rangle_{G}$ or simply $\langle S\rangle$ if the graph G under consideration is clear. Since a connected graph G may have several resolving sets, we consider a particular resolving set W of G whose the subgraph induced by W is connected. A resolving set W of a connected graph G is called a connected resolving set of G if the induced subgraph $\langle W\rangle$ induced by W is connected. The minimum cardinality of a connected resolving set of G is the connected dimension of G, which is denoted by $\operatorname{cd}(G)$ and a connected resolving set of G having this cardinality is called a minimum connected resolving set or a connected basis of G. To illustrate this concept, consider the graph G of Figure 6.

Figure 6: The graph G

Since G is a tree, it follows by Theorem C that the ordered set $W_{1}=\left\{u_{1}, u_{3}\right\}$ is a basis of G. However, since $\left\langle W_{1}\right\rangle$ is not connected, it follows that W_{1} is not a connected
resolving set of G. Let $W_{2}=\left\{u_{1}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$. Notice that $\left\langle W_{2}\right\rangle=\left(u_{1}, u_{4}, u_{5}, u_{6}, u_{3}\right)$ is a path of order 5 and the eight representations of vertices of G with respect to W_{2} are

$$
\begin{array}{ll}
r\left(u_{1} \mid W_{2}\right)=(0,4,1,2,3), & r\left(u_{2} \mid W_{2}\right)=(3,3,2,1,2), \\
r\left(u_{4} \mid W_{2}\right)=(1,3,0,1,2), & r\left(u_{3} \mid W_{2}\right)=(4,0,3,2,1) \\
r\left(u_{7} \mid W_{2}\right)=(2,4,1,2,3), & r\left(u_{8} \mid W_{2}\right)=(4,2,3,2,1)
\end{array}
$$

Since these representations are distinct and $\left\langle W_{2}\right\rangle$ is connected, it follows that W_{2} is a connected resolving set of G. By Theorem C , we see that exactly one of $\left\{u_{1}, u_{7}\right\}$ and exactly one of $\left\{u_{3}, u_{8}\right\}$ must belong to every basis of G. Since there is exactly one $u_{i}-u_{j}$ path in G, where $i \in\{1,7\}$ and $j \in\{3,8\}$, it follows that every connected basis of G must contain u_{4}, u_{5} and u_{6}, that is, W_{2} is a connected resolving set of G having minimum cardinality. Hence, W_{2} is a connected basis of G and so $\operatorname{cd}(G)=5$.

Observe that every connected resolving set of G is a resolving set of G. On the other hand, a resolving set of a connected graph G need not be a connected resolving set of G. This implies that

$$
\begin{equation*}
1 \leq \operatorname{dim}(G) \leq \operatorname{cd}(G) \leq n-1 \tag{1.3}
\end{equation*}
$$

The idea of connected resolving sets has appeared in (14) and used the connected resolving number $\operatorname{cr}(G)$ of G for what we have called here the connected dimension $\operatorname{cd}(G)$ of G. Some well-known graphs are characterized as we state next.

Theorem F. Let G be a connected graph of order $n \geq 3$. Then
(i) if $G=P_{n}$, a path of order n, then $\operatorname{cd}(G)=1$,
(ii) if $G=C_{n}$, a cycle of order n, then $\operatorname{cd}(G)=2$,
(iii) $\operatorname{cd}(G)=n-1$ if and only if $G=K_{n}$ or $G=K_{1, n-1}$, a complete graph or a star of order n.

Theorem G. For $k \geq 2$, let $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ be a complete k-partite graph that is not a star. Let $n=n_{1}+n_{2}+\cdots+n_{k}$ and l be the number of one's in $\left\{n_{i} \mid 1 \leq i \leq k\right\}$. Then

$$
\operatorname{cd}(G)= \begin{cases}n-k & \text { if } l=0 \\ n-k+l-1 & \text { if } l \geq 1\end{cases}
$$

CHAPTER 2

THE CONNECTED LOCAL DIMENSION OF GRAPHS

We mentioned in Chapter 1 that an ordered set W of vertices of a connected graph G is a local resolving set of G if every pair of adjacent vertices of G have distinct representations with respect to W. Moreover, W is a connected resolving set of G if every pair of vertices of G have distinct representations with respect to W and the subgraph of G induced by W is connected. This idea leads us to consider a local resolving set W of G whose induced subgraph by W is connected.

2.1 Introduction

Let W be an ordered set of vertices of a connected graph G. Then W is called a connected local resolving set of G if W is a local resolving set of G such that the induced subgraph $\langle W\rangle$ of G is connected. A connected local resolving set of G having minimum cardinality is a minimum connected local resolving set or a connected local basis of G and this cardinality is the connected local dimension of G, which is denoted by $\operatorname{cld}(G)$. To illustrate this concept, consider the graph G of Figure 7.

Figure 7: The graph G

We consider the representations of vertices of G with respect to the ordered set $W_{1}=\left\{v_{1}, v_{3}\right\}$. Therefore, their representations with respect to W_{1} are

$$
\begin{array}{ll}
r\left(v_{1} \mid W_{1}\right)=(0,2), \quad r\left(v_{2} \mid W_{1}\right)=(2,2), & r\left(v_{3} \mid W_{1}\right)=(2,0) \\
r\left(v_{4} \mid W_{1}\right)=(2,1), \quad r\left(v_{5} \mid W_{1}\right)=(2,2), \quad r\left(v_{6} \mid W_{1}\right)=(1,2) \\
r\left(v_{7} \mid W_{1}\right)=(1,1)
\end{array}
$$

Since any two adjacent vertices have distinct representations with respect to W_{1}, it follows that W_{1} is a local resolving set of G. However, W_{1} is not a connected local resolving set of G since $\left\langle W_{1}\right\rangle$ is not connected. Then consider the ordered set $W_{2}=\left\{v_{1}, v_{3}, v_{7}\right\}$. The representations of vertices of G with respect to W_{2} are

$$
\begin{array}{lll}
r\left(v_{1} \mid W_{2}\right)=(0,2,1), & r\left(v_{2} \mid W_{2}\right)=(2,2,1), & r\left(v_{3} \mid W_{2}\right)=(2,0,1), \\
r\left(v_{4} \mid W_{2}\right)=(2,1,1), & r\left(v_{5} \mid W_{2}\right)=(2,2,1), & r\left(v_{6} \mid W_{2}\right)=(1,2,1), \\
r\left(v_{7} \mid W_{2}\right)=(1,1,0) . &
\end{array}
$$

Since representations of any two adjacent vertices of G with respect to W_{2} are distinct, it follows that W_{2} is a local resolving set of G. Moreover, $\left\langle W_{2}\right\rangle$ is connected and so W_{2} is a connected local resolving set of G. By a case-by-case analysis, it can be shown that every connected local resolving set of G must contain at least two vertices, that is, one of $\left\{v_{1}, v_{6}\right\}$ and one of $\left\{v_{3}, v_{4}\right\}$. Thus, there is no connected local resolving set of G having cardinality 2 and so W_{2} is a connected local basis of G. Hence, $\operatorname{cld}(G)=3$.

Observe that every connected local resolving set of a connected graph G is also a local resolving set of G but a local resolving set of G may or may not be a connected local resolving set of G. This implies that

$$
\begin{equation*}
1 \leq \operatorname{ld}(G) \leq \operatorname{cld}(G) \leq n-1 \tag{2.1}
\end{equation*}
$$

If W is a connected local resolving set of G, then $\langle W\rangle$ is connected. However, since the representations of any two vertices of G need not be distinct, it follows that W is not necessarily a connected resolving set of G. In fact, every connected resolving set of G is a connected local resolving set of G, that is,

$$
\begin{equation*}
1 \leq \operatorname{cld}(G) \leq \operatorname{cd}(G) \leq n-1 \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we obtain that

$$
\begin{equation*}
1 \leq \operatorname{ld}(G) \leq \operatorname{cld}(G) \leq \operatorname{cd}(G) \leq n-1 . \tag{2.3}
\end{equation*}
$$

For every ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of vertices of a connected graph G, recall that the only vertex of G whose representation with respect to W contains 0 in its $i^{\text {th }}$ coordinate is w_{i}, that is, the vertices of W necessarily have distinct representations with respect to W. On the other hand, the representations of vertices of G that do not belong to W have elements, all of which are positive. Indeed, to determine whether an ordered set W is a connected local resolving set of G, we only need to show that any two adjacent vertices in $V(G)-W$ have distinct representations with respect to W and $\langle W\rangle$ is connected.

2.2 The connected local dimensions of some well-known graphs

We determined the connected local dimensions of some well-known graphs.
Theorem 2.2.1. Let G be a connected graph of order $n \geq 2$. Then
(i) $\operatorname{cld}(G)=1$ if and only if G is a bipartite graph,
(ii) $\operatorname{cld}(G)=n-1$ if and only if $G=K_{n}$, a complete graph of order n.

Proof. (i) Assume that $\operatorname{cld}(G)=1$. Then $\operatorname{ld}(G)=1$ by (2.3). Therefore, G is bipartite by Theorem D. For converse, suppose that G is bipartite. By Theorem $\mathrm{D}, \operatorname{ld}(G)=1$ and so there is a 1 -element local basis W of G. Indeed, W is also a connected local basis of G, that is, $\operatorname{cld}(G)=1$.
(ii) Suppose that $\operatorname{cld}(G)=n-1$. (2.3) implies that $\operatorname{cd}(G)=n-1$. Thus, by Theorem F (iii), G is complete or star. If G is a star that is not complete, then G is a bipartite graph of order at least 3 . By (i), $\operatorname{cld}(G)=1$, a contradiction. Hence, G is complete. On the other hand, if $G=K_{n}$, then by Theorem $\mathrm{D}, \operatorname{ld}(G)=n-1$ and so $\operatorname{cld}(G)=n-1$ by (2.3).

Theorem 2.2.2. For an integer $n \geq 3$, the connected local dimension of a cycle C_{n} is

$$
\operatorname{cld}\left(C_{n}\right)= \begin{cases}1 & \text { if } n \text { is even } \\ 2 & \text { if } n \text { is odd }\end{cases}
$$

Proof. If n is even, then C_{n} is bipartite. By Theorem 2.2.1 (i), $\operatorname{cld}(G)=1$. We may assume that n is odd. Let $C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$ and let $W=\left\{v_{1}, v_{2}\right\}$. Therefore, the representations of vertices in $V\left(C_{n}\right)-W$ are

$$
r\left(v_{i} \mid W\right)= \begin{cases}(i-1, i-2) & \text { if } 3 \leq i \leq \frac{n+1}{2} \\ \left(\frac{n-1}{2}, \frac{n-1}{2}\right) & \text { if } i=\frac{n+3}{2} \\ (n-i+1, n-i+2) & \text { if } \frac{n+5}{2} \leq i \leq n .\end{cases}
$$

Thus, W is a local resolving set of C_{n}. Since $\langle W\rangle$ is connected, it follows that W is a connected local resolving set of C_{n} and so $\operatorname{cld}\left(C_{n}\right) \leq 2$. Since C_{n} is not bipartite, it follows by Theorem 2.2.1 (i) that $\operatorname{cld}\left(C_{n}\right) \geq 2$. Hence, $\operatorname{cld}\left(C_{n}\right)=2$.

Observe that if G^{\prime} is a graph obtained by adding a pendant edge to a connected graph G, then it is easy to verify that $\operatorname{cld}\left(G^{\prime}\right)=\operatorname{cld}(G)$. However, if a vertex v is added to a connected graph G such that more than one edge is incident with v, then the connected local dimension of the resulting graph can stay the same, decrease, or increase significantly. For example, for $n \geq 3,1 \leq \operatorname{cld}\left(C_{n}\right) \leq 2$. Consider the connected local dimension of a wheel $W_{n}=C_{n}+K_{1}$, where $n \geq 3$. Clearly, $\operatorname{cld}\left(W_{3}\right)=3, \quad \operatorname{cld}\left(W_{4}\right)=\operatorname{cld}\left(W_{5}\right)=2$ and $\operatorname{cld}\left(W_{6}\right)=3$. However, for $n \geq 7$, the connected local dimension of a wheel W_{n} increase with n as we show next.

In $W_{n}=C_{n}+K_{1}$, let $C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$, where $n \geq 7$, and let v be the central vertex of W_{n}. Let S be a set of two or more vertices of C_{n}, let v_{i} and v_{j} be two distinct vertices of S, and let P and P^{\prime} denote the two distinct $v_{i}-v_{j}$ paths determined by C_{n}. If either P or P^{\prime}, say P, contains only two vertices of S (namely, v_{i} and v_{j}), then we refer to v_{i} and v_{j} as neighboring vertices of S and the set of vertices of P that belong to $C_{n}-\left\{v_{i}, v_{j}\right\}$ as the gap of S (determined by v_{i} and v_{j}). The two gaps of S determined by a vertex of S and its two neighboring vertices will be referred to as neighboring gaps. Consequently, if $|S|=r$, then S has r gaps, some of which may be empty.

Observe that every connected local basis of W_{n} does not contain v since $d\left(v, v_{i}\right)=1$ for all integer i with $1 \leq i \leq n$. The next theorem presents a necessary and sufficient condition for a set W to be a local resolving set of W_{n}.

Theorem 2.2.3. Let W be a set of vertices of a wheel $W_{n}=C_{n}+K_{1}$, where $n \geq 7$. Then W is a local resolving set of W_{n} if and only if every gap of W contains at most three vertices of C_{n}.

Proof. Assume, to the contrary, that there is a gap of W containing at least four vertices of C_{n}. Then there are two adjacent vertices u and u^{\prime} in this gap such that $d(u, w)=d\left(u^{\prime}, w\right)=2$ for all $w \in W-\{v\}$. Therefore, $r(u \mid W)=r\left(u^{\prime} \mid W\right)$, which is impossible. To show the converse, suppose that every gap of W contains at most three vertices of C_{n}. Since $n \geq 7$, it follows that W contains at least three vertices of C_{n}. Since v is adjacent to every vertex of C_{n}, it follows that the representation of v and any vertices of C_{n} with respect to W are distinct. Therefore, we need to consider only two adjacent vertices in each gap of W. Let u and w be two adjacent vertices of C_{n} such that $u, w \notin W$. Thus, u and w belong to a gap of size 2 or 3 . If u and w belong to a gap of size 2 , then for $1 \leq i \leq n$, we may assume that $v_{i}, u=v_{i+1}, w=v_{i+2}, v_{i+3}$ are consecutive vertices of C_{n}, where $v_{i}, v_{i+3} \in W$ and addition is performed modulo n. Since $d\left(v_{i+1}, v_{i}\right)=1$ and $d\left(v_{i+2}, v_{i}\right)=2$, it follows that the representations of v_{i+1} and v_{i+2} with respect to W are distinct. If u and w belong to a gap of size 3 , then we may assume that $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$ are vertices of C_{n}, where $v_{i}, v_{i+4} \in W$ and $v_{i+1}, v_{i+2}, v_{i+3} \notin W$. Without, loss of generality, let $u=v_{i+1}$ and $w=v_{i+2}$. Since $d\left(v_{i+1}, v_{i}\right)=1$ and $d\left(v_{i+2}, v_{i}\right)=2$. Thus, $r(u \mid W) \neq r(w \mid W)$. Hence, W is a local resolving set of W_{n}.

Recall that for $n \geq 7$, every local basis of W_{n} contains no central vertex. However, every connected local basis of W_{n} must contain the central vertex. It is shown in the next result.

Lemma 2.2.4. Every connected local basis of a wheel W_{n}, where $n \geq 7$ must contain the central vertex.

Proof. Assume, to the contrary, that there is a connected local basis W of W_{n} not containing the central vertex v. Then W consists of consecutive vertices in C_{n}. Without, loss of generality, let $W=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. By Theorem 2.2.3, it implies that $k \geq n-3$. By the argument similar to the one used for the proof of Theorem 2.2.3, the set $W^{\prime}=\left\{v, v_{1}, v_{4}, v_{5}, \ldots, v_{k}\right\}$ is a local resolving set of W_{n} having cardinality $k-1$, contradicting the assumption that W is a connected local basis of W_{n}.

We are now prepared to present the connected local dimension of a wheel W_{n}, where $n \geq 7$.
Theorem 2.2.5. Let W_{n} be a wheel, where $n \geq 7$. Then $\operatorname{cld}\left(W_{n}\right)=\left\lceil\frac{n}{4}\right\rceil+1$. Proof. By Theorem 2.2.3 and Lemma 2.2.4, we obtain that $\operatorname{cld}\left(W_{n}\right) \geq\left\lceil\frac{n}{4}\right\rceil+1$. It remains to verify that $\operatorname{cld}\left(W_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil+1$. Let $W=\left\{v_{i} \in V\left(C_{n}\right) \mid i \equiv 1(\bmod 4)\right\} \cup\{v\}$ with $|W|=\left\lceil\frac{n}{4}\right\rceil+1$. Since every gap of W contains at most three vertices from C_{n}, it follows by Theorem 2.2.3 that W is a local resolving set of W_{n}. Moreover, since W contains the central vertex v, it follows that $\langle W\rangle$ is connected and so W is a connected local resolving set of W_{n}. Therefore, $\operatorname{cld}\left(W_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil+1$. Hence $\operatorname{cld}\left(W_{n}\right)=\left\lceil\frac{n}{4}\right\rceil+1$.

2.3 Graphs with prescribed connected local dimensions and other parameters

The open neighborhood or the neighborhood of a vertex u of a connected graph G is the set of all vertices that are adjacent to u, which is denoted by $N(u)=\{v \in V(G) \mid u v \in E(G)\}$. The closed neighborhood $N[u]$ of u is defined as $N(u) \cup\{u\}$. Two vertices u and v of G are twins if $N(u)-\{v\}=N(v)-\{u\}$. If $N[u]=N[v]$, then u and v are called true twins while if $N(u)=N(v)$, then u and v are called false twins. We define a relation on $V(G)$ by u is related to v if they are true twins. This relation is an equivalence relation and, as such, this relation partitions $V(G)$ into equivalence classes which are called true twin equivalence classes or simply true twin classes on $V(G)$. Observe that if G contains l distinct true twin classes $U_{1}, U_{2}, \ldots, U_{l}$, then every connected local resolving set of G must contain at least $\left|U_{i}\right|-1$ vertices from U_{i} for each integer i with $1 \leq i \leq l$. This observation has been described in (13) as we state next.

Proposition H. Let G be a connected graph having l true twin classes $U_{1}, U_{2}, \ldots, U_{l}$. Then every local resolving set of G must contain $\left|U_{i}\right|-1$ vertices from each U_{i}, where $1 \leq i \leq l$. Moreover, $\operatorname{ld}(G) \geq \sum_{i=1}^{l}\left|U_{i}\right|-l$.

We have seen that if G is a connected graph of order n with $\operatorname{ld}(G)=a$ and $\operatorname{cld}(G)=b$, then $1 \leq a \leq b \leq n-1$ by (2.1). A common problem concerns whether every three integers a, b and n with $1 \leq a \leq b \leq n-1$ are realizable as the local dimension, connected local dimension and order of some graph as we show next.

Theorem 2.3.1. Let a, b and n be integers with $n \geq 4$. Then there exists a connected graph G of order n with $\operatorname{ld}(G)=a$ and $\operatorname{cld}(G)=b$ if and only if a, b, n satisfy one of the following:
(i) $a=b=n-1$,
(ii) $a=b=1$, and
(iii) $2 \leq a \leq b \leq n-2$.

Proof. Assume that there exists a connected graph G of order n with $\operatorname{ld}(G)=a$ and $\operatorname{cld}(G)=b$. By (2.1), we obtain that $1 \leq a \leq b \leq n-1$. If $b=n-1$, then G is a complete graph K_{n}. Thus, $a=b=n-1$. If $a=1$, then G is a bipartite graph. Therefore, $a=b=1$. For otherwise, $2 \leq a \leq b \leq n-2$. Hence, if G is a connected graph of order n with $\operatorname{ld}(G)=a$ and $\operatorname{cld}(G)=b$, then a, b and n must satisfy one of (i), (ii) and (iii). It remains to verify the converse. If $a=b=n-1$, then let G be a complete graph K_{n} and the result is true. If $a=b=1$, then let G be a path P_{n}. Thus, the graph G has the desired properties. We may assume that $2 \leq a \leq b \leq n-2$. We consider two cases.

Case 1. $a=b$.
Let G^{\prime} be a graph obtained from a complete graph K_{a} with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and a path $P_{n-a}=\left(v_{1}, v_{2}, \ldots, v_{n-a}\right)$ by joining v_{1} to every vertex of K_{a}. Since $V\left(K_{a}\right)$ is a true twin class of G^{\prime}, it follows by Proposition H that every local resolving set of G^{\prime} must contain at least $a-1$ vertices from $V\left(K_{a}\right)$. However, if a set W contains only $a-1$ vertices from $V\left(K_{a}\right)$, then W does not contain u_{i} for some integer i with $1 \leq i \leq a$ and so $r\left(u_{i} \mid W\right)=r\left(v_{1} \mid W\right)=(1,1, \ldots, 1)$. Therefore, G^{\prime}
contains no local resolving set of cardinality $a-1$, that is, $\operatorname{ld}\left(G^{\prime}\right) \geq a$. Since the representation of each vertex of P_{n-a} is $r\left(v_{j} \mid V\left(K_{a}\right)\right)=(j, j, \ldots, j)$, where $1 \leq j \leq n-a$, it follows that $V\left(K_{a}\right)$ is a local resolving set of G^{\prime} having cardinality a, that is, $V\left(K_{a}\right)$ is a local basis of G^{\prime}. Moreover, $V\left(K_{a}\right)$ is also a connected local basis of G^{\prime}. Hence, $\operatorname{ld}\left(G^{\prime}\right)=\operatorname{cld}\left(G^{\prime}\right)=a$.

Case 2. $a<b$.
Let G be a graph obtained from a complete graph K_{a} with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and two path $P_{b-a+1}=\left(v_{1}, v_{2}, \ldots, v_{b-a+1}\right)$ and $P_{n-b-1}=\left(w_{1}, w_{2}, \ldots, w_{n-b-1}\right)$ by joining v_{1} to every vertex of K_{a}, and w_{1} to both v_{b-a} and v_{b-a+1}. Since $V\left(K_{a}\right)$ is a true twin class of G, it follows by Proposition H that every local resolving set of G must contain at least $a-1$ vertices from $V\left(K_{a}\right)$. However, every set consisting of $a-1$ vertices from $V\left(K_{a}\right)$ is not a local resolving set of G since the representations of v_{b-a+1} and w_{1} with respect to this set are the same. Thus, every local resolving set of G contains at least a vertices. It is routine to verify that every local resolving set of G must contain at least one vertex from $\left\{v_{b-a+1}\right\} \cup V\left(P_{n-b-1}\right)$. Then the set $\left(V\left(K_{a}\right)-\left\{u_{1}\right\}\right) \cup\left\{v_{b-a+1}\right\}$ is a minimum local resolving set of G. Hence, $\operatorname{ld}(G)=a$. Since every connected local resolving set of G is also a local resolving set of G, it follows that every connected local resolving set of G must contain at least $a-1$ vertices from $V\left(K_{a}\right)$ and at least one vertex from $\left\{v_{b-a+1}\right\} \cup V\left(P_{n-b-1}\right)$. Therefore, every connected local resolving set of G contains $v_{1}, v_{2}, \ldots, v_{b-a}$. In fact, the set $\left(V\left(K_{a}\right)-\left\{u_{1}\right\}\right) \cup V\left(P_{b-a+1}\right)$ is a connected local basis of G, that is, $\operatorname{cld}(G)=b$.

We know by (2.2) that if G is a connected graph of order n with $\operatorname{cld}(G)=b$ and $\operatorname{cd}(G)=c$, then $1 \leq b \leq c \leq n-1$. Next, we show that for any integers b, c and n with $1 \leq b \leq c \leq n-1$ are realizable as the connected local dimension, connected dimension and order of some graph.

Theorem 2.3.2. Let b, c and n be integers with $n \geq 4$. Then there exists a connected graph G of order n with $\operatorname{cld}(G)=b$ and $\operatorname{cd}(G)=c$ if and only if b, c, n satisfy one of the following:
(i) $b=c=n-1$,
(ii) $b=1$ and $1 \leq c \leq n-1$, and
(iii) $2 \leq b \leq c \leq n-2$.

Proof. Assume that there exists a connected graph of order n with $\operatorname{cld}(G)=b$ and $\operatorname{cd}(G)=c$. By (1.2), we obtain that $1 \leq b \leq c \leq n-1$. If $b=n-1$, then $c=n-1$ by (1.2). If $b=1$, then $1 \leq c \leq n-1$ by (1.2). If $2 \leq b \leq n-2$, then G is neither a star nor a complete graph and so $2 \leq b \leq c \leq n-2$. Hence, if G is a connected graph of order n with $\operatorname{cld}(G)=b$ and $\operatorname{cd}(G)=c$, then b, c and n must satisfy one of (i), (ii) and (iii). It remains to verify the converse. If $b=c=n-1$, then let G be a complete graph K_{n} and the result is true. Next, assume that $b=1$ and $1 \leq c \leq n-1$. For $c=1$, let G be a path P_{n}; while for $c=n-1$, let G be a star $K_{1, n-1}$. Since $\operatorname{cld}\left(P_{n}\right)=\operatorname{cd}\left(P_{n}\right)=1$, and $\operatorname{cld}\left(K_{1, n-1}\right)=1$ and $\operatorname{cd}\left(K_{1, n-1}\right)=n-1$, it follows that the result holds for $b=1$ and $c=1, n-1$. For $2 \leq c \leq n-2$, let G be a graph obtained from a complete bipartite graph $K_{2, c-1}$ with partite set $U=\left\{u_{1}, u_{2}\right\}$ and $U^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{c-1}\right\}$, and a path $P_{n-c-1}=\left(v_{1}, v_{2}, \ldots, v_{n-c-1}\right)$ by joining v_{1} to both u_{1} and u_{2}. Since G is bipartite, it follows that $\operatorname{cld}(G)=1$. It is routine to show that the set $V\left(K_{2, c-1}\right)-\left\{u_{2}\right\}$ is a connected basis of G. Therefore, $\operatorname{cd}(G)=c$. Hence, the result holds for $b=1$ and $2 \leq c \leq n-2$. Now assume that $2 \leq b \leq c \leq n-2$. We consider two cases.

Case 1. $b=c$.
The graph G^{\prime} of the proof for Theorem 2.3.1 has $\operatorname{cld}\left(G^{\prime}\right)=b$ with a connected local basis $V\left(K_{b}\right)$. In fact, $V\left(K_{b}\right)$ is also a connected basis of G^{\prime}, that is, $\operatorname{cd}\left(G^{\prime}\right)=b$.
Case 2. $b<c$.
Let G be a graph obtained from a complete graph K_{b} with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{b}\right\}$, a star $K_{1, c-b}$ with vertex set $\left\{v, v_{1}, v_{2}, \ldots, v_{c-b}\right\}$ and a path $P_{n-c-1}=\left(w_{1}, w_{2}, \ldots, w_{n-c-1}\right)$ by joining the central vertex v of $K_{1, c-b}$ to w_{1} and every vertex of K_{b}. It is immediate that the set $V\left(K_{b}\right)$ is a connected local basis of G. Therefore, $\operatorname{cld}(G)=b$. Moreover, the set $\left(V\left(K_{b}\right)-\left\{u_{1}\right\}\right) \cup V\left(K_{1, c-b}\right)$ is a connected basis of G, that is, $\operatorname{cd}(G)=c$.

2.4 Connected local bases and local bases in graphs

In this section, we study the relationship between connected local bases and local bases in a connected graph G. Certainly, if W is a local resolving set of G, then a set W^{\prime} containing W is also a local resolving set of G. Therefore, if W is a local basis of G such that $\langle W\rangle$ is disconnected, then surely there is a smallest superset W^{\prime} of W for which $\left\langle W^{\prime}\right\rangle$ is connected. This suggests the following question: Does there exist a graph with a connected local basis not containing any local bases? The answer to this question is given in the next result.

Theorem 2.4.1. There is an infinite class of connected graphs G such that some connected local bases of G contain a local basis of G and others contain no local basis of G.

Proof. Let G be a graph obtained from a complete graph K_{a} of order $a \geq 2$ with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$, a cycle $C_{4}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{1}\right)$ and a path $P_{3}=\left(w_{1}, w_{2}, w_{3}\right)$ by joining v_{1} to every vertex of K_{a} and joining w_{1} and w_{3} to v_{1}, v_{4} and v_{2}, v_{3}, respectively. A graph G is shown Figure 8.

Figure 8: A graph G

We first verify that the set $B=\left\{u_{1}, u_{2}, . ., u_{a-1}\right\} \cup\left\{w_{2}\right\}$ is a local basis of G. We can show, by a case-by-case analysis, that B is a local resolving set of G. Next, we claim that B is a local resolving set of minimum cardinality. Assume, to the contrary, that there is a local resolving set W of G having cardinality at most $a-1$. Since $V\left(K_{a}\right)$ is a true twin class of G, it follows that every local resolving set of G must contain at least $a-1$ vertices of K_{a}. Therefore, W consists of $a-1$ vertices of K_{a}. However, v_{4} and w_{1} are adjacent and $d\left(v_{4}, u_{i}\right)=d\left(w_{1}, u_{i}\right)$ for each integer i with $1 \leq i \leq a$. This is a contradiction. Hence, B is a local basis of G and so $\operatorname{ld}(G)=a$. Second, we
determine that $\operatorname{cld}(G)=a+2$. In order to do this, we claim that $\operatorname{cld}(G) \geq a+2$. Suppose, contrary to our claim, that there is a connected local resolving set W^{\prime} of G having cardinality $a+1$. Recall that every connected local basis of G must contain at least $a-1$ vertices of K_{a}. We consider two cases.
Case 1. $V\left(K_{a}\right) \subseteq W^{\prime}$.
Since $\left\langle W^{\prime}\right\rangle$ is connected and $\left|W^{\prime}\right|=a+1$, it follows that $W^{\prime}=V\left(K_{a}\right) \cup\left\{v_{1}\right\}$. However, since v_{4} is adjacent to w_{1} and $r\left(v_{4} \mid W^{\prime}\right)=r\left(w_{1} \mid W^{\prime}\right)$, it follows that W^{\prime} is not a connected resolving set of G, which is a contradiction.
Case 2. $V\left(K_{a}\right) \not \subset W^{\prime}$.
Since $\left\langle W^{\prime}\right\rangle$ is connected and $\left|W^{\prime}\right|=a+1$, it follows that W^{\prime} contains v_{1} and one vertex from $\left\{v_{2}, v_{4}, w_{1}\right\}$. If W^{\prime} contains v_{2} or w_{1}, then $r\left(v_{3} \mid W^{\prime}\right)=r\left(w_{3} \mid W^{\prime}\right)$. If W^{\prime} contains v_{4}, then $r\left(w_{2} \mid W^{\prime}\right)=r\left(w_{3} \mid W^{\prime}\right)$. Therefore, W^{\prime} is not a connected local resolving set of G. This is also a contradiction.

Thus, $\operatorname{cld}(G) \geq a+2$. On the other hand, the sets $S_{1}=\left\{u_{1}, u_{2}, \ldots, u_{a-1}\right\} \cup\left\{v_{1}, w_{1}, w_{2}\right\}$ and $S_{2}=\left\{u_{1}, u_{2}, \ldots, u_{a-1}\right\} \cup\left\{v_{1}, v_{4}, w_{1}\right\}$ are connected local resolving sets of G. Therefore, $\operatorname{cld}(G) \leq a+2$. Hence, $\operatorname{cld}(G)=a+2$.
Last, it can be verified that every local basis of G contains exactly $a-1$ vertices of K_{a} and exactly one vertex from $\left\{v_{3}, w_{2}\right\}$. Observe that the connected local basis S_{1} contains the local basis B of G, while the connected local basis S_{2} contains no local basis of G.

From the previous theorem, there is a connected graph having many connected local bases. This leads us to determine a connected graph G having a unique connected local basis. It has been shown in (13) that there is a connected graph with a unique local basis. In fact, there is a connected graph with a unique connected local basis as we show next.

Theorem 2.4.2. For $k \geq 3$, there exists a graph with a unique connected local basis of cardinality $k+1$.
Proof. Let G_{1} be a complete graph $K_{2^{k}}$ with vertex set $U=\left\{u_{0}, u_{1}, \ldots, u_{2^{k}-1}\right\}$, and let G_{2} be an empty graph \bar{K}_{k} with vertex set $W=\left\{w_{k-1}, w_{k-2}, \ldots, w_{0}\right\}$. Then the graph G
is obtained from G_{1} and G_{2} by adding edges between U and W as follows. Let each integer j for $1 \leq j \leq 2^{k}-1$ be expressed in its base 2 (binary) representation. Thus, each such j can be expresses as a sequence of k coordinates, that is, a k-vector, where the rightmost coordinate represents the value (either 0 or 1) in the 2^{0} position, the coordinate to its immediate left is the value in the 2^{1} position, etc. For integers i and j with $0 \leq i \leq k-1$ and $0 \leq j \leq 2^{k}-1$, we join w_{i} and u_{j} if and only if the value in the 2^{i} position in the binary representation of j is 1 . For example, Figure 9 shows the edges joining between U and W in the graph G for $k=3$.

Figure 9: A graph G for $k=3$

It was shown in (13) that W is a unique local basis of G. Therefore, there is no connected local basis of G having cardinality k, that is, $\operatorname{cld}(G) \geq k+1$. Since W is a local basis of G, it follows that $W^{\prime}=W \cup\left\{u_{2^{k-1}}\right\}$ is a connected local resolving set of G. In fact, W^{\prime} is a connected local basis of G.

It remains only to show that G has no other connected local basis. If $U^{\prime} \subseteq U$ and $\left|U^{\prime}\right|=k+1$, then $\left|U-U^{\prime}\right|=2^{k}-k-1 \geq 2$. Since the distance of every two vertices of U is 1 , it follows that there are at least two adjacent vertices of $U-U^{\prime}$ having the same representation with respect to U^{\prime} and so U^{\prime} is not a connected local resolving set of G, Thus, every connected local resolving set of G must contain at least one vertex of W. Suppose that $B \neq W^{\prime}$ is a connected local basis of G. Therefore,
$B=U^{\prime \prime} \cup W^{\prime \prime}$, where $U^{\prime \prime} \subseteq U$ and $W^{\prime \prime} \subseteq W$. If $\left|W^{\prime \prime}\right|=k$, then B does not contain $u_{2^{k}-1}$. Therefore, $\langle B\rangle$ is not connected, which is impossible. If $\left|W^{\prime \prime}\right| \leq k-1$, then $U^{\prime \prime}$ contains at least two vertices. We may therefore assume that $\left|U^{\prime \prime}\right|=i \geq 2$. Then $\left|W^{\prime \prime}\right|=k-i+1$. Since every vertex of $U-U^{\prime \prime}$ has distance 1 from every vertex of $U^{\prime \prime}$, it follows that there are at most 2^{k-i+1} distinct representations of vertices of $U-U^{\prime \prime}$ with respect to B. However, since $2^{k}-i>2^{k-i+1}$, there are two vertices of $U-U^{\prime \prime}$ such that their representations with respect to B are the same, contradicting the fact that B is a connected local basis of G. Hence, W^{\prime} is a unique connected local basis of G.

CHAPTER 3

THE MULTIDIMENSION OF GRAPHS

As described in (8), all connected graphs G contain an ordered set W of vertices of G such that each vertex of G is distinguished by a k-vector, known as a representation, consisting of its distance from the vertices in W. It may also occur that some graph contains a set W^{\prime} with property that the vertices of graph have uniquely distinct k-multisets containing their distances from each of the vertices of W^{\prime}. In this section, we study the existence of such a set of connected graphs.

3.1 Introduction

A multiset is a generalization of the concept of a set, which is like a set except that its members need not to be distinct. For example, the set $\{a, b, a\}$ is the same as the set $\{a, b\}$ but not so for the multiset. The multiset $M=\{a, a, 1,2,1, b, a, 2\}$ has 8 elements of 4 different types: 3 of type $a, 2$ of type 1,2 of type 2 and 1 of type b. Then the multiset is usually indicated by specifying the number of times different types of elements occur in it. Therefore, the multiset M can be written by $M=\{3 \cdot a, 2 \cdot 1,2 \cdot 2,1 \cdot b\}$. The numbers $3,2,2$ and 1 are called the repetition numbers of the multiset M. In particular, a set is a multiset having all repetition numbers equal to 1 .

Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a set of vertices of a connected graph G. The multirepresentation of a vertex u of G with respect to W is the k-multiset

$$
m r(u \mid W)=\left\{d\left(u, w_{1}\right), d\left(u, w_{2}\right), \ldots, d\left(u, w_{k}\right)\right\} .
$$

The set W is called a multiresolving set of G if every two distinct vertices of G have distinct multirepresentations with respect to W. A multiresolving set of G of minimum cardinality is a minimum multiresolving set or a multibasis of G and this cardinality is the multidimension of G, which is denoted by $\operatorname{dim}_{M}(G)$. For example, consider the cycle C_{6} of Figure 10.

Figure 10: The cycle C_{6}

As we know, the set $W_{1}=\{u, v\}$ is a basis of C_{6}. However, the set W_{1} is not a multiresolving set of C_{6} since $\operatorname{mr}\left(u \mid W_{1}\right)=\{0,1\}=\operatorname{mr}\left(v \mid W_{1}\right)$. Then we consider the set $W_{2}=\{u, v, x\}$. The six multirepresentations of vertices of C_{6} are

$$
\begin{array}{lll}
m r\left(u \mid W_{2}\right)=\{0,1,3\}, & \operatorname{mr}\left(v \mid W_{2}\right)=\{0,1,2\}, & \operatorname{mr}\left(w \mid W_{2}\right)=\{1,1,2\}, \\
\operatorname{mr}\left(x \mid W_{2}\right)=\{0,2,3\}, & \operatorname{mr}\left(y \mid W_{2}\right)=\{1,2,3\}, & \operatorname{mr}\left(z \mid W_{2}\right)=\{1,2,2\} .
\end{array}
$$

Since these six multirepresentations are distinct, it follows that W_{2} is a multiresolving set of C_{6}. In fact W_{2} is also a multibasis of C_{6} and so $\operatorname{dim}_{M}\left(C_{6}\right)=3$.

Not all connected graphs have a multiresolving set and so $\operatorname{dim}_{M}(G)$ is not defined for all connected graphs G. For instant, a star $K_{1, s}(s \geq 3)$ contains no multiresolving set. To see this, suppose that W is a multiresolving set of $K_{1, s}$. Then there are two end-vertices u and v of $K_{1, s}$ such that both u and v belong to either W or $V\left(K_{1, s}\right)-W$. However, there is a contradiction in both cases since $d(u, w)=d(v, w)$ for all $w \in V\left(K_{1, s}\right)-\{u, v\}$, implying that $K_{1, s}$ contains no multiresolving set. On the other hand, if a connected graph G contains a multiresolving set, then this multiresolving set is also a resolving set of G. This implies that

$$
\begin{equation*}
1 \leq \operatorname{dim}(G) \leq \operatorname{dim}_{M}(G) \leq n \tag{3.1}
\end{equation*}
$$

For every set W of vertices of a connected graph G, the vertices of G whose multirepresentations with respect to W contain 0 , are vertices in W. On the other hand, the multirepresentations of vertices of G which do not belong to W have elements, all of which are positive. In fact, to determine whether a set W is a multiresolving set of G, the vertex set $V(G)$ can be partitioned into W and $V(G)-W$
to examine whether the vertices in each subset have distinct multirepresentations with respect to W.

The idea of the multidimension of a connected graph was introduced by Saenpholphat (15) who showed that there is no connected graph with multidimension 2. Moreover, the multidimensions of some well-known graphs have been determined. Simanjuntak, Vetrik and Mulia (16) discovered this concept independently and used a notation $\operatorname{md}(G)$ for a multidimension of a connected graph G.

3.2 Preliminaries

Recall that two vertices u and v of a connected graph G are twins if $N(u)-\{v\}=N(v)-\{u\}$. Actually, u and v are twins if and only if $d(u, x)=d(v, x)$ for all $x \in V(G)-\{u, v\}$. Therefore, they are said to be distance-similar. Certainly, distance similarity in G is an equivalence relation on $V(G)$ producing a partition of the vertex set of G into equivalence classes, called distance-similar equivalence classes, or simply distance-similar classes. For example, consider a complete bipartite graph $K_{r, s}(r \geq 1, s \geq 2)$ with partite sets U and V. Every pair of vertices in the same partite set are distance-similar. Then the distance-similar classes in $K_{r, s}$ are its partite sets U and V. The following results were obtained in (15) showing the usefulness of the distance-similar classes to determine the multidimension of a connected graph.

Theorem I. Let G be a connected graph such that $\operatorname{dim}_{M}(G)$ is defined. If U is a distance-similar class on $V(G)$ with $|U|=2$, then every multiresolving set of G contains exactly one vertex of U.

Theorem J. If U is a distance-similar class on the set of vertices $V(G)$ in a connected graph G with $|U| \geq 3$, then $\operatorname{dim}_{M}(G)$ is not defined.

The next two theorems were presented in $(15,16)$ that a path is the only one of connected graphs with multidimension 1 and every multiresolving set of a connected graph cannot contain only two vertices.

Theorem K. Let G be a connected graph of order n. Then $\operatorname{dim}_{M}(G)=1$ if and only if $G=P_{n}$, a path of order n.

Theorem L. A connected graph has no multiresolving set of cardinality 2 .
For a connected graph G, if W is a multiresolving set of G, then all vertices of G have distinct multirepresentations with respect to W. This leads us to the fact that W is also a multiresolving set of $G-v$, where v is an end-vertex of G that is not in W. We present this idea as follows.

Theorem 3.2.1. Let G be a connected graph such that $\operatorname{dim}_{M}(G)$ is defined, and let W be a multiresolving set of G. If v is an end-vertex of G such that $v \notin W$, then W is a multiresolving set of $G-v$.

Proof. Assume that v is an end-vertex of G. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a multiresolving set of G that does not contain v. Then

$$
m r_{G}(x \mid W)=\left\{d_{G}\left(x, w_{1}\right), d_{G}\left(x, w_{2}\right), \ldots, d_{G}\left(x, w_{k}\right)\right\}
$$

and

$$
m r_{G}(y \mid W)=\left\{d_{G}\left(y, w_{1}\right), d_{G}\left(y, w_{2}\right), \ldots, d_{G}\left(y, w_{k}\right)\right\}
$$

are not the same for all vertices x and y of G. Since v does not belong to W, it follows that

$$
m r_{G-v}(x \mid W)=\left\{d_{G-v}\left(x, w_{1}\right), d_{G-v}\left(x, w_{2}\right), \ldots, d_{G-v}\left(x, w_{k}\right)\right\}=m r_{G}(x \mid W)
$$

and

$$
m r_{G-v}(y \mid W)=\left\{d_{G-v}\left(y, w_{1}\right), d_{G-v}\left(y, w_{2}\right), \ldots, d_{G-v}\left(y, w_{k}\right)\right\}=m r_{G}(y \mid W),
$$

that is, $m r_{G-v}(x \mid W) \neq m r_{G-v}(y \mid W)$ for all vertices x and y of $G-v$. Hence, W is a multiresolving set of $G-v$.

The following is an immediate corollary of Theorem 3.2.1.
Corollary 3.2.2. Let G be a connected graph such that $\operatorname{dim}_{M}(G)$ is defined, and let W be a multiresolving set of G. If $v_{1}, v_{2}, \ldots, v_{t}$ are end-vertices of G such that $v_{1}, v_{2}, \ldots, v_{t} \notin W$, then W is a multiresolving set of $G-\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$.
Proof. Assume that $v_{1}, v_{2}, \ldots, v_{t}$ are end-vertices of G. Let W is a multiresolving set of G that does not contain $v_{1}, v_{2}, \ldots, v_{t}$. Theorem 3.2.1 implies that W is a multiresolving set of $G-v_{1}$. By the same reasoning, W is a multiresolving set of $\left(G-v_{1}\right)-v_{2}$ and so W is a multiresolving set of $G-\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$.

Next, we present a useful necessary condition for a set to be a multiresolving set of a tree.

Proposition 3.2.3. Let T be a tree of order at least 3 containing a vertex u. If W is a multiresolving set of T, then W contains at least one vertex from each of $\operatorname{deg}_{T} u$ components of $T-u$, with one possible exception.

Proof. We see that $T-u$ has only one component if and only if u is an end-vertex of T . Then we may assume, to the contrary, that there is a vertex u of degree at least 2 such that $T-u$ has two components X and Y containing no vertex of W. Then there are two vertices x of X and y of Y that are adjacent to u in T. Thus, $d(x, w)=d(u, w)+1=d(y, w)$ for all vertices w of W. This implies that $m r(x \mid W)=m r(y \mid W)$ and so W is not a multi resolving set of T, a contradiction.

We are able to determine all pairs k, n of integers with $k \geq 3$ and $n \geq 3(k-1)$ which are realizable as the multidimension and the order of some connected graph. In order to do this, we present an additional notation. For integers a and b, let $[a, b]$ be a multiset such that

$$
[a, b]= \begin{cases}\{a, a+1, \ldots, b-1, b\} & \text { if } a<b, \\ \{a\} & \text { if } a=b, \\ \varnothing & \text { if } a>b\end{cases}
$$

Such a multiset is referred to as a consecutive multiset of integers a and b.
Theorem 3.2.4. For every pair k, n of integers with $k \geq 3$ and $n \geq 3(k-1)$, there is a connected graph G of order n with $\operatorname{dim}_{M}(G)=k$.

Proof. Let k and n be integers with $k \geq 3$ and $n \geq 3(k-1)$. We consider two cases. Case 1. $n=3(k-1)$.

Let G be a graph obtained from the path $P_{k-1}=\left(u_{1}, u_{2}, \ldots, u_{k-1}\right)$ by adding the $2(k-1)$ new vertices v_{i} and w_{i} for $1 \leq i \leq k-1$ and joining v_{i} and w_{i} to u_{i}, as it is shown in Figure 11. Then the order of G is $n=3(k-1)$.

Figure 11: A connected graph G in Case 1

First, we claim that there is no multiresolving set of G having cardinality at most $k-1$. Assume, to the contrary, that there is a multiresolving set S of G such that $|S| \leq k-1$. Since a set $V_{i}=\left\{v_{i}, w_{i}\right\}$ for $1 \leq i \leq k-1$ is a distance-similar equivalence class of G, it follows by Theorem I that S contains exactly one vertex of V_{i}. We may assume, without loss of generality, that $w_{i} \in S$ for $1 \leq i \leq k-1$. Thus, $|S|=k-1$. Since $d\left(w_{1}, w_{i}\right)=d\left(w_{k-1}, w_{k-i}\right)$ for all $1 \leq i \leq k-1$, it follows that $\operatorname{mr}\left(w_{1} \mid S\right)=\operatorname{mr}\left(w_{k-1} \mid S\right)$ and so a set $S=\left\{w_{1}, w_{2}, \ldots, w_{k-1}\right\}$ is not a multiresolving set of G, thereby producing a contradiction. Hence, $\operatorname{dim}_{M}(G) \geq k$. Next, we claim that a set $W=\left\{w_{1}, w_{2}, \ldots, w_{k-1}\right\} \cup\left\{u_{1}\right\}$ is a multiresolving set of G. For a vertex $x \in W$, the multirepresentations of x with respect to W is

$$
m r(x \mid W)= \begin{cases}\{0, i\} \cup[3, i+1] \cup[3, k-i+1] & \text { if } x=w_{i}(1 \leq i \leq k-1) \\ {[0, k-1]} & \text { if } x=u_{1} .\end{cases}
$$

For $2 \leq i \leq k-1$, the multirepresentations of u_{i} with respect to W is

$$
m r\left(u_{i} \mid W\right)=\{1, i-1\} \cup[2, i] \cup[2, k-i] .
$$

For $1 \leq i \leq k-1$, the multirepresentations of v_{i} with respect to W is

$$
m r\left(v_{i} \mid W\right)=\{2, i\} \cup[3, i+1] \cup[3, k-i+1] .
$$

Therefore, W is a multiresolving set of G with $|W|=k$. Hence, $\operatorname{dim}_{M}(G)=k$.
Case 2. $n>3(k-1)$.
Let H be a graph obtained from the graph G in Case 1 by adding the path $P=\left(x_{1}, x_{2}, \ldots, x_{n-3(k-1)}\right)$ and joining x_{1} to v_{k-1} and w_{k-1}, as it is shown in Figure 12.

Figure 12: A connected graph H in Case 2

By a similar argument to the one used in Case 1, it is shown that there is no l multiresolving set of H with $1 \leq l \leq k-1$. We claim that a set $W=\left\{w_{1}, w_{2}, \ldots, w_{k-1}\right\} \cup\left\{u_{1}\right\} \quad$ is a multiresolving set of H. For vertices in $V(H)-\left\{x_{1}, x_{2}, \ldots, x_{n-3(k-1)}\right\}$, their multirepresentations with respect to W are the same as in Case 1. For $1 \leq i \leq n-3(k-1)$, the multirepresentations of x_{i} with respect to W is

$$
m r\left(x_{i} \mid W\right)=\{i, i+k-1\} \cup[i+3, i+k] .
$$

Hence, W is a multiresolving set of H with $|W|=k$ and so $\operatorname{dim}_{M}(H)=k$.

3.3 The multisimilar classes of graphs

In this section, we investigate another equivalence relation on a vertex set of a connected graph. First, we need some additional definitions and notation. Let $A=\left\{\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \mid a_{i} \in \mathbb{Z}\right.$ for $\left.1 \leq i \leq k\right\}$ be a collection of multisets of integers. For an integer c, we define

$$
\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}+\{c, c, \ldots, c\}=\left\{a_{1}+c, a_{2}+c, \ldots, a_{k}+c\right\}
$$

where $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\},\{c, c, \ldots, c\} \in A$. Let W be a set of vertices of a connected graph G and let u and v be vertices of G. A multisimilar relation R_{W} with respect to W on a vertex set $V(G)$ is defined by $u R_{W} v$ if there is an integer $c_{W}(u, v)$ such that

$$
\begin{equation*}
m r(u \mid W)=m r(v \mid W)+\left\{c_{W}(u, v), c_{W}(u, v), \ldots, c_{W}(u, v)\right\} . \tag{3.3.1}
\end{equation*}
$$

An integer $c_{W}(u, v)$ satisfying (3.3.1) is called a multisimilar constant of $u R_{W} v$ or simply a multisimilar constant. Clearly, R_{W} is an equivalence relation on $V(G)$. For each vertex u in $V(G)$, let $[u]_{W}$ denote the multisimilar class of u with respect to W. Then

$$
\begin{gather*}
x \in[u]_{W} \text { if and only if } \tag{3.3.2}\\
m r(x \mid W)=m r(u \mid W)+\left\{c_{W}(x, u), c_{W}(x, u), \ldots, c_{W}(x, u)\right\},
\end{gather*}
$$

where $c_{W}(x, u)$ is a multisimilar constant. Observe that if $x \in[u]_{W}$, then there is a multisimilar constant $c_{W}(x, u)$ with a property that, for every vertex $w \in W$, there is a corresponding vertex $w^{\prime} \in W$ such that

$$
\begin{equation*}
d(x, w)=d\left(u, w^{\prime}\right)+c_{W}(x, u) \tag{3.3.3}
\end{equation*}
$$

With this observation, we may as well say that $x \in[u]_{W}$ if and only if there are multisimilar constant $c_{W}(x, u)$ and a bijective function f on W defined as $f(w)=w^{\prime}$ whenever $d(x, w)=d\left(u, w^{\prime}\right)+c_{W}(x, u)$. This function is called a multisimilar function of $x R_{W} u$ or a multisimilar function if there is no ambiguity. Consequently, it is not surprising that an inverse function f^{-1} is also a multisimilar function of $u R_{W} x$ with a multisimilar constant $c_{W}(u, x)=-c_{W}(x, u)$. To illustrate this concept, let us consider the set $W=\{w, x, y\}$ of the graph G of Figure 13.

Figure 13: The graph G

The multirepresentations of vertices of G with respect to W are

$$
\begin{array}{ll}
\operatorname{mr}(u \mid W)=\{2,2,3\}, & \operatorname{mr}(v \mid W)=\{1,1,2\}, \quad \operatorname{mr}(w \mid W)=\{0,1,2\}, \\
\operatorname{mr}(x \mid W)=\{0,1,1\}, & \operatorname{mr}(y \mid W)=\{0,1,2\} .
\end{array}
$$

Since $\quad \operatorname{mr}(u \mid W)=\operatorname{mr}(v \mid W)+\{1,1,1\}, \quad \operatorname{mr}(w \mid W)=\operatorname{mr}(y \mid W)+\{0,0,0\} \quad$ and $m r(x \mid W)=m r(x \mid W)+\{0,0,0\}$, it follows that $u R_{W} v$ with $c_{W}(u, v)=1, w R_{W} y$ with $c_{W}(w, y)=0$ and $x R_{W} x$ with $c_{W}(x, x)=0$, respectively. In fact, $[u]_{W}=\{u, v\}$, $[w]_{W}=\{w, y\}$ and $[x]_{W}=\{x\}$. By considering a multisimilar class $[u]_{W}$, a multisimilar function f of $u R_{W} v$ is defined by $f(w)=w, f(x)=x$ and $f(y)=y$. Moreover, there is another multisimilar function f^{\prime} of $u R_{W} v$, that is, $f^{\prime}(w)=y, f^{\prime}(x)=x$ and $f^{\prime}(y)=w$.

The example just described shows an important point that a multisimilar function of any two vertices in the same multisimilar class with respect to a set W is not necessarily unique.

More generally, for a vertex u and a set W of vertices of a connected graph G, let $\operatorname{mr}(u \mid W)=\left\{r_{1} \cdot a_{1}, r_{2} \cdot a_{2}, \ldots, r_{l} \cdot a_{l}\right\}$, where $a_{1}<a_{2}<\cdots<a_{l}$ and r_{i} is a repetition number of type a_{i} for each i with $1 \leq i \leq l$. Assume that there is a vertex v of G belonging to the same multisimilar class as u, that is, $v \in[u]_{W}$. By (3.3.2) and (3.3.3), for each type of $\operatorname{mr}(u \mid W)$, there is a corresponding type of $\operatorname{mr}(v \mid W)$ such that their repetition numbers are equal. Therefore, we may assume that $m r(v \mid W)=\left\{r_{1} \cdot b_{1}, r_{2} \cdot b_{2}, \ldots, r_{l} \cdot b_{l}\right\}$, where $b_{1}<b_{2}<\cdots<b_{l}$. For each integer i with $1 \leq i \leq l$, let $A_{i}=\left\{w \in W \mid d(u, w)=a_{i}\right\}$ and $B_{i}=\left\{w \in W \mid d(v, w)=b_{i}\right\}$. Then the types of $m r(u \mid W)$ partition W into l sets $A_{1}, A_{2}, \ldots, A_{l}$. On the other hand, W is also partitioned into l sets $B_{1}, B_{2}, \ldots, B_{l}$ depending on the types of $\operatorname{mr}(v \mid W)$. Hence, the multisimilar function f of $u R_{W} v$ has the property that, for every vertex $w \in A_{i}$, there is a vertex $w^{\prime} \in B_{i}$ such that $f(w)=w^{\prime}$, where $1 \leq i \leq l$. Indeed, there are $r_{1}!r_{2}!\cdots r_{l}$! distinct multisimilar functions of $u R_{W} v$. These observations yield the following result.
Theorem 3.3.1. Let W be a set of vertices of a connected graph G and let u and v be vertices of G such that $u \in[v]_{W}$. Suppose that $\operatorname{mr}(u \mid W)=$ $\left\{r_{1} \cdot a_{1}, r_{2} \cdot a_{2}, \ldots, r_{l} \cdot a_{l}\right\}$, where $a_{1}<a_{2}<\cdots<a_{l}$ and r_{i} is a repetition number of type a_{i} for each integer i with $1 \leq i \leq l$. Then
(i) $m r(v \mid W)=\left\{r_{1} \cdot b_{1}, r_{2} \cdot b_{2}, \ldots, r_{l} \cdot b_{l}\right\}$ for some integers $b_{1}, b_{2}, \ldots, b_{l}$ with $b_{1}<b_{2}<\cdots<b_{l}$,
(ii) there is a multisimilar function f of $u R_{W} v$ such that $f\left(w_{i}\right)=w_{i}^{\prime}$, where $d\left(u, w_{i}\right)=a_{i}$ and $d\left(v, w_{i}^{\prime}\right)=b_{i}$ for each i with $1 \leq i \leq l$,
(iii) there are $r_{1}!r_{2}!\cdots r_{l}$! distinct multisimilar functions of $u R_{W} v$. By Theorem 3.3.1, the following result is obtained.

Corollary 3.3.2. Let W be a set of vertices of a connected graph G and let u and v be vertices of G such that $u \in[v]_{W}$ with a multisimilar constant $c_{W}(u, v)$. Then
(i) if M_{1} and M_{2} are the maximum elements of $\operatorname{mr}(u \mid W)$ and $\operatorname{mr}(v \mid W)$, respectively, then $M_{1}=M_{2}+c_{W}(u, v)$,
(ii) if m_{1} and m_{2} are the minimum elements of $m r(u \mid W)$ and $m r(v \mid W)$, respectively, then $m_{1}=m_{2}+c_{W}(u, v)$.
Proof. Suppose that $u \in[v]_{W}$ and $|W|=l$. Let $\operatorname{mr}(u \mid W)=\left\{r_{1} \cdot a_{1}, r_{2} \cdot a_{2}, \ldots, r_{l} \cdot a_{l}\right\}$ and $\quad m r(v \mid W)=\left\{r_{1} \cdot b_{1}, r_{2} \cdot b_{2}, \ldots, r_{l} \cdot b_{l}\right\}$, where $a_{1}<a_{2}<\cdots<a_{l} \quad$ and $b_{1}<b_{2}<\cdots<b_{l}$. Since M_{1} and M_{2} are the maximum elements of $\operatorname{mr}(u \mid W)$ and $m r(v \mid W)$, respectively, it follows that there are vertices w and w^{\prime} in W such that $M_{1}=d(u, w)=a_{l}$ and $M_{2}=d\left(v, w^{\prime}\right)=b_{l}$. By Theorem 3.3.1, there is a multisimilar function f of $u R_{W} v$ such that $f(w)=w^{\prime}$. Then $d(u, w)=d\left(v, w^{\prime}\right)+c_{W}(u, v)$, where $c_{W}(u, v)$ is a multisimilar constant. Thus, (i) holds. For (ii), the statement may be proven in the same way as (i), and therefore such proof is omitted.

Next, we are prepared to establish the upper bound for the cardinality of a multisimilar class of a vertex in a connected graph. To show this, let us present a useful proposition as follows.

Proposition 3.3.3. Let W be a set of vertices of a connected graph G and let u and v be vertices of G such that $u \in[v]_{W}$. Then $\operatorname{mr}(u \mid W)$ and $\operatorname{mr}(v \mid W)$ have the same minimum (or maximum) element if and only if $\operatorname{mr}(u \mid W)=\operatorname{mr}(v \mid W)$.

Proof. If $m r(u \mid W)=m r(v \mid W)$, then the minimum (and maximum) elements of $m r(u \mid W)$ and $m r(v \mid W)$ are the same. For the converse, assume that m_{1} and m_{2} are the minimum elements of $\operatorname{mr}(u \mid W)$ and $\operatorname{mr}(v \mid W)$, respectively, such that $m_{1}=m_{2}$. Since $u \in[v]_{W}$, there is a multisimilar constant $c_{W}(u, v)$ such that $m r(u \mid W)=m r(v \mid W)+\left\{c_{W}(u, v), c_{W}(u, v), \ldots, c_{W}(u, v)\right\}$. By Corollary 3.3.2 (ii), it
follows that $m_{1}=m_{2}+c_{W}(u, w)$. Thus, $c_{W}(u, v)=0$. Hence, $\operatorname{mr}(u \mid W)=m r(v \mid W)$. Similarly, if $m r(u \mid W)$ and $m r(v \mid W)$ have the same maximum element, then $m r(u \mid W)=m r(v \mid W)$.

Theorem 3.3.4. If W is a multiresolving set of a connected graph G, then the cardinality of multisimilar class of each vertex of G with respect to W is at most $\operatorname{diam}(G)+1$.

Proof. Assume, to the contrary, that there is a vertex v of G such that $[v]_{W}$ has the cardinality at least $\operatorname{diam}(G)+2$. Since the minimum elements of multirepresentations of vertices in $[v]_{W}$ with respect to W have at most $\operatorname{diam}(G)+1$ distinct values, there are at least two vertices x and y in $[v]_{W}$ having the same value of the minimum element of $m r(x \mid W)$ and $m r(y \mid W)$. Therefore, $m r(x \mid W)=m r(y \mid W)$ by Proposition 3.3.3, contradicting the fact that W is a multiresolving set of G.

We can show that the upper bound in Theorem 3.3.4 is sharp by considering the path $P_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. We have that $\operatorname{diam}\left(P_{n}\right)=n-1$ and a set $W=\left\{v_{1}\right\}$ is a multiresolving set of P_{n}. Thus, $\left[v_{1}\right]_{W}$ contains all vertices of P_{n} and so $\left|\left[v_{1}\right]_{W}\right|=n$.

The next result describes the properties of multisimilar classes with respect to a set of vertices.

Theorem 3.3.5. Let u and v be vertices of a connected graph G and let W be a set of vertices of G. Then
(i) if $[u]_{W} \neq[v]_{W}$, then $\operatorname{mr}(x \mid W) \neq \operatorname{mr}(y \mid W)$ for all $x \in[u]_{W}$ and $y \in[v]_{W}$,
(ii) if $[u]_{W}=\{u\}$ for all $u \in V(G)$, then W is a multireso/ving set of G.

Proof. (i) Assume, to the contrary, that there exist two distinct vertices $x \in[u]_{W}$ and $y \in[v]_{W}$ such that $\operatorname{mr}(x \mid W)=\operatorname{mr}(y \mid W)$. Then there are multisimilar constants $c_{W}(x, u)$ and $c_{W}(y, v)$ such that

$$
\begin{gathered}
m r(x \mid W)=m r(u \mid W)+\left\{c_{W}(x, u), c_{W}(x, u), \ldots, c_{W}(x, u)\right\} \text { and } \\
m r(y \mid W)=m r(v \mid W)+\left\{c_{W}(y, v), c_{W}(y, v), \ldots, c_{W}(y, v)\right\} .
\end{gathered}
$$

Therefore, $\quad \operatorname{mr}(u \mid W)+\left\{c_{W}(x, u), \ldots, c_{W}(x, u)\right\}=\operatorname{mr}(v \mid W)+\left\{c_{W}(y, v), \ldots, c_{W}(y, v)\right\}$. Thus, $\quad \operatorname{mr}(u \mid W)=m r(v \mid W)+\left\{c_{W}(y, v)-c_{W}(x, u), \ldots, c_{W}(y, v)-c_{W}(x, u)\right\}$. Hence, u belongs to $[v]_{W}$, which is a contradiction.
(ii) Assume, to the contrary, that W is not a multiresolving set of G. Then there exist two distinct vertices x and y such that $m r(x \mid W)=\operatorname{mr}(y \mid W)$. Hence, y belongs to $[x]_{W}$, producing a contradiction.

3.4 The characterization of caterpillars with multidimension 3

A caterpillar is a tree of order at least 3 , the removal of whose end-vertices produces a path called the spine of the caterpillar. A vertex of the spine of the caterpillar is called a spine-vertex. Let T be a caterpillar that $\operatorname{dim}_{M}(T)$ is defined. Since any two end-vertices that are adjacent to the same spine-vertex of T are distance-similar, it follows by Theorem I that there are at most two end-vertices that are adjacent to each spine-vertex of T. Therefore, we consider multiresolving sets of such a caterpillar. In order to do this, let us introduce some additional definitions and notation. For integers $s, k_{1}, k_{2}, \ldots, k_{s}$ with $s \geq 1,1 \leq k_{1}, k_{s} \leq 2$ and $0 \leq k_{2}, k_{3}, \ldots, k_{s-1} \leq 2$, let $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ be a caterpillar which is obtained from the spine $\left(u_{1}, u_{2}, \ldots, u_{s}\right)$ by joining k_{i} endvertices to the spine vertex u_{i}, where $1 \leq i \leq s$. Observe that, if $k_{i}=0$, then there is no end-vertices joining to the spine vertex u_{i}. Also, if $k_{i}=1$, then the spine-vertex u_{i} is adjacent to an end-vertex which is called the first end-vertex of u_{i} and denoted by v_{i}. Furthermore, if $k_{i}=2$, then there are two end-vertices joining to u_{i} that are called the first and second end-vertices of u_{i} and denoted by v_{i} and w_{i}, respectively. For each integer i with $1 \leq i \leq s$, we define a set $\Psi=\left\{i \in \mathbb{Z} \mid k_{i}=2\right\}$ to be the second end-set of a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$. To emphasize that this is the second end-set Ψ of a caterpillar T, we sometimes denote this set by Ψ_{T}. For example, the caterpillar $\mathrm{ca}(1,2,0,2,0,2)$ of Figure 14 has six spine-vertices, namely, $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$. Since no end-vertex is adjacent to a spine vertex u_{3}, as well as to a spine vertex u_{5}, it follows that there are no first and second end-vertices of u_{3} and u_{5}. The first end-vertices of u_{1}, u_{2}, u_{4} and u_{6} are v_{1}, v_{2}, v_{4} and v_{6}, respectively. Also, the second end-vertices of
u_{2}, u_{4} and u_{6} are w_{2}, w_{4} and w_{6}, respectively. Therefore, the second end-set of $\mathrm{ca}(1,2,0,2,0,2)$ is the set $\Psi=\{2,4,6\}$.

Figure 14: The caterpillar ca($1,2,0,2,0,2)$ with the second end-set $\Psi=\{2,4,6\}$

The following observation is a consequence of Theorem I.
Observation 3.4.1. Every multiresolving set of a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with a second end-set Ψ contains either first end-vertex v_{i} or second end-vertex w_{i}, where $i \in \Psi$.

Proof. For each integer $i \in \Psi$, since v_{i} and w_{i} are distance-similar, it follows by Theorem I that every multiresolving set of $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ contains exactly one of $\left\{v_{i}, w_{i}\right\}$.

Next, we are prepared to characterize caterpillars having multidimension 3 . In order to do this, we first present several preliminary results.

Proposition 3.4.2. Let s, α, β be integers with $s \geq 3$ and $1 \leq \alpha<\beta \leq s$, and let W be a set of vertices of a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ containing one of $\left\{v_{1}, w_{1}\right\}$ and one of $\left\{v_{s}, w_{s}\right\}$. If $\operatorname{mr}\left(u_{\alpha} \mid W\right)=\operatorname{mr}\left(u_{\beta} \mid W\right)$ or $\operatorname{mr}\left(v_{\alpha} \mid W\right)=\operatorname{mr}\left(v_{\beta} \mid W\right)$, then $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+1$.
Proof. Suppose that $m r\left(u_{\alpha} \mid W\right)=m r\left(u_{\beta} \mid W\right)$. Without loss of generality, assume that W contains v_{1} and v_{s}. For $1 \leq \alpha<\beta \leq\left\lceil\frac{s}{2}\right\rceil$, since $d\left(u_{\alpha}, v_{s}\right)=s-\alpha+1$ and $d\left(u_{\beta}, v_{s}\right)=s-\beta+1$ are the maximum elements of $m r\left(u_{\alpha} \mid W\right)$ and $m r\left(u_{\beta} \mid W\right)$, respectively, it follows that $\alpha=\beta$, which is a contradiction. For $\left\lceil\frac{s}{2}\right\rceil+1 \leq \alpha<\beta \leq s$, since $d\left(u_{\alpha}, v_{1}\right)=\alpha$ and $d\left(u_{\beta}, v_{1}\right)=\beta$ are the maximum elements of $\operatorname{mr}\left(u_{\alpha} \mid W\right)$ and $\operatorname{mr}\left(u_{\beta} \mid W\right)$, respectively, it follows that $\alpha=\beta$, a contradiction is produced. Thus,
$1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil \quad$ and $\left\lceil\frac{s}{2}\right\rceil+1 \leq \beta \leq s$. Moreover, since $\quad d\left(u_{\alpha}, v_{s}\right)=s-\alpha+1 \quad$ and $d\left(u_{\beta}, v_{1}\right)=\beta$ are the maximum elements of $\operatorname{mr}\left(u_{\alpha} \mid W\right)$ and $\operatorname{mr}\left(u_{\beta} \mid W\right)$, respectively, it follows that $\beta=s-\alpha+1$, as we claimed. If $\operatorname{mr}\left(v_{\alpha} \mid W\right)=m r\left(v_{\beta} \mid W\right)$, then it can be obtained in a similar manner.

Proposition 3.4.3. Let s, γ, δ be integers with $s \geq 3$ and $1 \leq \gamma, \delta \leq s$, and let W be a set of vertices of a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ containing one of $\left\{v_{1}, w_{1}\right\}$ and one of $\left\{v_{s}, w_{s}\right\}$. Then
(i) if $1 \leq \gamma<\delta \leq s$ and $\operatorname{mr}\left(v_{\gamma} \mid W\right)=\operatorname{mr}\left(u_{\delta} \mid W\right)$, then $1 \leq \gamma \leq\left\lceil\frac{s}{2}\right\rceil$ and $\delta=s-\gamma+2$, and
(ii) if $1 \leq \delta \leq \gamma \leq s$ and $\operatorname{mr}\left(v_{\gamma} \mid W\right)=\operatorname{mr}\left(u_{\delta} \mid W\right)$, then $\left\lceil\frac{s}{2}\right\rceil+1 \leq \gamma \leq s$ and $\delta=s-\gamma$.

Proof. (i) Suppose that $1 \leq \gamma<\delta \leq s$ and $\operatorname{mr}\left(v_{\gamma} \mid W\right)=m r\left(u_{\delta} \mid W\right)$. Without loss of generality, let us assume that W contains v_{1} and v_{s}. If $1 \leq \gamma<\delta \leq\left\lceil\frac{s}{2}\right\rceil$, then $d\left(v_{\gamma}, v_{s}\right)=s-\gamma+2$ and $d\left(u_{\delta}, v_{s}\right)=s-\delta+1$ are the maximum elements of $m r\left(v_{\gamma} \mid W\right)$ and $\operatorname{mr}\left(u_{\delta} \mid W\right)$, respectively. Therefore, $\delta=\gamma-1$, that is, $\gamma>\delta$, which gives a contradiction. If $\left\lceil\frac{s}{2}\right\rceil+1 \leq \gamma<\delta \leq s$, then $d\left(v_{\gamma}, v_{1}\right)=\gamma+1$ and $d\left(u_{\delta}, v_{1}\right)=\delta$ are the maximum elements of $m r\left(v_{\gamma} \mid W\right)$ and $m r\left(u_{\delta} \mid W\right)$, respectively. Thus, $\delta=\gamma+1$. Since $d\left(v_{\gamma}, v_{s}\right)=s-\gamma+2$ belongs to $\operatorname{mr}\left(v_{\gamma} \mid W\right)$, there is a vertex w for which $w=u_{2 \delta-s-3}$ or $w=v_{2 \delta-s-2}$ or $w=w_{2 \delta-s-2}$ such that $d\left(u_{\delta}, w\right)=s-\gamma+2$. Moreover, since $d\left(v_{\gamma}, w\right)=d\left(u_{\delta}, w\right)=s-\gamma+2$, it follows that $m r\left(v_{\gamma} \mid W\right)$ contains $s-\gamma+2$'s more than $\operatorname{mr}\left(u_{\delta} \mid W\right)$ does, which is impossible. Therefore, $1 \leq \gamma \leq\left\lceil\frac{s}{2}\right\rceil$ and $\left\lceil\frac{s}{2}\right\rceil+1 \leq \delta \leq s$. Moreover, since $d\left(v_{\gamma}, v_{s}\right)=s-\gamma+2$ and $d\left(u_{\delta}, v_{1}\right)=\delta$ are the maximum elements of $m r\left(v_{\gamma} \mid W\right)$ and $m r\left(u_{\delta} \mid W\right)$, respectively, it follows that
$\delta=s-\gamma+2$, as we claimed. For (ii), the statement may be proven in the same way as (i), and therefore such proof is omitted.

An argument similar to the one used in the proof of Propositions 3.4.2 and 3.4.3 establishes the following results.

Proposition 3.4.4. Let s, α, β be integers with $s \geq 3$ and $1 \leq \alpha<\beta \leq s$, and let W be a set of vertices of a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ containing u_{1} and one of $\left\{v_{s}, w_{s}\right\}$ except v_{1} and w_{1}. If $m r\left(u_{\alpha} \mid W\right)=m r\left(u_{\beta} \mid W\right)$ or $\operatorname{mr}\left(v_{\alpha} \mid W\right)=m r\left(v_{\beta} \mid W\right)$, then $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+2$.
Proposition 3.4.5. Let s, γ, δ be integers with $s \geq 3$ and $1 \leq \gamma, \delta \leq s$, and let W be a set of vertices of a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ containing u_{1} and one of $\left\{v_{s}, w_{s}\right\}$ except v_{1} and w_{1}. Then
(i) if $1 \leq \gamma<\delta \leq s$ and $\operatorname{mr}\left(v_{\gamma} \mid W\right)=\operatorname{mr}\left(u_{\delta} \mid W\right)$, then $1 \leq \gamma \leq\left\lceil\frac{s}{2}\right\rceil$ and $\delta=s-\gamma+3$, and
(ii) if $1 \leq \delta \leq \gamma \leq s$ and $m r\left(v_{\gamma} \mid W\right)=m r\left(u_{\delta} \mid W\right)$, then $\left\lceil\frac{s}{2}\right\rceil+1 \leq \gamma \leq s$ and $\delta=s-\gamma+1$.

We now establish a characterization of a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with multidimension 3 . For $s=1$ and $s=2$, the caterpillars $\mathrm{ca}\left(k_{1}\right)$ and $\mathrm{ca}\left(k_{1}, k_{2}\right)$ are shown in Figure 15, where the vertices of a multibasis of these caterpillars are indicated by solid vertices.

Figure 15: The caterpillars $\mathrm{ca}(2), \mathrm{ca}(1,1), \mathrm{ca}(1,2)$ and $\mathrm{ca}(2,2)$

Notice that $\mathrm{ca}(2)=P_{3}, \mathrm{ca}(1,1)=P_{4}$ and $\mathrm{ca}(1,2)=\mathrm{ca}(2,1)$. This implies that there is no caterpillar having multidimension 3 , where $s=1$, and there are two distinct caterpillars having multidimension 3 , where $s=2$. For $s=3$, it is routine to verify that $\mathrm{ca}(1,0,2)=\mathrm{ca}(2,0,1), \mathrm{ca}(1,1,1), \mathrm{ca}(1,1,2)=\mathrm{ca}(2,1,1), \mathrm{ca}(2,0,2)$ and $\mathrm{ca}(2,1,2)$ are caterpillars having multidimension 3 . For $s \geq 4$, let us introduce some additional definitions and notation.

For an even integer $s \geq 4$, let T_{1} be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ such that $\Psi=\{1, r, s\}$, where $r \in\{2,3, \ldots, s-1\}$. In particular, for $s=8$ and $r=3$, the caterpillar $T_{1}=\mathrm{ca}(2,0,2,1,0,1,0,2)$ with $\Psi=\{1,3,8\}$ is shown in Figure 16.

Figure 16: The caterpillar $T_{1}=\mathrm{ca}(2,0,2,1,0,1,0,2)$ with $\Psi=\{1,3,8\}$
For an odd integer $s \geq 5$, let T_{2} be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ such that $\Psi=\{1, r, s\}$, where

$$
r \in \begin{cases}\{2,3, . ., s-1\}-\left\{3, \frac{s+1}{2}, s-2\right\} & \text { if } s \equiv 1(\bmod 4), \tag{3.4.1}\\ \{2,3, . ., s-1\}-\left\{3, \frac{s-1}{2}, \frac{s+1}{2}, \frac{s+3}{2}, s-2\right\} & \text { if } s \equiv 3(\bmod 4) .\end{cases}
$$

For example, for $s=9$ and $r=4$, the caterpillar $T_{2}=\mathrm{ca}(2,0,1,2,0,1,1,0,2)$ with $\Psi=\{1,4,9\}$ is illustrated in Figure 17.

Figure 17: The caterpillar $T_{2}=\mathrm{ca}(2,0,1,2,0,1,1,0,2)$ with $\Psi=\{1,4,9\}$

For an odd integer $s \geq 9$, let T_{3} be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ such that either $\Psi=\{1,3, s\}$ and $k_{\frac{s-1}{2}}=0$, or $\Psi=\{1, s-2, s\}$ and $k_{\frac{s+3}{2}}=0$. For an odd integer $s \geq 11$ and $s \equiv 3(\bmod 4)$, let T_{4} be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ such that either $\Psi=\left\{1, \frac{s-1}{2}, s\right\}$ and $k_{\frac{s+5}{4}}=0$, or $\Psi=\left\{1, \frac{s+3}{2}, s\right\}$ and $k_{\frac{3 s-1}{4}}=0$.
Proposition 3.4.6. A caterpillar T_{i}, where $1 \leq i \leq 4$ has multidimension 3 .
Proof. For each integer i with $1 \leq i \leq 4$, we show that every caterpillar T_{i} has multidimension 3 . We verify this for T_{2} only since the proof for T_{1}, T_{3} and T_{4} uses an argument similar to the one for T_{2}. First, we verify that $W=\left\{w_{1}, w_{r}, w_{s}\right\}$ is a multiresolving set of T_{2}, where r satisfies the condition (3.4.1). Without loss of generality, we may assume that $2 \leq r \leq\left\lceil\frac{s}{2}\right\rceil$. The multirepresentations of vertices of W with respect to W are $\operatorname{mr}\left(w_{1} \mid W\right)=\{0, r+1, s+1\}, \operatorname{mr}\left(w_{r} \mid W\right)=\{0, r+1, s-r+2\}$ and $\operatorname{mr}\left(w_{s} \mid W\right)=\{0, s-r+2, s+1\}$. Since $r \notin\left\{1, \frac{s+1}{2}, s\right\}$, it follows that these $3-$ multisets are distinct. Next, we claim that $\operatorname{mr}(x \mid W) \neq m r(y \mid W)$ for all vertices $x, y \in V\left(T_{2}\right)-W$. Suppose, contrary to our claim, that $\operatorname{mr}(x \mid W)=m r(y \mid W)$ for some vertices $x, y \in V\left(T_{2}\right)-W$. We consider three cases.
Case 1. x and y are spine-vertices.
Let $x=u_{\alpha}$ and $y=u_{\beta}$, where $1 \leq \alpha<\beta \leq s$. Then by Proposition 3.4.2, we obtain that $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+1$. Thus, $\operatorname{mr}\left(u_{\beta} \mid W\right)=\{s-\beta+1$, $\beta-r+1, \beta\}=\{\alpha, s-\alpha-r+2, s-\alpha+1\}$. Since $\operatorname{mr}\left(u_{\alpha} \mid W\right)=\{\alpha,|\alpha-r|+1$, $s-\alpha+1\}$, it follows that $|\alpha-r|+1=s-\alpha-r+2$. If $\alpha \geq r$, then $2 \alpha=s+1$ and so $\alpha=\beta$, which is impossible. If $\alpha<r$, then $r=\frac{s-1}{2}$, a contradiction.
Case 2. x and y are first end-vertices.
Let $x=v_{\alpha}$ and $y=v_{\beta}$, where $1 \leq \alpha<\beta \leq s$. Proposition 3.4.2 implies that $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+1$. Thus, $\operatorname{mr}\left(v_{\beta} \mid W\right)=\{s-\beta+2, \beta-r+2, \beta+1\}=$ $\{\alpha+1, s-\alpha-r+3, s-\alpha+2\}$. Since $\operatorname{mr}\left(v_{\alpha} \mid W\right)=\{\alpha+1,|\alpha-r|+2, s-\alpha+2\}$, it
follows that $|\alpha-r|+2=s-\alpha-r+3$. If $\alpha \geq r$, then $2 \alpha=s+1$ and so $\alpha=\beta$, which cannot occur. If $\alpha<r$, then $r=\frac{s-1}{2}$. This is also a contradiction.
Case 3. x is a first end-vertex and y is a spine-vertex.
Let $x=v_{\gamma}$ and $y=u_{\delta}$, where $1 \leq \gamma, \delta \leq s$. We consider two subcases.
Subcase 3.1. $1 \leq \gamma<\delta \leq s$.
Then by Proposition 3.4.3 (i), we obtain that $1 \leq \gamma \leq\left\lceil\frac{s}{2}\right\rceil$ and $\delta=s-\gamma+2$. Thus, $\quad \operatorname{mr}\left(u_{\delta} \mid W\right)=\{s-\delta+1, \delta-r+1, \delta\}=\{\gamma-1, s-\gamma-r+3, s-\gamma+2\}$. Since $m r\left(v_{\gamma} \mid W\right)=\{\gamma+1,|\gamma-r|+2, s-\gamma+2\}$, it follows that $|\gamma-r|+2=\gamma-1$ and $\gamma+1=s-\gamma-r+3$. If $\gamma \geq r$, then $r=3$, which is impossible. If $\gamma<r$, then $s=4(\gamma-2)+3$, that is, $s \equiv 3(\bmod 4)$. Also, we obtain that $2 r=s-1$, and then $r=\frac{s-1}{2}$, which is a contradiction.

Subcase 3.2. $1 \leq \delta \leq \gamma \leq s$.
Therefore, by Proposition 3.4.3 (ii), we obtain that $\left\lceil\frac{s}{2}\right\rceil+1 \leq \gamma \leq s$ and $\delta=s-\gamma$. Thus, $\quad \operatorname{mr}\left(v_{\gamma} \mid W\right)=\{s-\gamma+2, \gamma-r+2, \gamma+1\}=\{\delta+2, s-\delta-r+2$, $s-\delta+1\}$. Since $\operatorname{mr}\left(u_{\delta} \mid W\right)=\{\delta,|\delta-r|+1, s-\delta+1\}$, it follows that $|\delta-r|+1=\delta+2$ and $\delta=s-\delta-r+2$. Consequently, $|\delta-r|=s-\delta-r+3$. If $\delta \geq r$, then $2 \delta=s+3$, which cannot occur. If $\delta<r$, then $2 r=s+3$, a contradiction.

Therefore, $\operatorname{mr}(x \mid W) \neq \operatorname{mr}(y \mid W)$ for all vertices $x, y \in V\left(T_{2}\right)-W$, that is, W is a multiresolving set of T_{2} and so $\operatorname{dim}_{M}\left(T_{2}\right) \leq 3$. Since T_{2} is not a path, it follows by Theorems J and K that $\operatorname{dim}_{M}\left(T_{2}\right) \geq 3$. Hence, $\operatorname{dim}_{M}\left(T_{2}\right)=3$.

The following corollary is an immediate consequence of Proposition 3.4.6.
Corollary 3.4.7. If T is a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ such that $T=T_{i}$, where $1 \leq i \leq 4$ with $\Psi=\{1, r, s\}$, then $\left\{x_{1}, x_{r}, x_{s}\right\}$ is a multibasis of T, where $x_{i} \in\left\{v_{i}, w_{i}\right\}$ for $i=1, r, s$.

For an integer $s \geq 4$, let T_{5} be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ such that either $\Psi=\{p, s\}$ or $\Psi=\{1, q\}$, where $1 \leq p<q \leq s$.

Proposition 3.4.8. A caterpillar T_{5} has multidimension 3 .
Proof. First, suppose that $\Psi=\{p, s\}$, where $1 \leq p \leq s-1$. Since T_{5} is not a path, it follows by Theorems J and K that $\operatorname{dim}_{M}\left(T_{5}\right) \geq 3$. Next, we consider two cases.

Case 1. $p=1$.
We show that $W=\left\{u_{1}, w_{1}, w_{s}\right\}$ is a multiresolving set of T_{5}. The multirepresentations of vertices of W with respect to W are $\operatorname{mr}\left(u_{1} \mid W\right)=$ $\{0,1, s\}, \operatorname{mr}\left(w_{1} \mid W\right)=\{0,1, s+1\}$ and $\operatorname{mr}\left(w_{s} \mid W\right)=\{0, s, s+1\}$. Thus, these $3-$ multisets are distinct. Next, we claim that $\operatorname{mr}(x \mid W) \neq m r(y \mid W)$ for all vertices $x, y \in V\left(T_{5}\right)-W$. Assume, to the contrary, that $\operatorname{mr}(x \mid W)=m r(y \mid W)$ for some vertices $x, y \in V\left(T_{5}\right)-W$. We consider three subcases.

Subcase 1.1. x and y are spine-vertices.
Let $x=u_{\alpha}$ and $y=u_{\beta}$, where $1 \leq \alpha<\beta \leq s$. Then by Proposition 3.4.2, $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+1$. Thus, $\operatorname{mr}\left(u_{\beta} \mid W\right)=\{s-\beta+1, \beta-1, \beta\}=\{\alpha$ $s-\alpha, s-\alpha+1\}$. Since $\operatorname{mr}\left(u_{\alpha} \mid W\right)=\{\alpha, \alpha-1, s-\alpha+1\}$, it follows that $\alpha-1=$ $s-\alpha$ and so $\alpha=\beta$, which is impossible.

Subcase 1.2. x and y are first end-vertices.
Let $x=v_{\alpha}$ and $y=v_{\beta}$, where $1 \leq \alpha<\beta \leq s$. Then by Proposition 3.4.2, we have that $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+1$. Thus, $\operatorname{mr}\left(v_{\beta} \mid W\right)=\{s-\beta+2, \beta, \beta+1\}$ $=\{\alpha+1, s-\alpha+1, s-\alpha+2\}$. Since $\operatorname{mr}\left(v_{\alpha} \mid W\right)=\{\alpha+1, \alpha, s-\alpha+2\}$, it follows that $\alpha=s-\alpha+1$ and so $\alpha=\beta$. This is a contradiction.

Subcase 1.3. x is a first end-vertex and y is a spine-vertex.
Let $x=v_{\gamma}$ and $y=u_{\delta}$, where $1 \leq \gamma, \delta \leq s$. We consider two subcases. Subcase 1.3.1. $1 \leq \gamma<\delta \leq s$.
Then by Proposition 3.4.3 (i), we obtain that $1 \leq \gamma \leq\left\lceil\frac{s}{2}\right\rceil$ and $\delta=s-\gamma+2$.
 $m r\left(v_{\gamma} \mid W\right)=\{\gamma+1, \gamma, s-\gamma+2\}$, it follows that $\operatorname{mr}\left(v_{\gamma} \mid W\right) \neq \operatorname{mr}\left(u_{\delta} \mid W\right)$, which is impossible.

Subcase 1.3.2. $1 \leq \delta \leq \gamma \leq s$.
Then by Proposition 3.4.3 (ii), $\left\lceil\frac{s}{2}\right\rceil+1 \leq \gamma \leq s$ and $\delta=s-\gamma$. Since $m r\left(v_{\gamma} \mid W\right)=\{s-\gamma+2, \gamma, \gamma+1\}=\{\delta+2, s-\delta, s-\delta+1\} \quad$ and $\quad \operatorname{mr}\left(u_{\delta} \mid W\right)=$ $\{\delta, \delta-1, s-\delta+1\}$, it follows that $\operatorname{mr}\left(v_{\gamma} \mid W\right) \neq \operatorname{mr}\left(u_{\delta} \mid W\right)$, this is also contradiction. Therefore, $\operatorname{mr}(x \mid W) \neq \operatorname{mr}(y \mid W)$ for all vertices $x, y \in V\left(T_{5}\right)-W$, that is, W is a multiresolving set of T_{5}. Hence, $\operatorname{dim}_{M}\left(T_{5}\right) \leq 3$ and so $\operatorname{dim}_{M}\left(T_{5}\right)=3$, where $p=1$.
Case 2. $p \geq 2$.
We consider two subcases.
Subcase 2.1. s is even.
With the aid of Theorem 3.2.1 and Corollary 3.4.7, since $T_{5}=T_{1}-w_{1}$ and $W=\left\{v_{1}, w_{p}, w_{s}\right\}$ is a multiresolving set of T_{1}, it follows that W is a multiresolving set of T_{5}. Therefore, $\operatorname{dim}_{M}\left(T_{5}\right) \leq 3$. Hence, $\operatorname{dim}_{M}\left(T_{5}\right)=3$, where $p \geq 2$ and s is even.

Subcase 2.2. s is odd.
We consider two subcases.
Subcase 2.2.1. $p=2$.
By Theorem 3.2.1 and Corollary 3.4.7, since $T_{5}=T_{2}-w_{1}$ and $W=\left\{v_{1}, w_{p}, w_{s}\right\}$ is a multiresolving set of T_{2}, it follows that W is a multiresolving set of T_{5}. Therefore, $\operatorname{dim}_{M}\left(T_{5}\right) \leq 3$. Hence, $\operatorname{dim}_{M}\left(T_{5}\right)=3$, where $p=2$ and s is odd.

Subcase 2.2.2. $p \geq 3$.
We show that the set $W=\left\{u_{1}, w_{p}, w_{s}\right\}$ is a multiresolving set of T_{5}. The multirepresentations of vertices of W with respect to W are $\operatorname{mr}\left(u_{1} \mid W\right)=$ $\{0, p, s\}, \operatorname{mr}\left(w_{p} \mid W\right)=\{0, p, s-p+2\} \quad$ and $\quad \operatorname{mr}\left(w_{s} \mid W\right)=\{0, s-p+2, s\}$. Thus, these 3 -multisets are distinct. Next, we claim that $\operatorname{mr}(x \mid W) \neq \operatorname{mr}(y \mid W)$ for all vertices $x, y \in V\left(T_{5}\right)-W$. Assume, to the contrary, that $\operatorname{mr}(x \mid W)=m r(y \mid W)$ for some vertices $x, y \in V\left(T_{5}\right)-W$. We consider three subcases.

Subcase 2.2.2.1. x and y are spine-vertices.
Let $x=u_{\alpha}$ and $y=u_{\beta}$, where $1 \leq \alpha<\beta \leq s$. Then by Proposition 3.4.4, $1 \leq \alpha \leq\left[\frac{s}{2}\right]$ and $\beta=s-\alpha+2$. Thus, $\operatorname{mr}\left(u_{\beta} \mid W\right)=\{s-\beta+1,|\beta-p|+1, \beta-1\}$
$=\{\alpha-1,|\beta-p|+1, s-\alpha+1\}$. Since $\operatorname{mr}\left(u_{\alpha} \mid W\right)=\{\alpha-1,|\alpha-p|+1, s-\alpha+1\}$, it follows that $|\alpha-p|+1=|\beta-p|+1$. If $p \leq \alpha$ or $\beta \leq p$, then $\alpha=\beta$, which is impossible. If $\alpha<p<\beta$, then $s=2 p-2$, contradicting the fact that s is odd.

Subcase 2.2.2.2. x and y are first end-vertices.
Let $x=v_{\alpha}$ and $y=v_{\beta}$, where $1 \leq \alpha<\beta \leq s$. Then by Proposition 3.4.4, $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+2$. Thus, $\quad \operatorname{mr}\left(v_{\beta} \mid W\right)=\{s-\beta+2,|\beta-p|+2, \beta\}$ $=\{\alpha,|\beta-p|+2, s-\alpha+2\}$. Since $\quad \operatorname{mr}\left(v_{\alpha} \mid W\right)=\{\alpha,|\alpha-p|+2, s-\alpha+2\}, \quad$ it follows that $|\alpha-p|+2=|\beta-p|+2$. By the same argument as the proof in Subcase 2.2.2.1, we obtain a contradiction.

Subcase 2.2.2.3. x is a first end-vertex and y is a spine-vertex.
Let $x=v_{\gamma}$ and $y=u_{\delta}$, where $1 \leq \gamma, \delta \leq s$. There are two possibilities:

1) $1 \leq \gamma<\delta \leq s$.

Then by Proposition 3.4.5 (i), we obtain that $1 \leq \gamma \leq\left\lceil\frac{s}{2}\right\rceil$ and $\delta=s-\gamma+3$. Thus, $\quad \operatorname{mr}\left(u_{\delta} \mid W\right)=\{s-\delta+1,|\delta-p|+1, \delta-1\}=\{\gamma-2,|\delta-p|+1, s-\gamma+2\}$. Since $\operatorname{mr}\left(v_{\gamma} \mid W\right)=\{\gamma,|\gamma-p|+2, s-\gamma+2\}$, it follows that $|\gamma-p|+2=\gamma-2$ and $\gamma=|\delta-p|+1$. Consequently, $\quad|\gamma-p|+3=|\delta-p|$. If $p \leq \gamma$, then $2 \gamma=s$, contradicting the fact that s is odd. If $\gamma<p<\delta$, then $2 p=s$, a contradiction. If $\delta \leq p$, then $2 \gamma-6=s$, this is also a contradiction.

$$
\text { 2) } 1 \leq \delta \leq \gamma \leq s
$$

Then by Proposition 3.4 .5 (ii), $\left\lceil\frac{s}{2}\right\rceil+1 \leq \gamma \leq s$ and $\delta=s-\gamma+1$. Therefore, $m r\left(v_{\gamma} \mid W\right)=\{s-\gamma+2,|\gamma-p|+2, \gamma\}=\{\delta+1,|\gamma-p|+2, s-\delta+1\}$. Since $m r\left(u_{\delta} \mid W\right)=\{\delta-1,|\delta-p|+1, s-\delta+1\}$, it follows that $|\delta-p|+2=\delta+1$ and $\delta-1=|\gamma-p|+2$. Consequently, $|\delta-p|=|\gamma-p|+3$. If $p<\delta$, then $s=2 \gamma+2$, contradicting the fact that s is odd. If $\delta \leq p \leq \gamma$, then $s=2 p-4$, a contradiction. If $\gamma<p$, then $s=2 \delta+2$. This is also a contradiction.
Therefore, $\operatorname{dim}_{M}\left(T_{5}\right) \leq 3$ and so $\operatorname{dim}_{M}\left(T_{5}\right)=3$, where $p \geq 3$ and s is odd.

Similarly, for $\Psi=\{1, q\}$, where $2 \leq q \leq s, \operatorname{dim}_{M}\left(T_{5}\right)=3$ can be proven it the same manner as well.

For an integer $s \geq 4$, let T_{6} be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ such that $\Psi=\{r\}$, where $r \in\{1,2, \ldots, s\}$. For an integer $s \geq 4$, let T_{7} be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ such that $\Psi=\varnothing$ and $k_{r}=1$, where $r \in\{2,3, \ldots, s-1\}$. Combining Theorem 3.2.1 and Proposition 3.4.8, we arrive yet another result.
Proposition 3.4.9. A caterpillar T_{i}, where $6 \leq i \leq 7$ has multidimension 3 .
Caterpillars with multidimension 3 are completely characterized, as we present next.

Theorem 3.4.10. For an integer $s \geq 4$, let T be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$. Then T has multidimension 3 if and only if $T=T_{i}$, where $i \in\{1,2, \ldots, 7\}$.

Proof. The preceding results provide the sufficient condition for a caterpillar T having multidimension 3 . To show the necessary condition, suppose that T has multidimension 3. By Theorem I, it implies that $|\Psi| \leq 3$. For $|\Psi|=0$, there is an integer r with $2 \leq r \leq s-1$ such that $k_{r}=1$, for otherwise, T is a path, contradicting the fact that $\operatorname{dim}_{M}(T)=3$. Hence, $T=T_{7}$. For $|\Psi|=1$, obviously, $T=T_{6}$. It remains therefore only to consider $|\Psi|=2$ and $|\Psi|=3$.

For $|\Psi|=2$, we claim that Ψ contains at least one of $\{1, s\}$. Suppose, contrary to our claim that Ψ contains neither 1 nor s. Let $\Psi=\left\{r_{1}, r_{2}\right\}$, where $2 \leq r_{1}<r_{2} \leq s-1$. By Theorem I, every multibasis of T contains exactly one vertex of $\left\{v_{r_{1}}, w_{r_{1}}\right\}$, say $w_{r_{1}}$. Since there are $\operatorname{deg}_{T} u_{r_{1}}=4$ distinct components of $T-u_{r_{1}}$, it follows by Proposition 3.2.3 that there is a vertex of a multibasis W belonging to the component containing the spine-vertex $u_{r_{1}-1}$. Similarly, since there are $\operatorname{deg}_{T} u_{r_{2}}=4$ distinct components of $T-u_{r_{2}}$, there is a vertex of W belonging to the component containing the spine-vertex $u_{r_{2}-1}$. Therefore, W contains at least four vertices, this is a contradiction. Thus, Ψ contains at least one of $\{1, s\}$, that is, $T=T_{5}$.

For $|\Psi|=3$, we show that Ψ contains both 1 and s. Assume, to the contrary, that Ψ does not contain 1 or s, say 1 . Let $\Psi=\left\{r_{1}, r_{2}, r_{3}\right\}$, where $2 \leq r_{1}<r_{2}<r_{3} \leq s$. Then $W=\left\{w_{r_{1}}, w_{r_{2}}, w_{r_{3}}\right\}$ is a multibasis of T. Notice that $\operatorname{deg}_{T} u_{r_{1}}=4$, that is, there
are four distinct components of $T-u_{r_{1}}$. However, both $w_{r_{2}}$ and $w_{r_{3}}$ must belong to the same component containing the spine-vertex $u_{r_{1}+1}$, contradicting Proposition 3.2.3 that $w_{r_{1}}, w_{r_{2}}$ and $w_{r_{3}}$ cannot belong to the same component of $T-u_{r_{1}}$. Thus, Ψ contains 1 and s. We may assume without loss of generality that $\Psi=\{1, r, s\}$ with $2 \leq r \leq\left\lceil\frac{s}{2}\right\rceil$. Then $W=\left\{w_{1}, w_{r}, w_{s}\right\}$ is a multibasis of T. If s is even, then $T=T_{1}$. We may assume that s is odd. If $r=\left\lceil\frac{s}{2}\right\rceil$, then $\operatorname{mr}\left(w_{1} \mid W\right)=\operatorname{mr}\left(w_{s} \mid W\right)$, which is impossible. Thus, $2 \leq r \leq \frac{s-1}{2}$. Next, we consider two cases according to whether s is congruent to 1 or 3 modulo 4 .
Case 1. $s \equiv 1(\bmod 4)$.
If $r \neq 3$, then $T=T_{2}$. For $r=3$, since $r \leq \frac{s-1}{2}$, it follows that $s \geq 9$. Next, we claim that $k_{\frac{s-1}{2}}=0$. Suppose, contrary to our claim, that $k_{\frac{s-1}{2}} \geq 1$. Therefore, $\operatorname{mr}\left(\left.v_{\frac{s-1}{2}} \right\rvert\, W\right)=\left\{\frac{s-3}{2}, \frac{s+1}{2}, \frac{s+5}{2}\right\}=m r\left(\left.u_{\frac{s+5}{2}} \right\rvert\, W\right)$, contradicting the fact that W is a multibasis of T. Hence, $k_{\frac{s-1}{2}}=0$ and so $T=T_{3}$.
Case 2. $s \equiv 3(\bmod 4)$.
If $r \neq 3, \frac{s-1}{2}$, then $T=T_{2}$. For $r=3$, we claim that $k_{\frac{s-1}{2}}=0$. Suppose, contrary to our claim, that $k_{\frac{s-1}{2}} \geq 1$. Then $\operatorname{mr}\left(\left.v_{\frac{s-1}{2}} \right\rvert\, W\right)=\left\{\frac{s-3}{2}, \frac{s+1}{2}, \frac{s+5}{2}\right\}=$ $\operatorname{mr}\left(\left.u_{\frac{s+5}{2}} \right\rvert\, W\right)$, contradicting the fact that W is a multibasis of T, as we claimed. Hence, $k_{\frac{s-1}{2}}=0$ and so $T=T_{3}$. For $r=\frac{s-1}{2} \geq 4$, since $r \leq \frac{s-1}{2}$, it follows that $s \geq 11$. Next, we claim that $k_{\frac{s+5}{4}}=0$. Suppose, contrary to our claim, that $k_{\frac{s+5}{4}} \geq 1$. Therefore, $\operatorname{mr}\left(\left.v_{\frac{s+5}{4}} \right\rvert\, W\right)=\left\{\frac{s+1}{4}, \frac{s+9}{4}, \frac{3 s+3}{4}\right\}=\operatorname{mr}\left(\left.u_{\frac{3+53}{4}} \right\rvert\, W\right)$, contradicting the fact that that W is a multibasis of T. Hence, $k_{\frac{s+5}{4}}=0$ and so $T=T_{4}$.

3.5 The multidimension of symmetric caterpillars

The caterpillars having multidimension 3 are studied in section 3.4. This suggests a way of investigating caterpillars having the multidimension at least 3 . Notice that the multidimension of a caterpillar is established by its second end-set Ψ. For a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$, observe that for each $1 \leq i \leq s$, if both i and $s-i+1$ belong to Ψ, then the multirepresentations of second end-vertices w_{i} and w_{s-i+1} with respect to the set $W=\left\{w_{i} \mid i \in \Psi\right\}$, are the same. This lead us to determine a multibasis of a particular caterpillar. In order to do this, we need an additional definition. For $s \geq 1$, a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ is called a symmetric caterpillar if $k_{i}=k_{s-i+1}$ for each integer i with $1 \leq i \leq s$. For instance, the symmetric caterpillar $\mathrm{ca}(2,0,2,1,2,0,2)$ is shown in Figure 18.

Figure 18: The symmetric caterpillar $\mathrm{ca}(2,0,2,1,2,0,2)$

For $s=1$, the symmetric caterpillar $\mathrm{ca}(2)$ is a path of order 3 . Theorem J implies that its multidimension is 1 with multibasis $\left\{w_{1}\right\}$. For $s=2$, there are two symmetric caterpillars $\mathrm{ca}(1,1)$ and $\mathrm{ca}(2,2)$. Indeed, $\mathrm{ca}(1,1)$ is a path of order 4 whose multidimension is 1 with multibasis $\left\{v_{1}\right\}$. It is routine to verify that the multidimension of $\mathrm{ca}(2,2)$ is 3 with a multibasis $\left\{u_{1}, w_{1}, w_{2}\right\}$. Multibases of these caterpillars are indicated in Figure 19 by solid vertices.

Figure 19: The symmetric caterpillar $\mathrm{ca}(2), \mathrm{ca}(1,1)$ and $\mathrm{ca}(2,2)$

As mentioned earlier, the multidimension of a path is 1 . We may therefore consider a symmetric caterpillar that is not a path. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ that is not a path. If $|\Psi|=0$, then T is a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with $k_{r}=1$ for some $r \in\{2,3, \ldots, s-1\}$. Therefore a set $\left\{u_{1}, v_{1}, v_{s}\right\}$ is a multibasis of T by Proposition 3.4.9 and so $\operatorname{dim}_{M}(T)=3$. If $|\Psi|=1$, then there is only one integer i belonging to Ψ for some $i \in\{1,2, \ldots, s\}$. Since T is a symmetric caterpillar, it follows that $i=s-i+1$, that is, $i=\frac{s+1}{2}$. This implies that s is odd and $\Psi=\left\{\frac{s+1}{2}\right\}$. Thus, there are two possibilities: (i) $s=3$ or (ii) $s>3$. For $s=3$, the symmetric caterpillar $T=\mathrm{ca}(1,2,1)$ has multidimension 4 with a multibasis $\left\{u_{1}, v_{1}, v_{3}, w_{2}\right\}$. For $s>3$, a symmetric caterpillar T has multidimension 3 with a multibasis $\left\{u_{1}, v_{s}, w_{\frac{s+1}{2}}\right\}$. We therefore investigate a multibasis and the multidimension of a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with $|\Psi| \geq 2$, where $s \geq 3$.

By Observation 3.4.1, the multidimension of a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ, must be at least $|\Psi|$. In fact, its multidimension is at least $|\Psi|+1$, as we now show.
Proposition 3.5.1. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ. Then $\operatorname{dim}_{M}(T) \geq|\Psi|+1$.
Proof. If $|\Psi|=0$, then the result holds. We may assume for $|\Psi| \geq 1$ that the statement of the proposition is false. Then there is a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ having a multiresolving set W with $|W| \leq|\Psi|$. By Observation 3.4.1, $|W|=|\Psi|$. However, then, $m r\left(u_{1} \mid W\right)=m r\left(u_{s} \mid W\right)$, contradicting W as being a multiresolving set of $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$.

Proposition 3.5.1 states that $|\Psi|+1$ is a lower bound for the multidimension of a symmetric caterpillar. Furthermore, we also establish an upper bound for the multidimension of a symmetric caterpillar, as follows.
Proposition 3.5.2. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ. Then $\operatorname{dim}_{M}(T) \leq|\Psi|+3$.

Proof. To show $\operatorname{dim}_{M}(T) \leq|\Psi|+3$, it suffices to verify that there is a multiresolving set of T having cardinality at most $|\Psi|+3$. Let W be the set of all second end-vertices of T with $|W|=|\Psi|$. We consider three cases for Ψ.
Case 1.1 belongs to Ψ.
We claim that $B=W \cup\left\{u_{1}\right\}$ is a multiresolving set of T. Assume, contrary to our claim, that there are two vertices x and y of T such that $m r(x \mid W)=m r(y \mid W)$. We consider two subcases.

Subcase 1.1. Both x and y belong to B.
First, we show that both x and y belong to W. Suppose, to the contrary, that either x or y does not belong to W, say x. Then $x=u_{1}$. Since u_{1} and w_{1} are the only two adjacent vertices of B, it follows that $\operatorname{mr}\left(u_{1} \mid B\right)$ contains 1 and so $y=w_{1}$. However, since $d\left(u_{1}, w_{s}\right)$ and $d\left(w_{1}, w_{s}\right)$ are the maximum elements of $\operatorname{mr}\left(u_{1} \mid B\right)$ and $m r\left(w_{1} \mid B\right)$, respectively, it follows that $d\left(u_{1}, w_{s}\right)=d\left(w_{1}, w_{s}\right)$, which is a contradiction. Therefore, both x and y must belong to W. Next, we let $x=w_{\alpha}$ and $y=w_{\beta}$, where $1 \leq \alpha<\beta \leq s$. If $1 \leq \alpha<\beta \leq\left\lceil\frac{s}{2}\right\rceil$, then $d\left(w_{\alpha}, w_{s}\right)=s-\alpha+2$ and $d\left(w_{\beta}, w_{s}\right)=$ $s-\beta+2$ are the maximum elements of $\operatorname{mr}\left(w_{\alpha} \mid B\right)$ and $\operatorname{mr}\left(w_{\beta} \mid B\right)$, respectively. Therefore, $\alpha=\beta$, producing a contradiction. Similarly, if $\left\lceil\frac{s}{2}\right\rceil+1 \leq \alpha<\beta \leq s$, then $d\left(w_{\alpha}, w_{1}\right)=\alpha+1$ and $d\left(w_{\beta}, w_{1}\right)=\beta+1$ must be equal, that is, $\alpha=\beta$, which is impossible. We may assume that $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\left\lceil\frac{s}{2}\right\rceil+1 \leq \beta \leq s$. Since $d\left(w_{\alpha}, w_{s}\right)$ $=s-\alpha+2$ and $d\left(w_{\beta}, w_{1}\right)=\beta+1$ are the maximum elements of $\operatorname{mr}\left(w_{\alpha} \mid B\right)$ and $\operatorname{mr}\left(w_{\beta} \mid B\right)$, respectively, it follows that $\beta=s-\alpha+1$. Since T is a symmetric caterpillar, it follows that $\operatorname{mr}\left(w_{\alpha} \mid W\right)=\operatorname{mr}\left(w_{\beta} \mid W\right)$. However, since $d\left(w_{\alpha}, u_{1}\right)<$ $d\left(w_{\beta}, u_{1}\right)$, it follows that $m r\left(w_{\alpha} \mid B\right) \neq m r\left(w_{\beta} \mid B\right)$, this contradicts our assumption.

Subcase 1.2. Neither x nor y belongs to B.
We consider three subcases.
Subcase 1.2.1. x and y are spine-vertices.

Let $x=u_{\alpha}$ and $y=u_{\beta}$, where $2 \leq \alpha<\beta \leq s$. Applying Proposition 3.4.2, we obtain that $2 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+1$. Since $m r\left(u_{\alpha} \mid W\right)=m r\left(u_{s-\alpha+1} \mid W\right)$ and $d\left(u_{\alpha}, u_{1}\right)<d\left(u_{s-\alpha+1}, u_{1}\right)$, it follows that $\operatorname{mr}\left(u_{\alpha} \mid B\right) \neq m r\left(u_{s-\alpha+1} \mid B\right)$, which is a contradiction.

Subcase 1.2.2. x and y are first end-vertices.
Let $x=v_{\alpha}$ and $y=v_{\beta}$, where $1 \leq \alpha<\beta \leq s$. By Proposition 3.4.2, $2 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+1$. Since $m r\left(v_{\alpha} \mid W\right)=m r\left(v_{s-\alpha+1} \mid W\right)$ and $d\left(v_{\alpha}, u_{1}\right)<$ $d\left(v_{s-\alpha+1}, u_{1}\right)$, it follows that $m r\left(v_{\alpha} \mid B\right) \neq m r\left(v_{s-\alpha+1} \mid B\right)$, this is also a contradiction.

Subcase 1.2.3. x is a first end-vertex and y is a spine-vertex.
If $\Psi=\{1, s\}$, then it is shown in the proof of Proposition 3.4.3 for $p=1$ that the set $\left\{u_{1}, w_{1}, w_{s}\right\}$ is a multiresolving set of T. We therefore consider the second end-set of cardinality at least 3 . Let $p=\min (\Psi-\{1, s\})$. By the symmetry of T, $s-p+1=\max (\Psi-\{1, s\})$. Let $x=v_{\gamma}$ and $y=u_{\delta}$, where $1 \leq \gamma, \delta \leq s$. We consider two subcases for γ and δ.

Subcase 1.2.3.1. $1 \leq \gamma<\delta \leq s$.
By Proposition 3.4.3 (i), $1 \leq \gamma \leq\left\lceil\frac{s}{2}\right\rceil$ and $\delta=s-\gamma+2$. Since $d\left(v_{\gamma}, w_{s}\right)$ and $d\left(u_{\delta}, w_{1}\right)$ are the maximum elements of $m r\left(v_{\gamma} \mid B\right)$ and $m r\left(u_{\delta} \mid B\right)$, respectively, it follows that $\max \left(\operatorname{mr}\left(v_{\gamma} \mid B-\left\{w_{s}\right\}\right)\right)=d\left(v_{\gamma}, w_{s-p+1}\right)=s-p-\gamma+3 \quad$ and $\max \left(\operatorname{mr}\left(u_{\delta} \mid B-\left\{w_{1}\right\}\right)\right)=d\left(u_{\delta}, u_{1}\right)=\delta-1$ are the same. Consequently, $p=2$ and so $\delta-1=s-\gamma+1$. Since $d\left(u_{\delta}, u_{1}\right)$ and $d\left(u_{\delta}, w_{2}\right)$ are in $\operatorname{mr}\left(u_{\delta} \mid B\right)$, it follows that $m r\left(v_{\gamma} \mid B\right)$ also contains two $(s-\gamma+1)$'s. Notice that u_{s}, v_{s-1} and w_{s-1} are the only three vertices of T whose distance from v_{γ} is $s-\gamma+1=\delta-1$. Since u_{s} and v_{s-1} do not belong to B, it follows that $\operatorname{mr}\left(v_{\gamma} \mid B\right)$ contains only one element of $s-\gamma+1$, which contradicts our assumption.

Subcase 1.2.3.2. $1 \leq \delta \leq \gamma \leq s$.
Applying Proposition 3.4.3 (ii), we obtain that $\left\lceil\frac{s}{2}\right\rceil+1 \leq \gamma \leq s$ and $\delta=s-\gamma$. Since $d\left(v_{\gamma}, w_{1}\right)$ and $d\left(u_{\delta}, w_{s}\right)$ are the maximum elements of $\operatorname{mr}\left(v_{\gamma} \mid B\right)$ and
$\operatorname{mr}\left(u_{\delta} \mid B\right)$, respectively, it follows that $\max \left(\operatorname{mr}\left(v_{\gamma} \mid B-\left\{w_{1}\right\}\right)\right)=d\left(v_{\gamma}, u_{1}\right)=\gamma$ and $\max \left(\operatorname{mr}\left(u_{\delta} \mid B-\left\{w_{s}\right\}\right)\right)=d\left(u_{\delta}, w_{s-p+1}\right)=s-p-\delta+2$ are the same. Certainly, $p=2$ and so $\gamma=s-\delta$. Since $d\left(v_{\gamma}, u_{1}\right)$ and $d\left(v_{\gamma}, w_{2}\right)$ are in $\operatorname{mr}\left(v_{\gamma} \mid B\right)$, it follows that $m r\left(u_{\delta} \mid B\right)$ also contains two $(s-\delta)$'s. Notice that u_{s}, v_{s-1} and w_{s-1} are the only three vertices of T whose distance from u_{δ} is $s-\delta=\gamma$. Since u_{s} and v_{s-1} do not belong to B, it follows that $\operatorname{mr}\left(u_{\delta} \mid B\right)$ contains only one element of $s-\delta$, which contradicts our assumption.

Hence, in subcases 1.1 and 1.2 above, $\operatorname{mr}(x \mid B) \neq \operatorname{mr}(y \mid B)$ for all $x, y \in V(T)$. This implies that B is a multiresolving set of T.

Case 2. 1 and 2 do not belong to Ψ.
Symmetrically, $s-1$ and s also do not belong to Ψ. Let $p=\min (\Psi)$. Then $s-p+1=\max (\Psi)$. We claim that $B=W \cup\left\{u_{1}, v_{s}\right\}$ is a multiresolving set of T. Suppose, contrary to our claim, that there are two vertices x and y such that $m r(x \mid B)=m r(y \mid B)$. We consider two subcases.

Subcase 2.1. Both x and y belong to B.
We first show that $u_{1}, v_{s} \notin\{x, y\}$. Assume, to the contrary, that $u_{1}=x$. Since $\max \left(\operatorname{mr}\left(u_{1} \mid B\right)\right)=d\left(u_{1}, v_{s}\right)=\max (\operatorname{mr}(y \mid B))$, it follows that $y=v_{s}$. However, since $d\left(u_{1}, u_{1}\right)$ and $d\left(v_{s}, v_{s}\right)$ are the minimum elements of $m r\left(u_{1} \mid B\right)$ and $m r\left(v_{s} \mid B\right)$, respectively, and clearly, $\min \left(\operatorname{mr}\left(u_{1} \mid B-\left\{u_{1}\right\}\right)\right)=d\left(u_{1}, w_{p}\right)=p \quad$ and $\min \left(\operatorname{mr}\left(u_{1} \mid B-\left\{u_{1}\right\}\right)\right)=d\left(v_{s}, w_{s-p+1}\right)=p-1$, it follows by Proposition 3.3.3 that $m r\left(u_{1} \mid B\right) \neq m r\left(v_{s} \mid B\right)$, producing a contradiction. Thus, x and y belong to W. Next, we let $x=w_{\alpha}$ and $y=w_{\beta}$, where $p \leq \alpha<\beta \leq s-p+1$. If $1 \leq \alpha<\beta \leq\left\lceil\frac{s}{2}\right\rceil$, then $d\left(w_{\alpha}, v_{s}\right)$ and $d\left(w_{\beta}, v_{s}\right)$ are the maximum elements of $\operatorname{mr}\left(w_{\alpha} \mid B\right)$ and $m r\left(w_{\beta} \mid B\right)$, respectively. Therefore, $\alpha=\beta$, which is a contradiction. Similarly, if $\left\lceil\frac{s}{2}\right\rceil+1 \leq \alpha<\beta \leq s$, then $d\left(w_{\alpha}, u_{1}\right)$ and $d\left(w_{\beta}, u_{1}\right)$ must be equal, which is impossible. We may assume that $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\left\lceil\frac{s}{2}\right\rceil+1 \leq \beta \leq s$. Since $d\left(w_{\alpha}, v_{s}\right)$ and $d\left(w_{\beta}, u_{1}\right)$ are the maximum elements of $\operatorname{mr}\left(w_{\alpha} \mid B\right)$ and $\operatorname{mr}\left(w_{\beta} \mid B\right)$,
respectively, it follows that $\beta=s-\alpha+2$. Since
$\max \left(\operatorname{mr}\left(w_{\alpha} \mid B-\left\{v_{s}\right\}\right)\right)=d\left(w_{\alpha}, w_{s-p+1}\right)=s-p+\alpha+3 \quad$ and $\max \left(\operatorname{mr}\left(w_{\beta} \mid B-\left\{u_{1}\right\}\right)\right)=d\left(w_{\beta}, w_{p}\right)=\beta-p+2$ are equal, it follows that, certainly, $\beta=s-\alpha+1$, producing a contradiction.

Subcase 2.2. Neither x nor y belongs to B.
We consider three subcases.
Subcase 2.2.1. x and y are spine-vertices.
Let $x=u_{\alpha}$ and $y=u_{\beta}$, where $2 \leq \alpha<\beta \leq s$. By Applying Proposition 3.4.4, it implies that $2 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+2$. Since $d\left(u_{\alpha}, v_{s}\right)$ and $d\left(u_{\beta}, u_{1}\right)$ are the maximum elements of $\operatorname{mr}\left(u_{\alpha} \mid B\right)$ and $\operatorname{mr}\left(u_{\beta} \mid B\right)$, respectively, $\max \left(\operatorname{mr}\left(u_{\alpha} \mid B-\left\{v_{s}\right\}\right)\right)=d\left(u_{\alpha}, w_{s-p+1}\right)=s-p-\alpha+2 \quad$ and $\max \left(\operatorname{mr}\left(u_{\beta} \mid B-\left\{u_{1}\right\}\right)\right)=d\left(u_{\beta}, w_{p}\right)=\beta-p+1$ must be equal. Necessarily, then $\beta=s-\alpha+1$. This is a contradiction.

Subcase 2.2.2. x and y are first end-vertices.
Let $x=v_{\alpha}$ and $y=v_{\beta}$, where $1 \leq \alpha<\beta \leq s$. By Proposition 3.4.4, $1 \leq \alpha \leq\left\lceil\frac{s}{2}\right\rceil$ and $\beta=s-\alpha+2$. Since $d\left(v_{\alpha}, v_{s}\right)$ and $d\left(v_{\beta}, u_{1}\right)$ are the maximum elements of $\operatorname{mr}\left(v_{\alpha} \mid B\right)$ and $\operatorname{mr}\left(v_{\beta} \mid B\right)$, respectively, it follows that $\max \left(\operatorname{mr}\left(v_{\alpha} \mid B-\left\{v_{s}\right\}\right)\right)=d\left(v_{\alpha}, w_{s-p+1}\right)=s-p-\alpha+3$ and $\max \left(\operatorname{mr}\left(v_{\beta} \mid B-\left\{u_{1}\right\}\right)\right)$ $=d\left(v_{\beta}, w_{p}\right)=\beta-p+2$ must be equal. Consequently, $\beta=s-\alpha+1$. This is also a contradiction.

Subcase 2.2.3. x is a first end-vertex and y is a spine-vertex.
Let $x=v_{\gamma}$ and $y=u_{\delta}$, where $1 \leq \gamma, \delta \leq s$. We consider two subcases according to γ and δ.

Subcase 2.2.3.1. $1 \leq \gamma<\delta \leq s$.
By Proposition 3.4.5 (i), $1 \leq \gamma \leq\left\lceil\frac{s}{2}\right\rceil$ and $\delta=s-\gamma+3$. Since $d\left(v_{\gamma}, v_{s}\right)$ and $d\left(u_{\delta}, u_{1}\right)$ are the maximum elements of $m r\left(v_{\gamma} \mid B\right)$ and $m r\left(u_{\delta} \mid B\right)$, respectively, it follows that $\quad \max \left(\operatorname{mr}\left(v_{\gamma} \mid B-\left\{v_{s}\right\}\right)\right)=d\left(v_{\gamma}, w_{s-p+1}\right)=s-p-\gamma+3 \quad$ and
$\max \left(\operatorname{mr}\left(u_{\delta} \mid B-\left\{u_{1}\right\}\right)\right)=d\left(u_{\delta}, w_{p}\right)=p-\delta+1$ must be equal. Evidently, $\delta=s-\gamma+2$, which is impossible.

Subcase 2.2.3.2. $1 \leq \delta \leq \gamma \leq s$.
Applying Proposition 3.4 .5 (ii), it implies that $\left\lceil\frac{s}{2}\right\rceil+1 \leq \gamma \leq s$ and $\delta=s-\gamma+1$, Since $d\left(v_{\gamma}, u_{1}\right)$ and $d\left(u_{\delta}, v_{s}\right)$ are the maximum elements of $\operatorname{mr}\left(v_{\gamma} \mid B\right)$ and $\operatorname{mr}\left(u_{\delta} \mid B\right)$, respectively, it follows that $\max \left(\operatorname{mr}\left(v_{\gamma} \mid B-\left\{u_{1}\right\}\right)\right)=$ $d\left(v_{\gamma}, w_{p}\right)=\gamma-p+2$ and $\max \left(\operatorname{mr}\left(u_{\delta} \mid B-\left\{v_{s}\right\}\right)\right)=d\left(u_{\delta}, w_{s-p+1}\right)=s-p-\delta+2$ are equal. As verified above, $\delta=s-\gamma$, which cannot occur.

Hence, $\quad \operatorname{mr}(x \mid B) \neq \operatorname{mr}(y \mid B)$ for all $x, y \in V(T)$. This implies that B is a multiresolving set of T.

Case 3. 1 does not belong to Ψ and 2 belongs to Ψ.
Let T^{\prime} be a symmetric caterpillar which is obtained from T by joining endvertices x and y to the spine-vertices u_{1} and u_{s}, respectively. Therefore, $1 \in \Psi_{T^{\prime}}$. By applying Case 1, $B=\left(W \cup\left\{v_{1}, v_{s}\right\}\right) \cup\left\{u_{1}\right\}$ is a multiresolving set of T^{\prime}. Since $T=T^{\prime}-\{x, y\}$, it follows by Corollary 3.2.2 that $B=W \cup\left\{u_{1}, v_{1}, v_{s}\right\}$ is a multiresolving set of T.

Hence, every symmetric caterpillar T has a multiresolving set of cardinality at most $|\Psi|+3$ and so $\operatorname{dim}_{M}(T) \leq|\Psi|+3$.

The following result is obtained from the bounds given in Propositions 3.5.1 and 3.5.2.

Corollary 3.5.3. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ. Then

$$
|\Psi|+1 \leq \operatorname{dim}_{M}(T) \leq|\Psi|+3 .
$$

The multibases of symmetric caterpillars are characterized by the following result. Furthermore, the sharpness of Corollary 3.5.3. is presented.

Theorem 3.5.4. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with $|\Psi| \geq 2$ and let W be a set of all second end-vertices of T. Then
(i) if $1 \in \Psi$, then $W \cup\left\{u_{1}\right\}$ is a multibasis of T,
(ii) if $1,2 \notin \Psi$, then $W \cup\left\{u_{1}, v_{s}\right\}$ is a multibasis of T, and
(iii) if $1 \notin \Psi$ and $2 \in \Psi$, then $W \cup\left\{u_{1}, v_{1}, v_{s}\right\}$ is a multibasis of T.

Proof. (i) Assume that $1 \in \Psi$. By Case 1 in the proof of Proposition 3.5.2, it implies that $W \cup\left\{u_{1}\right\}$ is a multiresolving set of T. Hence, $\operatorname{dim}_{M}(T)=|\Psi|+1$ by Corollary 3.5.3, and so $W \cup\left\{u_{1}\right\}$ is a multibasis of T.
(ii) Assume that $1,2 \notin \Psi$. By Case 2 in the proof of Proposition 3.5.2, it implies that $W \cup\left\{u_{1}, v_{s}\right\}$ is a multiresolving set of T. Therefore, $\operatorname{dim}_{M}(T) \leq|\Psi|+2$. Next, we claim that $\operatorname{dim}_{M}(T) \geq|\Psi|+2$. Let $p=\min (\Psi)$. Since there are four components of $T-u_{p}$, it follows by Theorem I and Proposition 3.2.3 that at least one vertex from the component of $T-u_{p}$ containing a vertex u_{p-1}, belongs to every multiresolving set of T. Similarly, every multiresolving set must contain at least one vertex from the component of $T-u_{s-p+1}$ containing u_{s-p+2}. Therefore, by Observation 3.4.1, every multiresolving set of T has cardinality at least $|\Psi|+2$. Hence, $\operatorname{dim}_{M}(T)=|\Psi|+2$ and so $W \cup\left\{u_{1}, v_{s}\right\}$ is a multibasis of T.
(iii) Assume that $1 \notin \Psi$ and $2 \in \Psi$. By Case 3 in the proof of Proposition 3.5.2, it implies that $W \cup\left\{u_{1}, v_{1}, v_{s}\right\}$ is a multiresolving set of T. Thus, $\operatorname{dim}_{M}(T) \leq|\Psi|+3$. Next, we show that $\operatorname{dim}_{M}(T) \geq|\Psi|+3$. Since there are four components of $T-u_{2}$, it follows by Proposition 3.2.3 that every multiresolving set of T must contain at least one vertex of $\left\{u_{1}, v_{1}\right\}$. Similarly, every multiresolving set of T must contain at least one vertex of $\left\{u_{s}, v_{s}\right\}$. We claim that every multiresolving set of T contains three vertices of $\left\{u_{1}, u_{s}, v_{1}, v_{s}\right\}$. Suppose, contrary to our claim, that there is a multiresolving set S of T containing only one of $\left\{u_{1}, v_{1}\right\}$ and one of $\left\{u_{s}, v_{s}\right\}$. By Observation 3.4.1, we may assume without loss of generality, that $W \subset S$. If $u_{1}, u_{s} \in S$, then $m r\left(u_{1} \mid S\right)=m r\left(w_{2} \mid S\right)$, which is impossible. If $u_{1}, v_{s} \in S$, then $m r\left(u_{1} \mid S\right)=$ $m r\left(w_{2} \mid S\right)$, a contradiction. If $v_{1}, u_{s} \in S$, then $\operatorname{mr}\left(u_{s} \mid S\right)=\operatorname{mr}\left(w_{s-1} \mid S\right)$, producing a contradiction. If $v_{1}, v_{s} \in S$, then $\operatorname{mr}\left(v_{1} \mid S\right)=\operatorname{mr}\left(v_{s} \mid S\right)$, which is also impossible. Therefore, every multiresolving set of T has cardinality at least $|\Psi|+3$. Hence, $\operatorname{dim}_{M}(T)=|\Psi|+3$ and so $W \cup\left\{u_{1}, v_{1}, v_{s}\right\}$ is a multibasis of T.

Let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with $k_{i}=1$ for some integer i with $2 \leq i \leq s-1$. If $T-v_{i}$ is not a path, then by applying Theorems 3.2.1 and 3.5.4, $\operatorname{dim}_{M}\left(T-v_{i}\right)=\operatorname{dim}_{M}(T)$. This observation provides us with the following more general result as we state next.

Corollary 3.5.5. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ_{T} and let T^{\prime} be a caterpillar $\mathrm{ca}\left(l_{1}, l_{2}, \ldots, l_{s}\right)$ that is a subgraph of T and is not a path, with the second end-set $\Psi_{T^{\prime}}$. If $\Psi_{T^{\prime}}=\Psi_{T}$, then $\operatorname{dim}_{M}\left(T^{\prime}\right)=\operatorname{dim}_{M}(T)$.
Proof. Suppose that $\Psi_{T^{\prime}}=\Psi_{T}$. If $T^{\prime}=T$, then $\operatorname{dim}_{M}\left(T^{\prime}\right)=\operatorname{dim}_{M}(T)$. We therefore assume that $T^{\prime} \neq T$. Since T^{\prime} is a subgraph of T, it follows that there is an integer i with $2 \leq i \leq s-1$ such that $k_{i}=1$ but $l_{i}=0$. Symmetrically, $k_{s-i+1}=1$ and $l_{s-i+1}=0$. Let $F=\left\{v_{i} \in V(T) \mid l_{i}=0\right\}$. Note that $T^{\prime}=T-F$. Theorem 3.5.4 implies that every multibasis of T does not contain every first end-vertex in F. Therefore, a multibasis of T is also a multibasis of T^{\prime} and so $\operatorname{dim}_{M}\left(T^{\prime}\right)=\operatorname{dim}_{M}(T)$.

CHAPTER 4 CONCLUSION AND OPEN PROBLEMS

We conclude main results of this work and give some open problems for future work in this chapter.

4.1 Conclusion

This section is to present our comprehensive work concerning the connected local dimension and the multidimension of graphs. The main results are as follows:

4.1.1 The connected local dimension of graphs

4.1.1.1 The connected local dimensions of some well-known graphs.

1. Let G be a connected graph of order $n \geq 2$. Then
(i) $\operatorname{cld}(G)=1$ if and only if G is a bipartite graph,
(ii) $\operatorname{cld}(G)=n-1$ if and only if $G=K_{n}$, a complete graph of order n.
2. For an integer $n \geq 3$, the connected local dimension of a cycle C_{n} is

$$
\operatorname{cld}\left(C_{n}\right)= \begin{cases}1 & \text { if } n \text { is even } \\ 2 & \text { if } n \text { is odd }\end{cases}
$$

3. Let W_{n} be a wheel, where $n \geq 7$. Then $\operatorname{cld}\left(W_{n}\right)=\left\lceil\frac{n}{4}\right\rceil+1$.
4.1.1.2 Graphs with prescribed connected local dimensions and other parameters
4. Let a, b and n be integers with $n \geq 4$. Then there exists a connected graph G of order n with $\operatorname{ld}(G)=a$ and $\operatorname{cld}(G)=b$ if and only if a, b, n satisfy one of the following:
(i) $a=b=n-1$,
(ii) $a=b=1$, and
(iii) $2 \leq a \leq b \leq n-2$.
5. Let b, c and n be integers with $n \geq 4$. Then there exists a connected graph G of order n with $\operatorname{cld}(G)=b$ and $\operatorname{cd}(G)=c$ if and only if b, c, n satisfy one of the following:
(i) $b=c=n-1$,
(ii) $b=1$ and $1 \leq c \leq n-1$, and
(iii) $2 \leq b \leq c \leq n-2$.

4.1.1.3 Connected local bases and local bases in graphs

1. There is an infinite class of connected graph G such that some connected local bases of G contain a local basis of G and others contain no local basis of G.
2. For $k \geq 3$, there exists a graph with a unique connected local basis of cardinality $k+1$.

4.1.2 The multidimension of graphs

4.1.2.1 The multisimilar classes of graphs

1. Let W be a set of vertices of a connected graph G and let u and v be vertices of G such that $u \in[v]_{W}$. Then $\operatorname{mr}(u \mid W)$ and $m r(v \mid W)$ have the same minimum (or maximum) element if and only if $m r(u \mid W)=m r(v \mid W)$.
2. If W is a multiresolving set of a connected graph G, then the cardinality of multisimilar class of each vertex of G with respect to W is at most $\operatorname{diam}(G)+1$.
3. Let u and v be vertices of a connected graph G and let W be a set of vertices of G. Then
(i) if $[u]_{W} \neq[v]_{W}$, then $\operatorname{mr}(x \mid W) \neq \operatorname{mr}(y \mid W)$ for all $x \in[u]_{W}$ and $y \in[v]_{W}$,
(ii) if $[u]_{W}=\{u\}$ for all $u \in V(G)$, then W is a multiresolving set of G.

4.1.2.2 The characterization of caterpillars with multidimension 3

1. A caterpillar T_{i}, where $1 \leq i \leq 4$ has multidimension 3 .
2. A caterpillar T_{5} has multidimension 3 .
3. A caterpillar T_{i}, where $6 \leq i \leq 7$ has multidimension 3 .
4. For an integer $s \geq 4$, let T be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$. Then T has multidimension 3 if and only if $T=T_{i}$, where $i \in\{1,2, \ldots, 7\}$.

4.1.2.3 The multidimension of symmetric caterpillars

1. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ. Then $\operatorname{dim}_{M}(T) \geq|\Psi|+1$.
2. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ. Then $\operatorname{dim}_{M}(T) \leq|\Psi|+3$.
3. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ. Then $|\Psi|+1 \leq \operatorname{dim}_{M}(T) \leq|\Psi|+3$.
4. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with $|\Psi| \geq 2$ and let W be a set of all second end-vertices of T. Then
(i) if $1 \in \Psi$, then $W \cup\left\{u_{1}\right\}$ is a multibasis of T,
(ii) if $1,2 \notin \Psi$, then $W \cup\left\{u_{1}, v_{s}\right\}$ is a multibasis of T, and
(iii) if $1 \notin \Psi$ and $2 \in \Psi$, then $W \cup\left\{u_{1}, v_{1}, v_{s}\right\}$ is a multibasis of T.
5. For $s \geq 3$, let T be a symmetric caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with the second end-set Ψ_{T} and let T^{\prime} be a caterpillar $\mathrm{ca}\left(l_{1}, l_{2}, \ldots, l_{s}\right)$ that is a subgraph of T and is not a path, with the second end-set $\Psi_{T^{\prime}}$. If $\Psi_{T^{\prime}}=\Psi_{T}$, then $\operatorname{dim}_{M}\left(T^{\prime}\right)=\operatorname{dim}_{M}(T)$.

4.2 Open problems

In Chapter 2, we know by (2.3) that $1 \leq \operatorname{ld}(G) \leq \operatorname{cld}(G) \leq \operatorname{cd}(G) \leq n-1$. It suggests the following question: For which quadruples a, b, c, n of integers with $1 \leq a \leq b \leq c \leq n-1$, does there exist a connected graph G of order n with $\operatorname{ld}(G)=a, \operatorname{cld}(G)=b$ and $\operatorname{cd}(G)=c$?

In Chapter 3, the complete graph K_{n} is only one graph that its dimension is $n-1$ but not so for multidimensions. It follows by (15) and (16) that the multidimension of complete graph is not defined. Thus, (3.1) leads us to the conjecture: If G is a connected graph such that $\operatorname{dim}_{M}(G)$ is defined, then $\operatorname{dim}_{M}(G) \leq n-2$.

In section 3.4, for an integers $s \geq 2$, let T be a caterpillar $\mathrm{ca}\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ of order n such that $\Psi \neq \varnothing$ and $\operatorname{dim}_{M}(T)$ is defined. It then follows by Theorem I that

$$
|\Psi| \leq \operatorname{dim}_{M}(T) \leq n-|\Psi| .
$$

Moreover, by Corollary 3.4.7, caterpillars T_{1}, T_{2}, T_{3} and T_{4} also illustrate the sharpness of this lower bound. It would be interesting to determine whether this upper bound is sharp or not.

In section 3.5, a subdivision T^{\prime} of a symmetric caterpillar T is a graph that is obtained from T by inserting vertices of degree 2 into some, all or none of the edge of T. It would be interesting to study a multibasis of a subdivision T^{\prime} of T.

REFERENCES

1. Slater PJ. Leaves of trees. Congressus Numerantium. 1975;14:549-59.
2. Slater PJ. Dominating and reference sets in graphs. Journal of Mathematical Physics. 1998;22:445-55.
3. Hulme BL, Shiver AW, Slater PJ. FIRE: a subroutine for fire protection network analysis. New Mexico: Sandia National Laboratories; 1981.
4. Hulme BL, Shiver AW, Slater PJ. Computing minimum cost fire protection. New Mexico: Sandia National Laboratories; 1982.
5. Hulme BL, Shiver AW, Slater PJ. A Boolean Algebraic Analysis of Fire Protection.

In: Burkard RE, Cuninghame-Green RA, Zimmermann U, editors. North-Holland Mathematics Studies. 95: North-Holland; 1984. p. 215-27.
6. Harary F, Melter RA. On the metric dimension of a graph. Ars Combinatoria. 1976;2:191-5.
7. Johnson MA. Browsable structure-activity datasets. Advance in Molecular Similarity. 1998;2:153-70.
8. Chartrand G, Eroh L, Johnson MA, Oellermann OR. Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics. 2000;105(1):99-113.
9. Wang J, Miao L, Liu Y. Characterization of n-Vertex Graphs of Metric Dimension n 3 by Metric Matrix. Mathematics. 2019;7:479.
10. Chartrand G, Zhang P. A first course in graph theory. 2012.
11. Buczkowski P, Chartrand G, Poisson C, Zhang P. On k-dimensional graphs and their bases. Periodica Mathematica Hungarica. 2003;46:9-15.
12. Poisson C, Zhang P. The metric dimension of unicyclic graphs. JCMCC The Journal of Combinatorial Mathematics and Combinatorial Computing. 2002;40:17-32.
13. Okamoto F, Phinezy B, Zhang P. The local metric dimension of a graph.

Mathematica Bohemica. 2010;135(3):239-55.
14. Saenpholphat V, Zhang P. Connected Resolvability of Graphs. Czechoslovak Mathematical Journal - CZECH MATH J. 2003;53:827-40.
15. Saenpholphat V. On multiset dimension in graphs. Academic SWU. 2009;1:193202.
16. Simanjuntak R, Vetrik T, Mulia PB. The multiset dimension of graphs. Discrete Applied Mathematics. (in press).

VITA

NAME	Supachoke Isariyapalakul
DATE OF BIRTH	5 December 1987
PLACE OF BIRTH	Bangkok
INSTITUTIONS ATTENDED	2014 M.S. (Mathematics), Kasetsart University, Bangkok,
	Thailand
	2009 B.Sc. (Mathematics), Srinakharinwirot University,
	Bangkok, Thailand
	$1626 / 106$ Dindang, Dindang, Bangkok, Thailand 10400

