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ABSTRACT 
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Academic Year 2019 
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Let G be a connected graph and let W={w1,w2,...,wk} be an ordered set of 

vertices of G. For the vertex v of G, the representation of v with respect to W is the k-
vector r(v|W)=(d(v,w1),d(v,w2),...,d(v,wk)), where d(v,wi) for i=1,2,...,k is the distance 
between v and wi in G. An ordered set W is a connected local resolving set of G if the 
representations of every two adjacent vertices of G with respect to W are distinct and 
the induced subgraph <W> of G is connected. A connected local resolving set of G with 
minimum cardinality is a minimum connected local resolving set or a connected local 
basis of G, and this cardinality is the connected local dimension of G. For a 
set W={w1,w2,...,wk} of vertices of G, the multirepresentation of vertex v of G with respect 
to W is the k-multiset mr(v|W)={d(v,w1),d(v,w2),...,d(v,wk)}. The set W is a multiresolving 
set of G if the multirepresentations of every two vertices of G with respect to W are 
distinct. A multiresolving set of G with minimum cardinality is a minimum multiresolving 
set or a multibasis of G, and this cardinality is the multidimension of G. In this work, 
we studied the connected local dimensions of some well-known graphs and the 
relationships between connected local bases and local bases in a connected graph, 
and some realization results. Next, the relationship between the elements in 
multirepresentations of vertices that belonged to the same multisimilar class was 
investigated. Moreover, the caterpillars were characterized with multidimension 3 and 
studying the multiresolving sets of symmetric caterpillars. 
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CHAPTER 1 
INTRODUCTION 

In the mathematical field of graph theory, one of the problems is to provide 
representations of the vertices in a connected graph in such a way that distinguishing 
vertices have distinct representations.  

1.1 Background 
The distance from a vertex u  to a vertex v  in a connected graph G  is the 

length of a shortest u v  path in G , which is denoted by ( , )d u v . For an ordered set 


1 2
{ , ,..., }

k
W w w w  of vertices and a vertex v  of G , the representation of v  with 
respect to W  is the k vector 1 2

( | ) ( ( , ), ( , ),..., ( , ))
k

r v W d v w d v w d v w . An ordered 
set W  is called a resolving set of G  if every pair of two distinct vertices of G  have 
distinct representations with respect to W . A resolving set of G  containing a minimum 
number of vertices is called a minimum resolving set or a basis of G . The cardinality of 
basis of G  is the dimension of G , which is denoted by dim( )G . To illustrate this 
concept, consider the graph G  of Figure 1. 

 

Figure 1: The graph G  

For the ordered set 
1

{ , }W w x , since  
1 1

( | ) (2,1) ( | )r u W r y W , it follows that 
1
W  

is not a resolving set of G . On the other hand, consider the ordered set 
2

{ , , }W w x z . 
The representations of vertices of G  with respect to  

2
W  are 

2 2 2

2 2 2

( | ) (2,1,3), ( | ) (3,2,2), ( | ) (0,1,3),

( | ) (1,0,2), ( | ) (2,1,1), ( | ) (3,2,0).

r u W r v W r w W

r x W r y W r z W
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Since these representations are distinct, it follows that 
2
W  is a resolving set of G . 

However, 
2
W  is not a basis of G . To see this, consider the set 

3
{ , }W w z . The 

representations of vertices of G  with respect to 
3
W  are 

  

  

3 3 3

3 3 3

( | ) (2,3), ( | ) (3,2), ( | ) (0,3),

( | ) (1,2), ( | ) (2,1), ( | ) (3,0).

r u W r v W r w W

r x W r y W r z W  

Thus, 
3
W  is a resolving set of G . Since G  has no resolving set consisting of a single 

vertex, it follows that 
3
W  is a resolving set of G  having minimum cardinality. Hence, 

3
W  

is a basis of G  and so dim( ) 2G . 
 For every ordered set 

1 2
{ , ,..., }

k
W w w w  of vertices of a connected graph G  

of order 2n  , since the only vertex of G  whose representation with respect to W  
contains 0  in its thi  coordinate is 

i
w , it follows that the vertices of W  necessarily have 

distinct representations. Therefore, when determining whether an ordered set W  of G  
is a resolving set of G , we need only be concerned with the vertices of ( )V G W . 
Consequently, for a vertex v  of a nontrivial connected graph G , ( )V G  and 

( ) { }V G v  are resolving sets of G . This implies that the dimension of G  is at most 
1n  . Indeed, for every connected graph of order 2n  , 

 1 dim( ) 1.G n    (1.1) 

The concepts of resolving sets and minimum resolving sets were introduced by 
Slater in (1) and (2). He used a locating set for what we have called a resolving set and 
referred to the cardinality of a basis of a connected graph as its location number.  He 
described the usefulness of these ideas when working with U.S. sonar and coast guard 
LORAN (long range aids to navigation) stations. Following Slater and others (3-5), we 
can think of a resolving set as the set W  of vertices in a graph G  so that each vertex in 
G  is uniquely determined by its distances to the vertices of W . 

To illustrate this concept, we consider a somewhat simplified example. Suppose 
that a certain laboratory consists of four rooms 

1 2 3
, ,R R R  and 

4
R  as shown in Figure 2. 

The distance from 
1
R  to 

3
R  is 2  and the distance from 

2
R  to 

4
R  is also 2 . The 
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distance between all other pairs of distinct rooms is 1 . The distance between a room 
and itself is 0 . Suppose that a (red) gas sensor is placed in one of the rooms. If a gas 
leak occurs in one of the rooms, then the sensor is able to detect the distance from the 
room with the red gas sensor to the room having the gas leak. For example, suppose 
that the sensor is placed in 

1
R . If the sensor alerts us that a gas leak occurs in a room at 

distance 2  from 
1
R , then a gas leak is in 

3
R  since 

3
R  is the only one room at distance 

2  from 
1
R . If the sensor indicates that a gas leak occurs in a room at distance 0  from 

1
R , then a gas leak is in 

1
R . However, if the sensor presents that a gas leak has 

occurred in a room at distance 1  from 
1
R , then there are two rooms 

2
R  and 

4
R  having 

distance 1  from 
1
R . For this information, we cannot tell exactly in which room a gas leak 

has occurred. In fact, there is no room in which the (red) gas sensor can be placed to 
identify the exact location of a gas leak in every instance. 

 

Figure 2: A laboratory consisting of four rooms 

 On the other hand, if we place the red and blue gas sensors in 
1
R  and 

2
R , 

respectively and a gas leak occurs in 
4
R , then the red gas sensor tells us that a gas 

leak occurs in a room at distance 1  from 
1
R , while the blue gas sensor tells us that a 

gas leak is in a room at distance 2  from 
2
R , that is, the ordered pair (1,2)  is produced 

for 
4
R . Since these ordered pairs are distinct for all rooms, it follows that the minimum 

number of gas sensors required to detect the exact location of a gas leak is 2 . Care 
must be taken, however, as to where the two gas sensors are placed. For example, we 
cannot place gas sensors in 

1
R  and 

3
R  since, in this case, the ordered pairs of 

2
R  and 

4
R  are (1,1) . This means that we cannot distinguish the precise location of the gas leak. 
 The laboratory that we have just described can be modeled by a graph of Figure 
3, whose vertices are the rooms and whose edges represent two rooms having distance 
1 . 
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Figure 3: A graph representing a laboratory with four rooms 

Harary and Melter (6) discovered these concepts independently as well but 
used the term metric dimension rather than location number, the terminology that we 
have adopted. These concepts were rediscovered by Johnson (7) of the Pharmacia 
Company while attempting to develop a capability of large datasets of chemical graphs. 
He and his coauthors (8) used the term resolving set for locating set and used metric 
dimension for location number. Wang, Miao and Liu (9) characterized the dimension of a 
connected graph by using metric matrix. We refer to the book (10) for graphical-
theoretical notation and terminology not described in this dissertation. 

1.2 Some Known Results on the Dimension of Graphs 
 The dimensions of some well-known classes of graphs have been determined in 
(1, 8, 11, 12). We state these in the next three results. 
Theorem A. Let G  be a connected graph of order 2n  . Then 

(i) dim( ) 1G   if and only if 
n

G P , the path of order n , 
(ii) dim( ) 1G n   if and only if 

n
G K , the complete graph of order n , 

(iii) dim( ) 2
n
C  , where 

n
C  is the cycle of order 3n  , 

(iv) dim( ) 2G n  , where 4n   if and only if 
,s t

G K , where , 1s t   or 

s t
G K K  , where 1, 2s t   or 

1
( )

s t
G K K K   , where , 1s t  .  

To determine the dimension of tree that is not a path, we need some additional 
definitions and notation. A vertex of degree at least 3  of a connected graph G  is called 
a major vertex of G . Every end-vertex u  of G  is a terminal vertex of a major vertex v  
of G  if ( , ) ( , )d u v d u w  for every other major vertex w  of G . The number of terminal 
vertices of v  is the terminal degree of v , which is denoted by ter( )v . A major vertex v  
is called an exterior major vertex of G  if ter( ) 1v  . Let ( )G  be the sum of the 
terminal degrees of the major vertices of G  and let ex( )G  be the number of exterior 
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major vertices of G . For example, consider the tree T  of Figure 4. The vertices 

1 2 3 4
, , , ,v v v v v  are five major vertices of T  and the vertices 

1 2 3 4 5 6 7 8
, , , , , , ,u u u u u u u u  are 

terminal vertices of T . Since ter( ) 0v  , ter( ) 2
i
v  , where 1 4i  , it follows that 

( ) 8T   and ex( ) 4T  . 

 

Figure 4: The tree T  with ( ) 8T   and ex( ) 4T    

Theorem B. If T  is a tree that is not a path, then dim( ) ( ) ex( )T T T  . 
Moreover, all bases of a tree that is not a path have been characterized in (12), 

as we state next. 
Theorem C. Let T  be a tree with p  exterior major vertices 

1 2
, ,...,

p
v v v . For each 

integer i  with 1 i p  , let 
1 2
, ,...,

ii i ik
u u u  be the terminal vertices of 

i
v , and let 

ij
P  

be the 
i ij
v u  path for 1

i
j k  .  Suppose that W  is a set of vertices of T . Then 

W  is a basis of T  if and only if W  contains exactly one vertex from each of the path 

ij i
P v , where 1

i
j k   and 1 i p  , with exactly one exception for each i  with 

1 i p   and W  contains no other vertices of T . 

1.3 Some Known Results on the Local Dimension of Graphs 
Let W  be an ordered set of vertices of a connected graph G . For every pair u  

and v  of adjacent vertices in G , if ( | ) ( | )r u W r v W , then W  is called a local 
resolving set of G . A local resolving set of G  having minimum cardinality is a minimum 
local resolving set or a local basis of G  and this cardinality is the local dimension of G , 
which is denoted by ld( )G . To illustrate this concept, consider a connected graph G  of 
Figure 5. 
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Figure 5: A connected graph G  

Considering an ordered set  
1

{ , }W v w , there are six representations of vertices of G  
with respect to 

1
W : 

1 1 1

1 1 1

( | ) (2,1), ( | ) (0,3), ( | ) (3,0),

( | ) (1,2), ( | ) (2,1), ( | ) (2,3).

r u W r v W r w W

r x W r y W r z W

  

    

Observe that 
1 1

( | ) ( | )r u W r y W . Then 
1
W  is not a resolving set of G . However, 

since representations of any two adjacent vertices of G  with respect to 
1
W  are distinct, 

it follows that 
1
W  is a local resolving set of G . However, 

1
W  is not a local basis of G . 

Let 
2

{ }W u . Then the representations of vertices of G  with respect to 
2
W  are  

2 2 2

2 2 2

( | ) (0), ( | ) (2), ( | ) (1),

( | ) (1), ( | ) (2), ( | ) (2).

r u W r v W r w W

r x W r y W r z W

  

    

For any two adjacent vertices of G , since their representations with respect to 
2
W  are 

distinct, it follows that 
2
W  is also a local resolving set of G . In fact, 

2
W  is a local basis 

of G and so ld( ) 1G  . Observe that 
2
W  is not a resolving set of G  since

2 2
( | ) (2) ( | )r v W r y W  . This implies that every resolving set of G  is also a local 

resolving set of G  but every local resolving set of G  need not be a resolving set of G , 
that is, 

 1 ld( ) dim( ) 1.G G n     (1.2) 

 Okamoto, Crosse, Phinezy and Zhang (13) presented the idea of a local 
resolving set and the local dimension of graphs. They characterized all nontrivial 
connected graphs of order n  having the local dimension 1 , 2n   or 1n  . 
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Theorem D. Let G  be a nontrivial connected graph of order n . Then ld( ) 1G n   if 
and only if 

n
G K  and ld( ) 1G   if and only if G  is bipartite. 

 A clique in a graph G  is a complete subgraph of G . The order of the largest 
clique in a graph G  is its clique number, which is denoted by ( )G . 
Theorem E. A connected graph G  of order 3n   has local dimension 2n   if and 
only if ( ) 1G n   . 

1.4 Some Known Results on the Connected Dimension of Graphs 
 A subgraph H  of a graph G  is called an induced subgraph of G  if whenever 
u  and v  are vertices of H  and uv  is an edge of G , then uv  is an edge of H  as well. 
If S  is a nonempty set of vertices of a graph G , then the subgraph of G  induced by 
S  is the induced subgraph with vertex set S . This induced subgraph is denoted by 

G
S  or simply S  if the graph G  under consideration is clear. Since a connected 

graph G  may have several resolving sets, we consider a particular resolving set W  of 
G  whose the subgraph induced by W  is connected. A resolving set W  of a 
connected graph G  is called a connected resolving set of G  if the induced subgraph 
W  induced by W  is connected. The minimum cardinality of a connected resolving 

set of G  is the connected dimension of G , which is denoted by cd( )G  and a 
connected resolving set of G  having this cardinality is called a minimum connected 
resolving set or a connected basis of G . To illustrate this concept, consider the graph 
G  of Figure 6. 

 

Figure 6: The graph G  

Since G  is a tree, it follows by Theorem C that the ordered set 
1 1 3

{ , }W u u  is a basis 
of G . However, since 

1
W  is not connected, it follows that 

1
W  is not a connected 



  8 

resolving set of G . Let 
2 1 3 4 5 6

{ , , , , }W u u u u u . Notice that 
2 1 4 5 6 3

( , , , , )W u u u u u  is 
a path of order 5  and the eight representations of vertices of G  with respect to 

2
W  are 

1 2 2 2 3 2

4 2 5 2 6 2

7 2 8 2

( | ) (0,4,1,2,3), ( | ) (3,3,2,1,2), ( | ) (4,0,3,2,1),

( | ) (1,3,0,1,2), ( | ) (2,2,1,0,1), ( | ) (3,1,2,1,0),

( | ) (2,4,1,2,3), ( | ) (4,2,3,2,1).

r u W r u W r u W

r u W r u W r u W

r u W r u W

  

  

   

Since these representations are distinct and 
2
W  is connected, it follows that 

2
W  is a 

connected resolving set of G . By Theorem C, we see that exactly one of 
1 7

{ , }u u  and 
exactly one of 

3 8
{ , }u u  must belong to every basis of G . Since there is exactly one 

i j
u u  path in G , where {1,7}i   and {3,8}j  , it follows that every connected 
basis of G  must contain 

4
u , 

5
u  and 

6
u , that is, 

2
W  is a connected resolving set of G  

having minimum cardinality. Hence, 
2
W  is a connected basis of G  and so cd( ) 5G  .  

 Observe that every connected resolving set of G  is a resolving set of G . On the 
other hand, a resolving set of a connected graph G  need not be a connected resolving 
set of G . This implies that 

 1 dim( ) cd( ) 1.G G n     (1.3) 

 The idea of connected resolving sets has appeared in (14) and used the 
connected resolving number cr( )G  of G  for what we have called here the connected 
dimension cd( )G  of G . Some well-known graphs are characterized as we state next. 
Theorem F. Let G  be a connected graph of order 3n  . Then 

(i) if 
n

G P , a path of order n , then cd( ) 1G  , 
(ii) if 

n
G C , a cycle of order n , then cd( ) 2G  , 

(iii) cd( ) 1G n   if and only if 
n

G K  or 
1, 1n

G K


 , a complete graph or a star 
of order n . 

Theorem G. For 2k  , let 
1 2, ,..., kn n n

G K  be a complete k partite graph that is not a 

star. Let 
1 2 k

n n n n     and l  be the number of one’s in { | 1 }
i
n i k  . Then  

 0,
cd( )

1  1.

n k if l
G

n k l if l

  
 

   



 

CHAPTER 2 
THE CONNECTED LOCAL DIMENSION OF GRAPHS 

 We mentioned in Chapter 1 that an ordered set W  of vertices of a connected 
graph G  is a local resolving set of G  if every pair of adjacent vertices of G  have 
distinct representations with respect to W . Moreover, W  is a connected resolving set 
of G  if every pair of vertices of G  have distinct representations with respect to W  and 
the subgraph of G  induced by W  is connected. This idea leads us to consider a local 
resolving set W  of G  whose induced subgraph by W  is connected. 

2.1 Introduction 
 Let W  be an ordered set of vertices of a connected graph G . Then W  is 
called a connected local resolving set of G  if W  is a local resolving set of G  such that 
the induced subgraph W  of G  is connected. A connected local resolving set of G  
having minimum cardinality is a minimum connected local resolving set or a connected 
local basis of G  and this cardinality is the connected local dimension of G , which is 
denoted by cld( )G . To illustrate this concept, consider the graph G  of Figure 7. 

 

Figure 7: The graph G  

We consider the representations of vertices of G  with respect to the ordered set 

1 1 3
{ , }W v v . Therefore, their representations with respect to 

1
W  are 

1 1 2 1 3 1

4 1 5 1 6 1

7 1

( | ) (0,2), ( | ) (2,2), ( | ) (2,0),

( | ) (2,1), ( | ) (2,2), ( | ) (1,2),

( | ) (1,1).

r v W r v W r v W

r v W r v W r v W

r v W
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Since any two adjacent vertices have distinct representations with respect to 
1
W , it 

follows that 
1
W  is a local resolving set of G . However, 

1
W  is not a connected local 

resolving set of G  since 
1
W  is not connected. Then consider the ordered set 

2 1 3 7
{ , , }W v v v . The representations of vertices of G  with respect to 

2
W  are 

1 2 2 2 3 2

4 2 5 2 6 2

7 2

( | ) (0,2,1), ( | ) (2,2,1), ( | ) (2,0,1),

( | ) (2,1,1), ( | ) (2,2,1), ( | ) (1,2,1),

( | ) (1,1,0).

r v W r v W r v W

r v W r v W r v W

r v W

  

  

  

Since representations of any two adjacent vertices of G  with respect to 
2
W  are distinct, 

it follows that 
2
W  is a local resolving set of G . Moreover, 

2
W  is connected and so 

2
W  

is a connected local resolving set of G . By a case-by-case analysis, it can be shown 
that every connected local resolving set of G  must contain at least two vertices, that is, 
one of 

1 6
{ , }v v  and one of 

3 4
{ , }v v . Thus, there is no connected local resolving set of G  

having cardinality 2  and so 
2
W  is a connected local basis of G . Hence, cld( ) 3G  . 

 Observe that every connected local resolving set of a connected graph G  is 
also a local resolving set of G  but a local resolving set of G  may or may not be a 
connected local resolving set of G . This implies that 

 1 ld( ) cld( ) 1.G G n     (2.1) 

If W  is a connected local resolving set of G , then W  is connected. However, since 
the representations of any two vertices of G  need not be distinct, it follows that W  is 
not necessarily a connected resolving set of G . In fact, every connected resolving set 
of G  is a connected local resolving set of G , that is, 

 1 cld( ) cd( ) 1.G G n     (2.2) 

From (2.1) and (2.2), we obtain that 

 1 ld( ) cld( ) cd( ) 1.G G G n      (2.3) 
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 For every ordered set 
1 2

{ , ,..., }
k

W w w w  of vertices of a connected graph G , 
recall that the only vertex of G  whose representation with respect to W  contains 0  in 
its thi  coordinate is 

i
w , that is, the vertices of W  necessarily have distinct 

representations with respect to W . On the other hand, the representations of vertices of 
G  that do not belong to W  have elements, all of which are positive. Indeed, to 
determine whether an ordered set W  is a connected local resolving set of G , we only 
need to show that any two adjacent vertices in ( )V G W  have distinct representations 
with respect to W  and W  is connected. 

2.2 The connected local dimensions of some well-known graphs 
 We determined the connected local dimensions of some well-known graphs. 
Theorem 2.2.1. Let G  be a connected graph of order 2n  . Then 

(i) cld( ) 1G   if and only if G  is a bipartite graph, 
(ii) cld( ) 1G n   if and only if ,

n
G K   a complete graph of order n . 

Proof.  (i) Assume that cld( ) 1G  . Then ld( ) 1G   by (2.3). Therefore, G  is bipartite 
by Theorem D. For converse, suppose that G  is bipartite. By Theorem D, ld( ) 1G   
and so there is a 1-element local basis W  of G . Indeed, W  is also a connected local 
basis of ,G  that is, cld( ) 1G  . 

(ii) Suppose that cld( ) 1G n  . (2.3) implies that cd( ) 1G n  . Thus, by 
Theorem F (iii), G  is complete or star. If G  is a star that is not complete, then G  is a 
bipartite graph of order at least 3 . By (i), cld( ) 1G  , a contradiction. Hence, G  is 
complete. On the other hand, if 

n
G K , then by Theorem D, ld( ) 1G n   and so 

cld( ) 1G n   by (2.3). 
Theorem 2.2.2. For an integer 3n  , the connected local dimension of a cycle 

n
C  is 

1    ,
cld( )

2    .n

if n is even
C

if n is odd


 
  

Proof. If n  is even, then 
n
C  is bipartite. By Theorem 2.2.1 (i), cld( ) 1G  . We may 

assume that n  is odd. Let 
1 2 1

( , ,..., , )
n n
C v v v v  and let 

1 2
{ , }W v v . Therefore, the 

representations of vertices in ( )
n

V C W  are 
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1
2

1 1 3
2 2 2

5
2

( 1, 2) if 3

( | ) , if 

( 1, 2) if .

n

n n n
i

n

i i i

r v W i

n i n i i n



  



    


 
      


 

Thus, W  is a local resolving set of 
n
C . Since W  is connected, it follows that W  is a 

connected local resolving set of 
n
C  and so cld( ) 2

n
C  . Since 

n
C  is not bipartite, it 

follows by Theorem 2.2.1 (i) that cld( ) 2
n
C  . Hence, cld( ) 2

n
C  .  

 Observe that if G   is a graph obtained by adding a pendant edge to a 
connected graph ,G  then it is easy to verify that cld( ) cld( )G G  . However, if a vertex 
v  is added to a connected graph G  such that more than one edge is incident with v , 
then the connected local dimension of the resulting graph can stay the same, decrease, 
or increase significantly. For example, for 3n  , 1 cld( ) 2

n
C  . Consider the 

connected local dimension of a wheel 
1
,

n n
W C K   where 3n  . Clearly, 

3
cld( ) 3,W   

4 5
cld( ) cld( ) 2W W   and 

6
cld( ) 3W  . However, for 7n  , the 

connected local dimension of a wheel 
n
W  increase with n  as we show next. 

 In 
1n n

W C K  , let 
1 2 1

( , ,..., , )
n n
C v v v v , where 7n  , and let v  be the 

central vertex of 
n
W . Let S  be a set of two or more vertices of 

n
C , let 

i
v  and 

j
v  be two 

distinct vertices of S , and let P  and P   denote the two distinct 
i j
v v  paths 

determined by 
n
C . If either P  or P  , say P , contains only two vertices of S  (namely, 

i
v  and 

j
v ), then we refer to 

i
v  and 

j
v  as neighboring vertices of S  and the set of 

vertices of P  that belong to { , }
n i j
C v v  as the gap of S  (determined by 

i
v  and 

j
v ). 

The two gaps of S  determined by a vertex of S  and its two neighboring vertices will be 
referred to as neighboring gaps. Consequently, if S r , then S  has r  gaps, some of 
which may be empty. 
 Observe that every connected local basis of 

n
W  does not contain v  since 

( , ) 1
i

d v v   for all integer i  with 1 i n  . The next theorem presents a necessary and 
sufficient condition for a set W  to be a local resolving set of 

n
W . 

Theorem 2.2.3. Let W be a set of vertices of a wheel 
1n n

W C K  , where 7n  . 
Then W  is a local resolving set of 

n
W  if and only if every gap of W  contains at most 

three vertices of 
n
C . 
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Proof. Assume, to the contrary, that there is a gap of W  containing at least four vertices 
of 

n
C . Then there are two adjacent vertices u  and u  in this gap such that 

( , ) ( , ) 2d u w d u w   for all { }w W v  . Therefore, ( | ) ( | )r u W r u W , which is 
impossible. To show the converse, suppose that every gap of W  contains at most three 
vertices of 

n
C . Since 7n  , it follows that W  contains at least three vertices of 

n
C . 

Since v  is adjacent to every vertex of 
n
C , it follows that the representation of v  and any 

vertices of 
n
C  with respect to W  are distinct. Therefore, we need to consider only two 

adjacent vertices in each gap of W . Let u  and w  be two adjacent vertices of 
n
C  such 

that ,u w W . Thus, u  and w  belong to a gap of size 2  or 3 . If u  and w  belong to a 
gap of size 2 , then for 1 i n  , we may assume that 

1 2 3
, , ,
i i i i
v u v w v v

  
   are 

consecutive vertices of 
n
C , where 

3
,
i i
v v W


  and addition is performed modulo n . 

Since 
1

( , ) 1
i i

d v v


  and 
2

( , ) 2
i i

d v v


 , it follows that the representations of 
1i

v


 and 

2i
v


 with respect to W  are distinct. If u  and w  belong to a gap of size 3 , then we may 

assume that 
1 2 3 4

, , , ,
i i i i i
v v v v v

   
 are vertices of 

n
C , where 

4
,
i i
v v W


  and 

1 2 3
, ,

i i i
v v v W

  
 . Without, loss of generality, let 

1i
u v


  and 

2i
w v


 . Since 

1
( , ) 1
i i

d v v


  and 
2

( , ) 2
i i

d v v


 . Thus, ( | ) ( | )r u W r w W . Hence, W  is a local 
resolving set of 

n
W . 

 Recall that for 7n  , every local basis of 
n
W  contains no central vertex. 

However, every connected local basis of 
n
W  must contain the central vertex. It is shown 

in the next result. 
Lemma 2.2.4. Every connected local basis of a wheel 

n
W , where 7n   must contain 

the central vertex. 
Proof. Assume, to the contrary, that there is a connected local basis W  of 

n
W  not 

containing the central vertex v . Then W  consists of consecutive vertices in 
n
C . 

Without, loss of generality, let 
1 2

{ , ,..., }
k

W v v v . By Theorem 2.2.3, it implies that 
3k n  . By the argument similar to the one used for the proof of Theorem 2.2.3, the 

set 
1 4 5

{ , , , ,..., }
k

W v v v v v   is a local resolving set of 
n
W  having cardinality 1k  , 

contradicting the assumption that W  is a connected local basis of 
n
W . 
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 We are now prepared to present the connected local dimension of a wheel 
n
W , 

where 7n  . 

Theorem 2.2.5. Let 
n
W  be a wheel, where 7n  . Then cld( ) 1

4n

n
W

 
  
 

. 

Proof. By Theorem 2.2.3 and Lemma 2.2.4, we obtain that cld( ) 1
4n

n
W

 
  
 

. It 

remains to verify that cld( ) 1
4n

n
W

 
  
 

. Let { ( ) | 1(mod4)} { }
i n

W v V C i v     

with 1
4

n
W

 
  
 

. Since every gap of W  contains at most three vertices from 
n
C , it 

follows by Theorem 2.2.3 that W  is a local resolving set of 
n
W . Moreover, since W  

contains the central vertex v , it follows that W  is connected and so W  is a 

connected local resolving set of 
n
W . Therefore, cld( ) 1

4n

n
W

 
  
 

. Hence 

cld( ) 1
4n

n
W

 
  
 

. 

2.3 Graphs with prescribed connected local dimensions and other parameters 
 The open neighborhood or the neighborhood of a vertex u  of a connected 
graph G  is the set of all vertices that are adjacent to ,u  which is denoted by 

( ) { ( ) | ( )}N u v V G uv E G   . The closed neighborhood [ ]N u  of u  is defined as 
( ) { }N u u . Two vertices u  and v  of G  are twins if ( ) { } ( ) { }N u v N v u   . If 
[ ] [ ]N u N v , then u  and v  are called true twins while if ( ) ( )N u N v , then u  and v  

are called false twins. We define a relation on ( )V G  by u  is related to v  if they are true 
twins. This relation is an equivalence relation and, as such, this relation partitions ( )V G  
into equivalence classes which are called true twin equivalence classes or simply true 
twin classes on ( ).V G  Observe that if G  contains l  distinct true twin classes 

1 2
, ,..., ,

l
U U U  then every connected local resolving set of G  must contain at least 
| | 1
i
U   vertices from 

i
U  for each integer i  with 1 i l  . This observation has been 

described in (13) as we state next. 
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Proposition H. Let G  be a connected graph having l  true twin classes 
1 2
, ,...,

l
U U U . 

Then every local resolving set of G  must contain | | 1
i
U   vertices from each 

i
U , 

where 1 i l  . Moreover, 
1

ld( )
l

i
i

G U l


  .  

 We have seen that if G  is a connected graph of order n  with ld( )G a  and 
cld( )G b , then 1 1a b n     by (2.1). A common problem concerns whether 
every three integers ,a b  and n  with 1 1a b n     are realizable as the local 
dimension, connected local dimension and order of some graph as we show next. 
Theorem 2.3.1. Let ,a b  and n  be integers with 4n  . Then there exists a connected 
graph G  of order n  with ld( )G a  and cld( )G b  if and only if , ,a b n satisfy one of 
the following: 
(i) 1a b n   ,  
(ii) 1a b  , and 
(iii) 2 2a b n    . 
Proof. Assume that there exists a connected graph G  of order n  with ld( )G a  and 
cld( )G b . By (2.1), we obtain that 1 1a b n    . If 1b n  , then G  is a 
complete graph 

n
K . Thus, 1a b n   . If 1a  , then G  is a bipartite graph. 

Therefore, 1a b  . For otherwise, 2 2a b n    . Hence, if G  is a connected 
graph of order n  with ld( )G a  and cld( )G b , then ,a b  and n  must satisfy one of 
(i), (ii) and (iii). It remains to verify the converse. If 1a b n   , then let G  be a 
complete graph 

n
K  and the result is true. If 1a b  , then let G  be a path 

n
P . Thus, 

the graph G  has the desired properties. We may assume that 2 2a b n    . We 
consider two cases. 
Case 1. a b . 

Let G   be a graph obtained from a complete graph 
a
K  with vertex set 

1 2
{ , ,..., }

a
u u u  and a path 

1 2
( , ,..., )

n a n a
P v v v

 
  by joining 

1
v  to every vertex of .

a
K  

Since ( )
a

V K  is a true twin class of G  , it follows by Proposition H that every local 
resolving set of G   must contain at least 1a   vertices from ( )

a
V K . However, if a set 

W  contains only 1a   vertices from ( )
a

V K , then W  does not contain 
i
u  for some 

integer i  with 1 i a   and so 
1

( | ) ( | ) (1,1,...,1)
i

r u W r v W  . Therefore, G   
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contains no local resolving set of cardinality 1a  , that is, ld( )G a  . Since the 
representation of each vertex of 

n a
P


 is  ( | ( )) ( , ,..., ),

j a
r v V K j j j  where 

1 ,j n a    it follows that ( )
a

V K  is a local resolving set of G   having cardinality a , 
that is, ( )

a
V K  is a local basis of .G  Moreover, ( )

a
V K  is also a connected local basis 

of .G  Hence, ld( ) cld( )G G a   . 
Case 2. a b . 

Let G  be a graph obtained from a complete graph 
a
K  with vertex set 

1 2
{ , ,..., }

a
u u u  and two path 

1 1 2 1
( , ,..., )

b a b a
P v v v

   
  and 

1 1 2 1
( , ,..., )

n b n b
P w w w

   
  

by joining 
1
v  to every vertex of 

a
K , and 

1
w  to both 

b a
v


 and 

1b a
v

 
. Since ( )

a
V K  is a 

true twin class of G , it follows by Proposition H that every local resolving set of G  must 
contain at least 1a   vertices from ( )

a
V K . However, every set consisting of 1a   

vertices from ( )
a

V K  is not a local resolving set of G  since the representations of 
1b a

v
 

 
and 

1
w  with respect to this set are the same. Thus, every local resolving set of G  

contains at least a  vertices. It is routine to verify that every local resolving set of G  must 
contain at least one vertex from 

1 1
{ } ( ).
b a n b
v V P

   
  Then the set 

 1 1
( ) { } { }
a b a

V K u v
 

   is a minimum local resolving set of G . Hence, ld( )G a . 

Since every connected local resolving set of G  is also a local resolving set of G , it 
follows that every connected local resolving set of G  must contain at least 1a   
vertices from ( )

a
V K  and at least one vertex from 

1 1
{ } ( ).
b a n b
v V P

   
  Therefore, every 

connected local resolving set of G  contains 
1 2
, ,...,

b a
v v v


. In fact, the set 

 1 1
( ) { } ( )
a b a

V K u V P
 

   is a connected local basis of G , that is, cld( )G b . 

 We know by (2.2) that if G  is a connected graph of order n  with cld( )G b  
and cd( )G c , then 1 1b c n    . Next, we show that for any integers ,b c  and n  
with 1 1b c n     are realizable as the connected local dimension, connected 
dimension and order of some graph. 
Theorem 2.3.2. Let ,b c  and n  be integers with 4n  . Then there exists a connected 
graph G  of order n  with cld( )G b  and cd( )G c  if and only if , ,b c n  satisfy one 
of the following: 
(i) 1b c n   , 
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(ii) 1b   and 1 1c n   , and 
(iii) 2 2b c n    . 
Proof. Assume that there exists a connected graph of order n  with cld( )G b  and 
cd( )G c . By (1.2), we obtain that 1 1b c n    . If 1b n  , then 1c n   by 
(1.2). If 1b  , then 1 1c n   by (1.2). If 2 2b n   , then G  is neither a star nor 
a complete graph and so 2 2b c n    . Hence, if G  is a connected graph of order 
n  with cld( )G b  and cd( )G c , then ,b c  and n  must satisfy one of (i), (ii) and (iii). 
It remains to verify the converse. If 1b c n   , then let G  be a complete graph 

n
K  

and the result is true. Next, assume that 1b   and 1 1c n   . For 1c  , let G  be a 
path 

n
P ; while for 1c n  , let G  be a star 

1, 1n
K


. Since cld( ) cd( ) 1

n n
P P  , and 

1, 1
cld( ) 1

n
K


  and 

1, 1
cd( ) 1

n
K n


  , it follows that the result holds for 1b   and 

1, 1c n  . For 2 2c n   , let G  be a graph obtained from a complete bipartite 
graph 

2, 1c
K


 with partite set 

1 2
{ , }U u u  and 

1 2 1
{ , ,..., }

c
U w w w


  , and a path 

1 1 2 1
( , ,..., )

n c n c
P v v v

   
  by joining 

1
v  to both 

1
u  and 

2
u . Since G  is bipartite, it 

follows that cld( ) 1G  . It is routine to show that the set 
2, 1 2

( ) { }
c

V K u


  is a 
connected basis of G . Therefore, cd( )G c . Hence, the result holds for 1b   and 
2 2c n   . Now assume that 2 2b c n    . We consider two cases. 
Case 1. b c . 

The graph G   of the proof for Theorem 2.3.1 has cld( )G b   with a connected 
local basis ( )

b
V K . In fact, ( )

b
V K  is also a connected basis of G  , that is, cd( )G b  . 

Case 2. b c . 
Let G  be a graph obtained from a complete graph 

b
K  with vertex set 

1 2
{ , ,..., },

b
u u u  a star 

1,c b
K


 with vertex set 

1 2
{ , , ,..., }

c b
v v v v


 and a path 

1 1 2 1
( , ,..., )

n c n c
P w w w

   
  by joining the central vertex v  of 

1,c b
K


 to 

1
w  and every 

vertex of 
b
K . It is immediate that the set ( )

b
V K  is a connected local basis of .G  

Therefore, cld( )G b . Moreover, the set  1 1,
( ) { } ( )
b c b

V K u V K


   is a connected 

basis of G , that is, cd( )G c . 
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2.4 Connected local bases and local bases in graphs 
In this section, we study the relationship between connected local bases and 

local bases in a connected graph G . Certainly, if W  is a local resolving set of ,G  then 
a set W   containing W  is also a local resolving set of .G  Therefore, if W  is a local 
basis of G  such that W  is disconnected, then surely there is a smallest superset W   
of W  for which W   is connected. This suggests the following question: Does there 
exist a graph with a connected local basis not containing any local bases? The answer 
to this question is given in the next result. 
Theorem 2.4.1. There is an infinite class of connected graphs G  such that some 
connected local bases of G  contain a local basis of G  and others contain no local 
basis of G . 
Proof. Let G  be a graph obtained from a complete graph 

a
K  of order 2a   with vertex 

set 
1 2

{ , ,..., }
a

u u u , a cycle 
4 1 2 3 4 1

( , , , , )C v v v v v  and a path 
3 1 2 3

( , , )P w w w  by 
joining 

1
v  to every vertex of 

a
K  and joining 

1
w  and 

3
w  to 

1 4
,v v  and 

2 3
,v v , 

respectively. A graph G  is shown Figure 8. 

 

Figure 8: A graph G  

We first verify that the set 
1 2 1 2

{ , ,.., } { }
a

B u u u w


   is a local basis of .G  We can 
show, by a case-by-case analysis, that B  is a local resolving set of .G  Next, we claim 
that B  is a local resolving set of minimum cardinality. Assume, to the contrary, that 
there is a local resolving set W  of G  having cardinality at most 1a  . Since ( )

a
V K  is 

a true twin class of ,G  it follows that every local resolving set of G  must contain at least 
1a   vertices of 

a
K . Therefore, W  consists of 1a   vertices of 

a
K . However, 

4
v  and 

1
w  are adjacent and 

4 1
( , ) ( , )

i i
d v u d w u  for each integer i  with 1 i a  . This is a 

contradiction. Hence, B  is a local basis of G  and so ld( )G a . Second, we 
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determine that cld( ) 2G a  . In order to do this, we claim that cld( ) 2G a  . 
Suppose, contrary to our claim, that there is a connected local resolving set W   of G  
having cardinality 1a  . Recall that every connected local basis of G  must contain at 
least 1a   vertices of 

a
K . We consider two cases. 

Case 1. ( ) .
a

V K W   
Since W   is connected and 1,W a    it follows that 

1
( ) { }
a

W V K v   . 
However, since 

4
v  is adjacent to 

1
w  and 

4 1
( | ) ( | ),r v W r w W   it follows that W   is 

not a connected resolving set of ,G  which is a contradiction. 
Case 2. ( ) .

a
V K W   

Since W   is connected and 1W a   , it follows that W   contains 
1
v  and 

one vertex from 
2 4 1

{ , , }v v w . If W   contains 
2
v  or 

1
w , then 

3 3
( | ) ( | )r v W r w W  . If 

W   contains 
4
v , then 

2 3
( | ) ( | )r w W r w W  . Therefore, W   is not a connected local 

resolving set of .G  This is also a contradiction. 
Thus, cld( ) 2G a  . On the other hand, the sets 

1 1 2 1 1 1 2
{ , ,..., } { , , }

a
S u u u v w w


   

and 
2 1 2 1 1 4 1

{ , ,..., } { , , }
a

S u u u v v w


   are connected local resolving sets of .G  
Therefore, cld( ) 2G a  . Hence, cld( ) 2G a  . 
Last, it can be verified that every local basis of G  contains exactly 1a   vertices of 

a
K  

and exactly one vertex from 
3 2

{ , }v w . Observe that the connected local basis 
1
S  

contains the local basis B  of ,G  while the connected local basis 
2
S  contains no local 

basis of .G   
 From the previous theorem, there is a connected graph having many connected 
local bases. This leads us to determine a connected graph G  having a unique 
connected local basis. It has been shown in (13) that there is a connected graph with a 
unique local basis. In fact, there is a connected graph with a unique connected local 
basis as we show next. 
Theorem 2.4.2. For 3k  , there exists a graph with a unique connected local basis of 
cardinality 1k  .  
Proof. Let 

1
G  be a complete graph 

2k
K  with vertex set 

0 1 2 1
{ , ,..., }kU u u u


 , and let 

2
G  be an empty graph kK  with vertex set 

1 2 0
{ , ,..., }
k k

W w w w
 

 . Then the graph G  
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is obtained from 
1
G  and 

2
G  by adding edges between U  and W  as follows. Let each 

integer j  for 1 2 1kj    be expressed in its base 2  (binary) representation. Thus, 
each such j  can be expresses as a sequence of k  coordinates, that is, a k -vector, 
where the rightmost coordinate represents the value (either 0  or 1 ) in the 02  position, 
the coordinate to its immediate left is the value in the 12  position, etc. For integers i  and 
j  with 0 1i k    and 0 2 1kj   , we join 

i
w  and 

j
u  if and only if the value in 

the 2i  position in the binary representation of j  is 1 . For example, Figure 9 shows the 
edges joining between U  and W  in the graph G  for 3k  .  

 

Figure 9: A graph G  for 3k    

It was shown in (13) that W  is a unique local basis of .G  Therefore, there is no 
connected local basis of G  having cardinality ,k  that is, cld( ) 1G k  . Since W  is a 
local basis of ,G  it follows that 12

{ }kW W u


    is a connected local resolving set of 
.G  In fact, W   is a connected local basis of .G  

 It remains only to show that G  has no other connected local basis. If U U   
and 1,U k    then 2 1 2kU U k     . Since the distance of every two 
vertices of U  is 1 , it follows that there are at least two adjacent vertices of U U   
having the same representation with respect to U   and so U   is not a connected local 
resolving set of ,G  Thus, every connected local resolving set of G  must contain at least 
one vertex of .W  Suppose that B W   is a connected local basis of .G  Therefore, 
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,B U W    where U U   and .W W   If ,W k   then B  does not contain 

2 1ku 
. Therefore, B  is not connected, which is impossible. If 1,W k    then U   

contains at least two vertices. We may therefore assume that 2.U i    Then 
1.W k i     Since every vertex of U U   has distance 1  from every vertex of ,U   

it follows that there are at most 12k i   distinct representations of vertices of U U   with 
respect to B . However, since 12 2 ,k k ii     there are two vertices of U U   such 
that their representations with respect to B  are the same, contradicting the fact that B  
is a connected local basis of .G  Hence, W   is a unique connected local basis of .G  



 

CHAPTER 3 
THE MULTIDIMENSION OF GRAPHS 

 As described in (8), all connected graphs G  contain an ordered set W  of 
vertices of G  such that each vertex of G  is distinguished by a k vector, known as a 
representation, consisting of its distance from the vertices in .W  It may also occur that 
some graph contains a set W   with property that the vertices of graph have uniquely 
distinct k multisets containing their distances from each of the vertices of .W   In this 
section, we study the existence of such a set of connected graphs. 

3.1 Introduction 
 A multiset is a generalization of the concept of a set, which is like a set except 
that its members need not to be distinct. For example, the set { , , }a b a  is the same as 
the set { , }a b  but not so for the multiset. The multiset { , ,1,2,1, , ,2}M a a b a  has 8  
elements of 4  different types: 3  of type a , 2  of type 1 , 2  of type 2  and 1  of type b . 
Then the multiset is usually indicated by specifying the number of times different types 
of elements occur in it. Therefore, the multiset M  can be written by 

{3 ,2 1,2 2,1 }M a b     . The numbers 3,2,2  and 1  are called the repetition 
numbers of the multiset M . In particular, a set is a multiset having all repetition 
numbers equal to 1 . 
 Let 

1 2
{ , ,..., }

k
W w w w  be a set of vertices of a connected graph .G  The 

multirepresentation of a vertex u  of G  with respect to W  is the k multiset 

1 2
( | ) { ( , ), ( , ),..., ( , )}.

k
mr u W d u w d u w d u w  

The set W  is called a multiresolving set of G  if every two distinct vertices of G  have 
distinct multirepresentations with respect to .W  A multiresolving set of G  of minimum 
cardinality is a minimum multiresolving set or a multibasis of G  and this cardinality is 
the multidimension of ,G  which is denoted by dim ( )

M
G . For example, consider the 

cycle 
6
C  of Figure 10. 
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Figure 10: The cycle 
6
C  

As we know, the set 
1

{ , }W u v  is a basis of 
6
C . However, the set 

1
W  is not a 

multiresolving set of 
6
C  since 

1 1
( | ) {0,1} ( | )mr u W mr v W  . Then we consider the 

set 
2

{ , , }W u v x . The six multirepresentations of vertices of 
6
C  are 

2 2 2

2 2 2

( | ) {0,1,3}, ( | ) {0,1,2}, ( | ) {1,1,2},

( | ) {0,2,3}, ( | ) {1,2,3}, ( | ) {1,2,2}.

mr u W mr v W mr w W

mr x W mr y W mr z W

  

    

Since these six multirepresentations are distinct, it follows that 
2
W  is a multiresolving set 

of 
6
C . In fact 

2
W  is also a multibasis of 

6
C  and so 

6
dim ( ) 3

M
C  . 

 Not all connected graphs have a multiresolving set and so dim ( )
M
G  is not 

defined for all connected graphs .G  For instant, a star 
1,s
K  ( 3)s   contains no 

multiresolving set. To see this, suppose that W  is a multiresolving set of 
1,s
K . Then 

there are two end-vertices u  and v  of 
1,s
K  such that both u  and v  belong to either W  

or 
1,

( ) .
s

V K W  However, there is a contradiction in both cases since ( , ) ( , )d u w d v w  
for all 

1,
( ) { , }

s
w V K u v  , implying that 

1,s
K  contains no multiresolving set. On the 

other hand, if a connected graph G  contains a multiresolving set, then this 
multiresolving set is also a resolving set of .G  This implies that 

 1 dim( ) dim ( )
M

G G n    (3.1) 

 For every set W  of vertices of a connected graph G , the vertices of G  whose 
multirepresentations with respect to W  contain 0 , are vertices in .W  On the other 
hand, the multirepresentations of vertices of G  which do not belong to W  have 
elements, all of which are positive. In fact, to determine whether a set W  is a 
multiresolving set of ,G  the vertex set ( )V G  can be partitioned into W  and ( )V G W  
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to examine whether the vertices in each subset have distinct multirepresentations with 
respect to .W  

 The idea of the multidimension of a connected graph was introduced by 
Saenpholphat (15) who showed that there is no connected graph with multidimension 2 . 
Moreover, the multidimensions of some well-known graphs have been determined. 
Simanjuntak, Vetrik and Mulia (16) discovered this concept independently and used a 
notation ( )md G  for a multidimension of a connected graph .G  

3.2 Preliminaries 
 Recall that two vertices u  and v  of a connected graph G  are twins if 

( ) { } ( ) { }N u v N v u   . Actually, u  and v  are twins if and only if ( , ) ( , )d u x d v x  
for all ( ) { , }x V G u v  . Therefore, they are said to be distance-similar. Certainly, 
distance similarity in G  is an equivalence relation on ( )V G  producing a partition of the 
vertex set of G  into equivalence classes, called distance-similar equivalence classes, 
or simply distance-similar classes. For example, consider a complete bipartite graph 

,r s
K ( 1, 2)r s   with partite sets U  and V . Every pair of vertices in the same partite 
set are distance-similar. Then the distance-similar classes in 

,r s
K  are its partite sets U  

and V . The following results were obtained in (15) showing the usefulness of the 
distance-similar classes to determine the multidimension of a connected graph. 
Theorem I. Let G  be a connected graph such that dim ( )

M
G  is defined. If U  is a 

distance-similar class on ( )V G  with 2U  , then every multiresolving set of G  
contains exactly one vertex of U . 
Theorem J. If U  is a distance-similar class on the set of vertices ( )V G  in a connected 
graph G  with 3U  , then dim ( )

M
G  is not defined. 

 The next two theorems were presented in (15, 16) that a path is the only one of 
connected graphs with multidimension 1  and every multiresolving set of a connected 
graph cannot contain only two vertices. 
Theorem K. Let G  be a connected graph of order n . Then dim ( ) 1

M
G   if and only 

if 
n

G P , a path of order .n  
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Theorem L. A connected graph has no multiresolving set of cardinality 2 . 
For a connected graph G , if W  is a multiresolving set of ,G  then all vertices of 

G  have distinct multirepresentations with respect to .W  This leads us to the fact that 
W  is also a multiresolving set of ,G v  where v  is an end-vertex of G  that is not in 

.W  We present this idea as follows. 
Theorem 3.2.1. Let G  be a connected graph such that dim ( )

M
G  is defined, and let 

W  be a multiresolving set of .G  If v  is an end-vertex of G  such that ,v W  then 
W  is a multiresolving set of .G v  
Proof. Assume that v  is an end-vertex of .G  Let 

1 2
{ , ,..., }

k
W w w w  be a 

multiresolving set of G  that does not contain v . Then 

1 2
( | ) { ( , ), ( , ),..., ( , )}
G G G G k

mr x W d x w d x w d x w  
and 

1 2
( | ) { ( , ), ( , ),..., ( , )}
G G G G k

mr y W d y w d y w d y w  
are not the same for all vertices x  and y  of .G  Since v  does not belong to ,W  it 
follows that 

1 2
( | ) { ( , ), ( , ),..., ( , )} ( | )

G v G v G v G v k G
mr x W d x w d x w d x w mr x W

   
   

and 

1 2
( | ) { ( , ), ( , ),..., ( , )} ( | ),

G v G v G v G v k G
mr y W d y w d y w d y w mr y W

   
   

that is, ( | ) ( | )
G v G v

mr x W mr y W
 

  for all vertices x  and y  of G v . Hence, W  is a 
multiresolving set of G v . 
 The following is an immediate corollary of Theorem 3.2.1. 
Corollary 3.2.2. Let G  be a connected graph such that dim ( )

M
G  is defined, and let 

W  be a multiresolving set of G . If 
1 2
, ,...,

t
v v v  are end-vertices of G  such that 

1 2
, ,..., ,

t
v v v W  then W  is a multiresolving set of 

1 2
{ , ,..., }

t
G v v v . 

Proof. Assume that 
1 2
, ,...,

t
v v v  are end-vertices of G . Let W  is a multiresolving set of 

G  that does not contain 
1 2
, ,...,

t
v v v . Theorem 3.2.1 implies that W  is a multiresolving 

set of 
1

G v .  By the same reasoning, W  is a multiresolving set of 
1 2

( )G v v   and so 
W  is a multiresolving set of 

1 2
{ , ,..., }

t
G v v v . 
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 Next, we present a useful necessary condition for a set to be a multiresolving set 
of a tree. 
Proposition 3.2.3. Let T  be a tree of order at least 3  containing a vertex u . If W  is a 
multiresolving set of ,T  then W  contains at least one vertex from each of deg

T
u  

components of T u , with one possible exception. 
Proof. We see that T u  has only one component if and only if u  is an end-vertex of T
. Then we may assume, to the contrary, that there is a vertex u  of degree at least 2  
such that T u  has two components X  and Y  containing no vertex of W . Then there 
are two vertices x  of X  and y  of Y  that are adjacent to u  in T . Thus, 
( , ) ( , ) 1 ( , )d x w d u w d y w    for all vertices w  of W . This implies that 

( | ) ( | )mr x W mr y W  and so W  is not a multi resolving set of T ,  a contradiction. 
We are able to determine all pairs ,k n of integers with 3k   and 3( 1)n k   

which are realizable as the multidimension and the order of some connected graph. In 
order to do this, we present an additional notation. For integers a  and b , let [ , ]a b  be a 
multiset such that 

{ , 1,..., 1, } if ,

[ , ] { } if ,

if .

a a b b a b

a b a a b

a b

   


 
 
  

Such a multiset is referred to as a consecutive multiset of integers a  and b . 
Theorem 3.2.4. For every pair ,k n  of integers with 3k   and 3( 1)n k  , there is a 
connected graph G  of order n  with dim ( )

M
G k . 

Proof. Let k  and n  be integers with 3k   and 3( 1)n k  . We consider two cases. 
Case 1. 3( 1)n k  . 

Let G  be a graph obtained from the path 
1 1 2 1

( , ,..., )
k k
P u u u

 
  by adding the 

2( 1)k   new vertices 
i
v  and 

i
w  for 1 1i k    and joining 

i
v  and 

i
w  to 

i
u , as it is 

shown in Figure 11. Then the order of G  is 3( 1)n k  . 
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Figure 11: A connected graph G  in Case 1 

First, we claim that there is no multiresolving set of G  having cardinality at most 1.k   
Assume, to the contrary, that there is a multiresolving set S  of G  such that 1.S k   
Since a set { , }

i i i
V v w  for 1 1i k    is a distance-similar equivalence class of ,G  

it follows by Theorem I that S  contains exactly one vertex of 
i
V . We may assume, 

without loss of generality, that 
i
w S  for 1 1i k   . Thus, 1.S k   Since 

1 1
( , ) ( , )

i k k i
d w w d w w

 
  for all 1 1i k   , it follows that 

1 1
( | ) ( | )

k
mr w S mr w S


  

and so a set 
1 2 1

{ , ,..., }
k

S w w w


  is not a multiresolving set of ,G  thereby producing a 
contradiction. Hence, dim ( )

M
G k . Next, we claim that a set 

1 2 1 1
{ , ,..., } { }

k
W w w w u


   is a multiresolving set of .G  For a vertex ,x W  the 

multirepresentations of x  with respect to W  is 

1

{0, } [3, 1] [3, 1] if  (1 1)
( | )

[0, 1] if .
i

i i k i x w i k
mr x W

k x u

         
 

 

 

For 2 1,i k    the multirepresentations of 
i
u  with respect to W  is 

( | ) {1, 1} [2, ] [2, ].
i

mr u W i i k i      
For 1 1,i k    the multirepresentations of 

i
v  with respect to W  is 

( | ) {2, } [3, 1] [3, 1].
i

mr v W i i k i       
Therefore, W  is a multiresolving set of G  with .W k  Hence, dim ( )

M
G k . 

Case 2. 3( 1)n k  . 
Let H  be a graph obtained from the graph G  in Case 1 by adding the path 

1 2 3( 1)
( , ,..., )

n k
P x x x

 
  and joining 

1
x  to 

1k
v


 and 

1k
w


, as it is shown in Figure 12. 
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Figure 12: A connected graph H  in Case 2 

By a similar argument to the one used in Case 1, it is shown that there is no l -
multiresolving set of H  with 1 1l k   . We claim that a set 

1 2 1 1
{ , ,..., } { }

k
W w w w u


   is a multiresolving set of H . For vertices in 

1 2 3( 1)
( ) { , ,..., },

n k
V H x x x

 
  their multirepresentations with respect to W  are the same 

as in Case 1. For 1 3( 1),i n k     the multirepresentations of 
i
x  with respect to W  

is 
( | ) { , 1} [ 3, ].
i

mr x W i i k i i k       
Hence, W  is a multiresolving set of H with W k  and so dim ( )

M
H k . 

3.3 The multisimilar classes of graphs 
 In this section, we investigate another equivalence relation on a vertex set of a 
connected graph. First, we need some additional definitions and notation. Let 

 1 2
{ , ,..., } |  for 1

k i
A a a a a i k     be a collection of multisets of integers. For 

an integer c , we define 

1 2 1 2
{ , ,..., } { , ,..., } { , ,..., },

k k
a a a c c c a c a c a c      

where 
1 2

{ , ,..., },{ , ,..., }
k

a a a c c c A . Let W  be a set of vertices of a connected graph 
G  and let u  and v  be vertices of G . A multisimilar relation 

W
R  with respect to W  on 

a vertex set ( )V G  is defined by 
W

u R v  if there is an integer ( , )
W
c u v  such that  

 ( | ) ( | ) { ( , ), ( , ),..., ( , )}.
W W W

mr u W mr v W c u v c u v c u v   (3.3.1) 
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An integer ( , )
W
c u v  satisfying (3.3.1) is called a multisimilar constant of 

W
u R v  or 

simply a multisimilar constant. Clearly, 
W
R  is an equivalence relation on ( )V G . For 

each vertex u  in ( )V G , let [ ]
W
u  denote the multisimilar class of u  with respect to W . 

Then  

 
[ ]
W

x u if and only if
( | ) ( | ) { ( , ), ( , ),..., ( , )}

W W W
mr x W mr u W c x u c x u c x u  , 

(3.3.2) 

where ( , )
W
c x u  is a multisimilar constant. Observe that if [ ]

W
x u , then there is a 

multisimilar constant ( , )
W
c x u  with a property that, for every vertex w W , there is a 

corresponding vertex 'w W  such that  

 ( , ) ( , ') ( , ).
W

d x w d u w c x u   (3.3.3) 

With this observation, we may as well say that [ ]
W

x u  if and only if there are 
multisimilar constant ( , )

W
c x u  and a bijective function f  on W  defined as ( ) 'f w w  

whenever ( , ) ( , ') ( , )
W

d x w d u w c x u  . This function is called a multisimilar function of 

W
x R u  or a multisimilar function if there is no ambiguity. Consequently, it is not 
surprising that an inverse function 1f   is also a multisimilar function of 

W
u R x  with a 

multisimilar constant ( , ) ( , )
W W
c u x c x u  . To illustrate this concept, let us consider the 

set { , , }W w x y  of the graph G  of Figure 13. 

 

Figure 13: The graph G  

The multirepresentations of vertices of G  with respect to W  are 

( | ) {2,2,3}, ( | ) {1,1,2}, ( | ) {0,1,2},

( | ) {0,1,1}, ( | ) {0,1,2}.

mr u W mr v W mr w W

mr x W mr y W
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Since ( | ) ( | ) {1,1,1}mr u W mr v W  , ( | ) ( | ) {0,0,0}mr w W mr y W   and 
( | ) ( | ) {0,0,0}mr x W mr x W  , it follows that 

W
u R v  with ( , ) 1

W
c u v  , 

W
w R y  

with ( , ) 0
W
c w y   and 

W
x R x  with ( , ) 0

W
c x x  , respectively. In fact, [ ] { , }

W
u u v , 

[ ] { , }
W
w w y  and  [ ] { }

W
x x . By considering a multisimilar class [ ]

W
u , a multisimilar 

function f  of 
W

u R v  is defined by ( )f w w , ( )f x x  and ( )f y y . Moreover, 
there is another multisimilar function f   of 

W
u R v , that is, ( )f w y  , ( )f x x   and 

( )f y w  .  

The example just described shows an important point that a multisimilar function 
of any two vertices in the same multisimilar class with respect to a set W  is not 
necessarily unique. 
 More generally, for a vertex u  and a set W  of vertices of a connected graph 

,G  let 
1 1 2 2

( | ) { , ,..., }
l l

mr u W r a r a r a    , where 
1 2 l
a a a    and 

i
r  is a 

repetition number of type 
i
a  for each i  with 1 i l  . Assume that there is a vertex v  

of G  belonging to the same multisimilar class as u , that is, [ ]
W

v u . By (3.3.2) and 
(3.3.3), for each type of ( | )mr u W , there is a corresponding type of ( | )mr v W  such 
that their repetition numbers are equal. Therefore, we may assume that 

1 1 2 2
( | ) { , ,..., }

l l
mr v W r b r b r b    , where 

1 2 l
b b b   . For each integer i  with 

1 i l  , let { | ( , ) }
i i
A w W d u w a    and { | ( , ) }

i i
B w W d v w b   . Then the 

types of ( | )mr u W  partition W  into l  sets 
1 2
, ,...,

l
A A A . On the other hand, W  is also 

partitioned into l  sets 
1 2
, ,...,

l
B B B  depending on the types of ( | )mr v W . Hence, the 

multisimilar function f  of 
W

u R v  has the property that, for every vertex 
i

w A , there 
is a vertex 

i
w B   such that ( ) ,f w w  where 1 i l  . Indeed, there are 

1 2
! ! !

l
r r r  

distinct multisimilar functions of 
W

u R v . These observations yield the following result. 
Theorem 3.3.1. Let W  be a set of vertices of a connected graph G  and let u  and v  
be vertices of G  such that [ ]

W
u v . Suppose that ( | )mr u W 

1 1 2 2
{ , ,..., }

l l
r a r a r a   , where 

1 2 l
a a a    and 

i
r  is a repetition number of type 

i
a  for each integer i  with 1 i l  . Then 

(i) 
1 1 2 2

( | ) { , ,..., }
l l

mr v W r b r b r b     for some integers 
1 2
, ,...,

l
b b b  with 

1 2 l
b b b   , 
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(ii) there is a multisimilar function f  of 
W

u R v  such that ( )
i i

f w w , where 
( , )

i i
d u w a  and ( , )

i i
d v w b   for each i  with 1 i l  , 

(iii) there are 
1 2
! ! !

l
r r r  distinct multisimilar functions of 

W
u R v . 

By Theorem 3.3.1, the following result is obtained. 
Corollary 3.3.2. Let W  be a set of vertices of a connected graph G  and let u  and v  
be vertices of G  such that [ ]

W
u v  with a multisimilar constant ( , )

W
c u v . Then 

(i) if 
1
M  and 

2
M  are the maximum elements of ( | )mr u W  and ( | )mr v W , 

respectively, then 
1 2

( , )
W

M M c u v  , 
(ii) if 

1
m  and 

2
m  are the minimum elements of ( | )mr u W  and ( | )mr v W , 

respectively, then 
1 2

( , )
W

m m c u v  . 
Proof. Suppose that [ ]

W
u v  and W l . Let 

1 1 2 2
( | ) { , ,..., }

l l
mr u W r a r a r a     

and 
1 1 2 2

( | ) { , ,..., },
l l

mr v W r b r b r b     where 
1 2 l
a a a    and 

1 2
.
l

b b b    Since 
1
M  and 

2
M  are the maximum elements of ( | )mr u W  and 

( | )mr v W , respectively, it follows that there are vertices w  and w   in W  such that 

1
( , )

l
M d u w a   and 

2
( , ')

l
M d v w b  . By Theorem 3.3.1, there is a multisimilar 

function f  of 
W

u R v  such that ( )f w w . Then ( , ) ( , ) ( , )
W

d u w d v w c u v  , where 
( , )

W
c u v  is a multisimilar constant. Thus, (i) holds. For (ii), the statement may be proven 
in the same way as (i), and therefore such proof is omitted. 

Next, we are prepared to establish the upper bound for the cardinality of a 
multisimilar class of a vertex in a connected graph. To show this, let us present a useful 
proposition as follows. 
Proposition 3.3.3. Let W  be a set of vertices of a connected graph G  and let u  and 
v  be vertices of G  such that [ ]

W
u v . Then ( | )mr u W  and ( | )mr v W  have the 

same minimum (or maximum) element if and only if ( | ) ( | )mr u W mr v W . 
Proof. If ( | ) ( | )mr u W mr v W , then the minimum (and maximum) elements of 

( | )mr u W  and ( | )mr v W  are the same. For the converse, assume that 
1
m  and 

2
m  

are the minimum elements of ( | )mr u W  and ( | )mr v W , respectively, such that 

1 2
m m . Since [ ] ,

W
u v  there is a multisimilar constant ( , )

W
c u v  such that 

( | )mr u W  ( | ) { ( , ), ( , ),..., ( , )}.
W W W

mr v W c u v c u v c u v  By Corollary 3.3.2 (ii), it 
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follows that 
1 2

( , )
W

m m c u w  . Thus, ( , ) 0
W
c u v  . Hence, ( | ) ( | )mr u W mr v W .  

Similarly, if ( | )mr u W  and ( | )mr v W  have the same maximum element, then 
( | ) ( | )mr u W mr v W . 

Theorem 3.3.4. If W  is a multiresolving set of a connected graph G , then the 
cardinality of multisimilar class of each vertex of G  with respect to W  is at most 
diam( ) 1G  . 
Proof. Assume, to the contrary, that there is a vertex v  of G  such that [ ]

W
v  has the 

cardinality at least diam( ) 2G  . Since the minimum elements of multirepresentations of 
vertices in [ ]

W
v  with respect to W  have at most diam( ) 1G   distinct values, there are 

at least two vertices x  and y  in [ ]
W
v  having the same value of the minimum element of 

( | )mr x W  and ( | ).mr y W  Therefore, ( | ) ( | )mr x W mr y W  by Proposition 3.3.3, 
contradicting the fact that W  is a multiresolving set of .G  
 We can show that the upper bound in Theorem 3.3.4 is sharp by considering the 
path 

1 2
( , ,..., )

n n
P v v v . We have that diam( ) 1

n
P n   and a set 

1
{ }W v  is a 

multiresolving set of 
n
P . Thus, 

1
[ ]

W
v  contains all vertices of 

n
P  and so 

1
[ ]

W
v n . 

 The next result describes the properties of multisimilar classes with respect to a 
set of vertices. 
Theorem 3.3.5. Let u  and v  be vertices of a connected graph G  and let W  be a set 
of vertices of G . Then 

(i) if [ ] [ ]
W W
u v , then ( | ) ( | )mr x W mr y W  for all [ ]

W
x u  and [ ]

W
y v , 

(ii) if [ ] { }
W
u u  for all ( )u V G , then W  is a multiresolving set of .G  

Proof. (i) Assume, to the contrary, that there exist two distinct vertices [ ]
W

x u  and 
[ ]
W

y v  such that ( | ) ( | )mr x W mr y W . Then there are multisimilar constants 
( , )

W
c x u  and ( , )

W
c y v  such that 

( | ) ( | ) { ( , ), ( , ),..., ( , )}
W W W

mr x W mr u W c x u c x u c x u   and 

( | ) ( | ) { ( , ), ( , ),..., ( , )}.
W W W

mr y W mr v W c y v c y v c y v   
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Therefore, ( | ) { ( , ),..., ( , )} ( | ) { ( , ),..., ( , )}.
W W W W

mr u W c x u c x u mr v W c y v c y v    
Thus, ( | ) ( | ) { ( , ) ( , ),..., ( , ) ( , )}.

W W W W
mr u W mr v W c y v c x u c y v c x u     Hence, 

u  belongs to [ ]
W
v , which is a contradiction. 

(ii) Assume, to the contrary, that W  is not a multiresolving set of .G  Then there exist two 
distinct vertices x  and y  such that ( | ) ( | ).mr x W mr y W  Hence, y  belongs to 
[ ] ,
W
x  producing a contradiction. 

3.4 The characterization of caterpillars with multidimension 3  
 A caterpillar is a tree of order at least 3 , the removal of whose end-vertices 
produces a path called the spine of the caterpillar. A vertex of the spine of the caterpillar 
is called a spine-vertex. Let T  be a caterpillar that dim ( )

M
T  is defined. Since any two 

end-vertices that are adjacent to the same spine-vertex of T  are distance-similar, it 
follows by Theorem I that there are at most two end-vertices that are adjacent to each 
spine-vertex of T . Therefore, we consider multiresolving sets of such a caterpillar. In 
order to do this, let us introduce some additional definitions and notation. For integers 

1 2
, , ,...,

s
s k k k  with 1s  , 

1
1 , 2

s
k k   and 

2 3 1
0 , ,..., 2

s
k k k


  , let 

1 2
ca( , ,..., )

s
k k k  

be a caterpillar which is obtained from the spine 
1 2

( , ,..., )
s

u u u  by joining 
i
k  end-

vertices to the spine vertex 
i
u , where 1 i s  . Observe that, if 0

i
k  , then there is no 

end-vertices joining to the spine vertex 
i
u . Also, if 1

i
k  , then the spine-vertex 

i
u  is 

adjacent to an end-vertex which is called the first end-vertex of 
i
u  and denoted by 

i
v . 

Furthermore, if 2
i
k  , then there are two end-vertices joining to 

i
u  that are called the 

first and second end-vertices of 
i
u  and denoted by 

i
v  and 

i
w , respectively. For each 

integer i  with 1 i s  , we define a set { | 2}
i

i k     to be the second end-set 
of a caterpillar 

1 2
ca( , ,..., )

s
k k k . To emphasize that this is the second end-set   of a 

caterpillar T , we sometimes denote this set by 
T

 . For example, the caterpillar 
ca(1,2,0,2,0,2)  of Figure 14 has six spine-vertices, namely, 

1 2 3 4 5 6
, , , , ,u u u u u u . Since 

no end-vertex is adjacent to a spine vertex 
3
u , as well as to a spine vertex 

5
u , it follows 

that there are no first and second end-vertices of 
3
u  and 

5
u . The first end-vertices of 

1 2 4
, ,u u u  and 

6
u  are 

1 2 4
, ,v v v  and 

6
v , respectively. Also, the second end-vertices of 
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2 4
,u u  and 

6
u  are 

2 4
,w w  and 

6
w , respectively. Therefore, the second end-set of 

ca(1,2,0,2,0,2)  is the set {2,4,6}  . 

 

Figure 14: The caterpillar ca(1,2,0,2,0,2)  with the second end-set {2,4,6}   

The following observation is a consequence of Theorem I. 
Observation 3.4.1. Every multiresolving set of a caterpillar 

1 2
ca( , ,..., )

s
k k k  with a 

second end-set   contains either first end-vertex 
i
v  or second end-vertex 

i
w , where 

i  . 
Proof. For each integer i  ,  since 

i
v  and 

i
w  are distance-similar, it follows by 

Theorem I that every multiresolving set of 
1 2

ca( , ,..., )
s

k k k  contains exactly one of 

{ , }.
i i
v w   

 Next, we are prepared to characterize caterpillars having multidimension 3 . In 
order to do this, we first present several preliminary results. 
Proposition 3.4.2. Let , ,s    be integers with 3s   and 1 s    , and let W  
be a set of vertices of a caterpillar 

1 2
ca( , ,..., )

s
k k k  containing one of 

1 1
{ , }v w  and one 

of { , }
s s
v w . If ( | ) ( | )mr u W mr u W

 
  or ( | ) ( | )mr v W mr v W

 
 , then 

1
2

s


 
   

 
 and 1s    . 

Proof. Suppose that ( | ) ( | )mr u W mr u W
 

 . Without loss of generality, assume that 

W  contains 
1
v  and 

s
v . For 1

2

s
 

 
    

 
, since ( , ) 1

s
d u v s


    and 

( , ) 1
s

d u v s


    are the maximum elements of ( | )mr u W


 and ( | ),mr u W


 

respectively, it follows that   , which is a contradiction. For 1
2

s
s 

 
    

 
, 

since 
1

( , )d u v


  and 
1

( , )d u v


  are the maximum elements of ( | )mr u W


 and 
( | ),mr u W


 respectively, it follows that   , a contradiction is produced. Thus, 
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1
2

s


 
   

 
 and 1

2

s
s

 
   

 
. Moreover, since ( , ) 1

s
d u v s


    and 

1
( , )d u v


  are the maximum elements of ( | )mr u W


 and ( | ),mr u W


 

respectively, it follows that 1s    , as we claimed. If ( | ) ( | )mr v W mr v W
 

 , 
then it can be obtained in a similar manner. 
Proposition 3.4.3. Let , ,s    be integers with 3s   and 1 , s   , and let W  be a 
set of vertices of a caterpillar 

1 2
ca( , ,..., )

s
k k k  containing one of 

1 1
{ , }v w  and one of 

{ , }
s s
v w . Then  

(i) if 1 s     and ( | ) ( | )mr v W mr u W
 

 , then 1
2

s


 
   

 
 and 

2s    , and 

(ii) if 1 s     and ( | ) ( | )mr v W mr u W
 

 , then 1
2

s
s

 
   

 
 and 

s   . 
Proof. (i) Suppose that 1 s     and ( | ) ( | )mr v W mr u W

 
 . Without loss of 

generality, let us assume that W  contains 
1
v  and 

s
v . If 1

2

s
 

 
    

 
, then 

( , ) 2
s

d v v s


    and ( , ) 1
s

d u v s


    are the maximum elements of 
( | )mr v W


 and ( | )mr u W


, respectively. Therefore, 1   , that is,   , which 

gives a contradiction. If 1
2

s
s 

 
    

 
, then 

1
( , ) 1d v v


   and 

1
( , )d u v


  

are the maximum elements of ( | )mr v W


 and ( | )mr u W


, respectively. Thus, 
1   . Since ( , ) 2

s
d v v s


    belongs to ( | )mr v W


, there is a vertex w  for 

which 
2 3s

w u
  

  or 
2 2s

w v
  

  or 
2 2s

w w
  

  such that ( , ) 2d u w s


   . 
Moreover, since ( , ) ( , ) 2d v w d u w s

 
    , it follows that ( | )mr v W


 contains 

2s   ’s more than ( | )mr u W


 does, which is impossible. Therefore, 1
2

s


 
   

 
 

and 1
2

s
s

 
   

 
. Moreover, since ( , ) 2

s
d v v s


    and 

1
( , )d u v


  are the 

maximum elements of ( | )mr v W


 and ( | )mr u W


, respectively, it follows that 
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2s    , as we claimed. For (ii), the statement may be proven in the same way as 
(i), and therefore such proof is omitted. 
 An argument similar to the one used in the proof of Propositions 3.4.2 and 3.4.3 
establishes the following results. 
Proposition 3.4.4. Let , ,s    be integers with 3s   and 1 s    , and let W  
be a set of vertices of a caterpillar 

1 2
ca( , ,..., )

s
k k k  containing 

1
u  and one of { , }

s s
v w  

except 
1
v  and 

1
w . If ( | ) ( | )mr u W mr u W

 
  or ( | ) ( | )mr v W mr v W

 
 , then 

1
2

s


 
   

 
 and 2s    . 

Proposition 3.4.5. Let , ,s    be integers with 3s   and 1 , s   , and let W  be a 
set of vertices of a caterpillar 

1 2
ca( , ,..., )

s
k k k  containing 

1
u  and one of { , }

s s
v w  

except 
1
v  and 

1
w . Then  

(i) if 1 s     and ( | ) ( | )mr v W mr u W
 

 , then 1
2

s


 
   

 
 and 

3s    , and 

(ii) if 1 s     and ( | ) ( | )mr v W mr u W
 

 , then 1
2

s
s

 
   

 
 and 

1s    . 
We now establish a characterization of a caterpillar 

1 2
ca( , ,..., )

s
k k k  with 

multidimension 3 . For 1s   and 2s  , the caterpillars 
1

ca( )k  and 
1 2

ca( , )k k  are 
shown in Figure 15, where the vertices of a multibasis of these caterpillars are indicated 
by solid vertices.  

 

Figure 15: The caterpillars ca(2), ca(1,1) , ca(1,2)  and ca(2,2)  
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Notice that 
3

ca(2) P , 
4

ca(1,1) P  and ca(1,2) ca(2,1) . This implies that there is 
no caterpillar having multidimension 3 , where 1s  , and there are two distinct 
caterpillars having multidimension 3 , where 2s  . For 3s  , it is routine to verify that 
ca(1,0,2) ca(2,0,1) , ca(1,1,1) , ca(1,1,2) ca(2,1,1) , ca(2,0,2)  and ca(2,1,2)  are 
caterpillars having multidimension 3 . For 4s  , let us introduce some additional 
definitions and notation. 
 For an even integer 4s  , let 

1
T  be a caterpillar 

1 2
ca( , ,..., )

s
k k k  such that 

{1, , }r s  , where {2,3,..., 1}r s  . In particular, for 8s   and 3r  , the 
caterpillar 

1
ca(2,0,2,1,0,1,0,2)T   with {1,3,8}   is shown in Figure 16. 

 

Figure 16: The caterpillar 
1

ca(2,0,2,1,0,1,0,2)T   with {1,3,8}   

For an odd integer 5s  , let 
2
T  be a caterpillar 

1 2
ca( , ,..., )

s
k k k  such that {1, , }r s  , 

where 

1
{2,3,.., 1} {3, , 2} if 1 (mod4),

2            (3.4.1)
1 1 3

{2,3,.., 1} {3, , , , 2} if 3 (mod4).
2 2 2

s
s s s

r
s s s

s s s

 
   

 
      



 

For example, for 9s   and 4r  , the caterpillar 
2

ca(2,0,1,2,0,1,1,0,2)T   with 
{1,4,9}   is illustrated in Figure 17. 

 

Figure 17: The caterpillar 
2

ca(2,0,1,2,0,1,1,0,2)T   with {1,4,9}   
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For an odd integer 9s  , let 
3
T  be a caterpillar 

1 2
ca( , ,..., )

s
k k k  such that either 

{1,3, }s   and 1
2

0sk 
 , or {1, 2, }s s    and 3

2

0sk 
 . For an odd integer 11s   

and 3 (mod4)s  , let 
4
T  be a caterpillar 

1 2
ca( , ,..., )

s
k k k  such that either 

1
{1, , }

2

s
s


   and 5

4

0sk 
 , or 3

{1, , }
2

s
s


   and 3 1

4

0sk 
 . 

Proposition 3.4.6. A caterpillar 
i
T , where 1 4i   has multidimension 3 . 

Proof. For each integer i  with 1 4i  , we show that every caterpillar 
i
T  has 

multidimension 3.  We verify this for 
2
T  only since the proof for 

1 3
,T T  and 

4
T  uses an 

argument similar to the one for 
2
T . First, we verify that 

1
{ , , }

r s
W w w w  is a 

multiresolving set of 
2
T , where r  satisfies the condition (3.4.1). Without loss of 

generality, we may assume that 2
2

s
r

 
   

 
. The multirepresentations of vertices of W  

with respect to W  are 
1

( | ) {0, 1, 1}, ( | ) {0, 1, 2}
r

mr w W r s mr w W r s r        

and ( | ) {0, 2, 1}
s

mr w W s r s    . Since 1
{1, , },

2

s
r s


  it follows that these 3 -

multisets are distinct. Next, we claim that ( | ) ( | )mr x W mr y W  for all vertices 

2
, ( ) .x y V T W   Suppose, contrary to our claim, that ( | ) ( | )mr x W mr y W  for 

some vertices 
2

, ( ) .x y V T W   We consider three cases. 
Case 1. x  and y  are spine-vertices. 

Let x u


  and y u


 , where 1 .s     Then by Proposition 3.4.2, we 

obtain that 1
2

s


 
   

 
 and 1.s     Thus, ( | ) { 1,mr u W s


  

1, } { , 2, 1}.r s r s             Since ( | ) { ,| | 1,mr u W r


   

1},s    it follows that | | 1 2r s r       . If r  , then 2 1s    and 

so   , which is impossible. If r  , then 1

2

s
r


 , a contradiction. 

Case 2. x  and y  are first end-vertices. 
Let x v


  and y v


 , where 1 .s     Proposition 3.4.2 implies that 

1
2

s


 
   

 
 and 1.s     Thus, ( | ) { 2, 2, 1}mr v W s r


          

{ 1, 3, 2}.s r s         Since ( | ) { 1,| | 2, 2}mr v W r s


        , it 
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follows that | | 2 3r s r       . If r  , then 2 1s    and so   , 

which cannot occur. If r  , then 1

2

s
r


 . This is also a contradiction. 

Case 3. x  is a first end-vertex and y  is a spine-vertex. 
Let x v


  and y u


 , where 1 , .s    We consider two subcases. 

 Subcase 3.1. 1 .s     

Then by Proposition 3.4.3 (i), we obtain that 1
2

s


 
   

 
 and 2s    . 

Thus,  ( | ) { 1, 1, } { 1, 3, 2}.mr u W s r s r s


                  Since 
( | ) { 1,| | 2, 2}mr v W r s


        , it follows that | | 2 1r      and 

1 3s r      . If r  , then 3r  , which is impossible. If r  , then 
4( 2) 3s    , that is, 3(mod4)s  . Also, we obtain that 2 1r s  , and then 

1

2

s
r


 , which is a contradiction. 

 Subcase 3.2. 1 .s     

Therefore, by Proposition 3.4.3 (ii), we obtain that 1
2

s
s

 
   

 
 and 

s   . Thus,  ( | ) { 2, 2, 1} { 2, 2,mr v W s r s r


              

1}.s    Since ( | ) { ,| | 1, 1},mr u W r s


        it follows that 
| | 1 2r      and 2s r     . Consequently, | | 3r s r      . If 

,r   then 2 3s   , which cannot occur. If r  , then 2 3r s  , a 
contradiction. 
Therefore, ( | ) ( | )mr x W mr y W  for all vertices 

2
, ( ) ,x y V T W   that is, W  is a 

multiresolving set of 
2
T  and so 

2
dim ( ) 3

M
T  . Since 

2
T  is not a path, it follows by 

Theorems J and K that 
2

dim ( ) 3
M
T  . Hence, 

2
dim ( ) 3

M
T  . 

 The following corollary is an immediate consequence of Proposition 3.4.6. 
Corollary 3.4.7. If T  is a caterpillar 

1 2
ca( , ,..., )

s
k k k  such that 

i
T T , where 1 4i   

with {1, , }r s  , then 
1

{ , , }
r s

x x x  is a multibasis of ,T  where { , }
i i i
x v w  for 

1, ,i r s . 
 For an integer 4s  , let 

5
T  be a caterpillar 

1 2
ca( , ,..., )

s
k k k  such that either 

{ , }p s   or {1, }q  , where 1 p q s   . 
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Proposition 3.4.8. A caterpillar 
5
T  has multidimension 3 . 

Proof. First, suppose that { , },p s   where 1 1p s   . Since 
5
T  is not a path, it 

follows by Theorems J and K that 
5

dim ( ) 3
M
T  . Next, we consider two cases. 

Case 1. 1p  . 
We show that 

1 1
{ , , }

s
W u w w  is a multiresolving set of 

5
.T  The 

multirepresentations of vertices of W  with respect to W  are 
1

( | )mr u W 

1
{0,1, }, ( | ) {0,1, 1}s mr w W s   and ( | ) {0, , 1}.

s
mr w W s s   Thus, these 3 

multisets are distinct. Next, we claim that ( | ) ( | )mr x W mr y W  for all vertices 

5
, ( ) .x y V T W   Assume, to the contrary, that ( | ) ( | )mr x W mr y W  for some 

vertices 
5

, ( ) .x y V T W   We consider three subcases. 
 Subcase 1.1. x  and y  are spine-vertices. 

Let x u


  and y u


 , where 1 s    . Then by Proposition 3.4.2, 

1
2

s


 
   

 
 and 1s    . Thus,  ( | ) { 1, 1, } {mr u W s


       

, 1}.s s     Since ( | ) { , 1, 1},mr u W s


       it follows that 1  

s   and so   , which is impossible. 
 Subcase 1.2. x  and y  are first end-vertices. 

Let x v


  and y v


 , where 1 s    . Then by Proposition 3.4.2, we 

have that 1
2

s


 
   

 
 and 1.s     Thus,  ( | ) { 2, , 1}mr v W s


     

{ 1, 1, 2}.s s         Since ( | ) { 1, , 2},mr v W s


       it follows 
that 1s     and so   . This is a contradiction. 
 Subcase 1.3. x  is a first end-vertex and y  is a spine-vertex. 

Let x v


  and y u


 , where 1 , .s    We consider two subcases. 
  Subcase 1.3.1. 1 s    . 

Then by Proposition 3.4.3 (i), we obtain that 1
2

s


 
   

 
 and 2s    . 

Since  ( | ) { 1 , 1 , } { 1 , 1 , 2 }m r u W s s s


               and 
( | ) { 1, , 2},mr v W s


       it follows that ( | ) ( | )mr v W mr u W

 
 , which is 

impossible. 
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Subcase 1.3.2. 1 .s     

Then by Proposition 3.4.3 (ii), 1
2

s
s

 
   

 
 and s   . Since 

( | )mr v W


 { 2, , 1} { 2, , 1}s s s              and ( | )mr u W




{ , 1, 1},s      it follows that ( | ) ( | )mr v W mr u W
 

 , this is also contradiction. 
Therefore, ( | ) ( | )mr x W mr y W  for all vertices 

5
, ( ) ,x y V T W   that is, W  is a 

multiresolving set of 
5
T . Hence, 

5
dim ( ) 3

M
T   and so 

5
dim ( ) 3

M
T  , where 1p  . 

Case 2. 2p  . 
We consider two subcases. 

 Subcase 2.1. s  is even. 
With the aid of Theorem 3.2.1 and Corollary 3.4.7, since 

5 1 1
T T w   and 

1
{ , , }

p s
W v w w  is a multiresolving set of 

1
T , it follows that W  is a multiresolving set of 

5
T . Therefore,  

5
dim ( ) 3

M
T  . Hence, 

5
dim ( ) 3

M
T  , where 2p   and s  is even. 

 Subcase 2.2. s  is odd. 
We consider two subcases. 

  Subcase 2.2.1. 2p  . 
By Theorem 3.2.1 and Corollary 3.4.7, since 

5 2 1
T T w   and 

1
{ , , }

p s
W v w w  

is a multiresolving set of 
2
T , it follows that W  is a multiresolving set of 

5
T . Therefore,  

5
dim ( ) 3

M
T  . Hence, 

5
dim ( ) 3

M
T  , where 2p   and s  is odd. 

  Subcase 2.2.2. 3p  . 
We show that the set 

1
{ , , }

p s
W u w w  is a multiresolving set of 

5
T . The 

multirepresentations of vertices of W  with respect to W  are 
1

( | )mr u W 

{0, , }, ( | ) {0, , 2}
p

p s mr w W p s p    and ( | ) {0, 2, }
s

mr w W s p s   . Thus, 
these 3 -multisets are distinct. Next, we claim that ( | ) ( | )mr x W mr y W  for all 
vertices 

5
, ( ) .x y V T W   Assume, to the contrary, that ( | ) ( | )mr x W mr y W  for 

some vertices 
5

, ( ) .x y V T W   We consider three subcases. 
   Subcase 2.2.2.1. x  and y  are spine-vertices. 

Let x u


  and y u


 , where 1 s    . Then by Proposition 3.4.4,  

1
2

s


 
   

 
 and 2.s     Thus,  ( | ) { 1,| | 1, 1}mr u W s p
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{ 1,| | 1, 1}.p s         Since ( | ) { 1,| | 1, 1}mr u W p s


        , it 
follows that | | 1 | | 1p p      . If p   or p  , then   , which is 
impossible. If p   , then 2 2s p  , contradicting the fact that s  is odd. 
   Subcase 2.2.2.2. x  and y  are first end-vertices. 

Let x v


  and y v


 , where 1 s    . Then by Proposition 3.4.4,  

1
2

s


 
   

 
 and 2.s     Thus,  ( | ) { 2,| | 2, }mr v W s p


      

{ ,| | 2, 2}.p s        Since ( | ) { ,| | 2, 2},mr v W p s


        it 
follows that | | 2 | | 2p p      . By the same argument as the proof in Subcase 
2.2.2.1, we obtain a contradiction. 
   Subcase 2.2.2.3. x  is a first end-vertex and y  is a spine-vertex. 

Let x v


  and y u


 , where 1 , .s    There are two possibilities: 
1) 1 s    . 

Then by Proposition 3.4.5 (i), we obtain that 1
2

s


 
   

 
 and 3s    . 

Thus,  ( | ) { 1,| | 1, 1} { 2,| | 1, 2}.mr u W s p p s


                  
Since ( | )mr v W


 { ,| | 2, 2},p s       it follows that | | 2 2p      and 

| | 1.p     Consequently, | | 3 | | .p p      If ,p   then 2 ,s   
contradicting the fact that s  is odd. If p   , then 2p s , a contradiction. If 

,p   then 2 6 ,s    this is also a contradiction.  
2) 1 s    . 

Then by Proposition 3.4.5 (ii), 1
2

s
s

 
   

 
 and 1.s     Therefore, 

( | ) { 2,| | 2, } { 1,| | 2, 1}.mr v W s p p s


                 Since 
( | )mr u W


 { 1,| | 1, 1},p s        it follows that | | 2 1p      and 

1 | | 2.p      Consequently, | | | | 3p p     . If ,p   then 2 2,s    
contradicting the fact that s  is odd. If p   , then 2 4s p  , a contradiction. If 
p  , then 2 2s   . This is also a contradiction. 

Therefore, 
5

dim ( ) 3
M
T   and so 

5
dim ( ) 3

M
T  , where 3p   and s  is odd. 
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Similarly, for {1, }q  , where 2 q s  , 
5

dim ( ) 3
M
T   can be proven it the same 

manner as well. 
For an integer 4s  , let 

6
T  be a caterpillar 

1 2
ca( , ,..., )

s
k k k  such that { },r   

where {1,2,..., }r s . For an integer 4s  , let 
7
T  be a caterpillar 

1 2
ca( , ,..., )

s
k k k  such 

that     and 1
r
k  , where {2,3,..., 1}.r s   Combining Theorem 3.2.1 and 

Proposition 3.4.8, we arrive yet another result. 
Proposition 3.4.9. A caterpillar 

i
T , where 6 7i   has multidimension 3 . 

 Caterpillars with multidimension 3  are completely characterized, as we present 
next. 
Theorem 3.4.10. For an integer 4s  , let T  be a caterpillar 

1 2
ca( , ,..., )

s
k k k . Then T  

has multidimension 3  if and only if 
i

T T , where {1,2,...,7}i  . 
Proof. The preceding results provide the sufficient condition for a caterpillar T  having 
multidimension 3 . To show the necessary condition, suppose that T  has 
multidimension 3.  By Theorem I, it implies that 3  . For 0,   there is an integer 
r  with 2 1r s    such that 1

r
k  , for otherwise, T  is a path, contradicting the fact 

that dim ( ) 3
M
T  . Hence, 

7
T T . For 1  , obviously, 

6
T T . It remains 

therefore only to consider 2   and 3  . 
 For 2  , we claim that   contains at least one of {1, }s . Suppose, contrary 
to our claim that   contains neither 1  nor .s  Let 

1 2
{ , },r r   where 

1 2
2 1.r r s     By Theorem I, every multibasis of T  contains exactly one vertex of 

1 1
{ , },
r r
v w  say  

1
.
r
w  Since there are 

1
deg 4

T r
u   distinct components of 

1
,
r

T u  it 

follows by Proposition 3.2.3 that there is a vertex of a multibasis W  belonging to the 
component containing the spine-vertex 

1 1r
u


. Similarly, since there are 

2
deg 4

T r
u   

distinct components of 
2
,
r

T u  there is a vertex of W  belonging to the component 

containing the spine-vertex 
2 1r
u


. Therefore, W  contains at least four vertices, this is a 

contradiction. Thus,   contains at least one of {1, }s , that is, 
5

T T . 
 For 3  , we show that   contains both 1  and .s  Assume, to the contrary, 
that   does not contain 1  or ,s  say 1 . Let 

1 2 3
{ , , }r r r  , where 

1 2 3
2 .r r r s     

Then 
1 2 3

{ , , }
r r r

W w w w  is a multibasis of .T  Notice that 
1

deg 4
T r
u  , that is, there 
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are four distinct components of 
1
.
r

T u  However, both 
2r
w  and 

3r
w  must belong to the 

same component containing the spine-vertex 
1 1r
u


, contradicting Proposition 3.2.3 that 

1 2
,
r r
w w  and 

3r
w  cannot belong to the same component of 

1
.
r

T u  Thus,   contains 1  

and .s  We may assume without loss of generality that {1, , }r s   with 2
2

s
r

 
   

 
. 

Then 
1

{ , , }
r s

W w w w  is a multibasis of .T  If s  is even, then 
1

T T . We may assume 

that s  is odd. If 
2

s
r

 
  
 

, then 
1

( | ) ( | ),
s

mr w W mr w W  which is impossible. Thus, 

1
2 .

2

s
r


   Next, we consider two cases according to whether s  is congruent to 1  

or 3  modulo 4 . 
Case 1. 1 (mod4)s  . 

If 3r  , then 
2

T T . For 3r  , since 1
,

2

s
r


  it follows that 9s  . Next, 

we claim that 1
2

0sk 
 . Suppose, contrary to our claim, that 1

2

1sk 
 . Therefore, 

1 5
2 2

3 1 5
( | ) { , , } ( | )

2 2 2
s s

s s s
mr v W mr u W

 

  
  , contradicting the fact that W  is a 

multibasis of .T  Hence, 1
2

0sk 
  and so 

3
T T . 

Case 2. 3 (mod4)s  . 

If 1
3,

2

s
r


 , then 

2
T T . For 3r  , we claim that 1

2

0sk 
 . Suppose, 

contrary to our claim, that 1
2

1.sk 
  Then 1

2

3 1 5
( | ) { , , }

2 2 2
s

s s s
mr v W



  
 

5
2

( | ),smr u W
  contradicting the fact that W  is a multibasis of ,T  as we claimed. 

Hence, 1
2

0sk 
  and so 

3
T T . For 1

4
2

s
r


  , since 1

2

s
r


 , it follows that 

11s  . Next, we claim that 5
4

0.sk 
  Suppose, contrary to our claim, that 5

4

1.sk 
  

Therefore, 5
4

( | )smr v W


 3 3
4

1 9 3 3
{ , , } ( | )

4 4 4
s

s s s
mr u W



  
 , contradicting the fact 

that that W  is a multibasis of .T  Hence, 5
4

0sk 
  and so 

4
T T . 
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3.5 The multidimension of symmetric caterpillars 
 The caterpillars having multidimension 3  are studied in section 3.4. This 
suggests a way of investigating caterpillars having the multidimension at least 3 . Notice 
that the multidimension of a caterpillar is established by its second end-set  . For a 
caterpillar 

1 2
ca( , ,..., )

s
k k k , observe that for each 1 i s  , if both i  and 1s i   

belong to  , then the multirepresentations of second end-vertices 
i
w  and 

1s i
w

 
 with 

respect to the set { | }
i

W w i  , are the same. This lead us to determine a 
multibasis of a particular caterpillar. In order to do this, we need an additional definition. 
For 1s  , a caterpillar 

1 2
ca( , ,..., )

s
k k k  is called a symmetric caterpillar if 

1i s i
k k

 
  for 

each integer i  with 1 i s  . For instance, the symmetric caterpillar ca(2,0,2,1,2,0,2)  
is shown in Figure 18. 

 

Figure 18: The symmetric caterpillar ca(2,0,2,1,2,0,2)  

 For 1s  , the symmetric caterpillar ca(2) is a path of order 3 . Theorem J 
implies that its multidimension is 1  with multibasis 

1
{ }w . For 2s  , there are two 

symmetric caterpillars ca(1,1)  and ca(2,2) . Indeed, ca(1,1)  is a path of order 4  whose 
multidimension is 1  with multibasis 

1
{ }v . It is routine to verify that the multidimension of 

ca(2,2)  is 3  with a multibasis 
1 1 2

{ , , }u w w . Multibases of these caterpillars are 
indicated in Figure 19 by solid vertices. 

 

Figure 19: The symmetric caterpillar ca(2), ca(1,1)  and ca(2,2)  
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 As mentioned earlier, the multidimension of a path is 1 . We may therefore 
consider a symmetric caterpillar that is not a path. For 3s  , let T  be a symmetric 
caterpillar 

1 2
ca( , ,..., )

s
k k k  that is not a path. If 0  , then T  is a symmetric 

caterpillar 
1 2

ca( , ,..., )
s

k k k  with 1
r
k   for some {2,3,..., 1}r s  . Therefore a set 

1 1
{ , , }

s
u v v  is a multibasis of T  by Proposition 3.4.9 and so dim ( ) 3

M
T  . If 1  , 

then there is only one integer i  belonging to   for some {1,2,..., }i s . Since T  is a 

symmetric caterpillar, it follows that 1i s i   , that is, 1

2

s
i


 . This implies that s  

is odd and 1

2

s 
   

 
. Thus, there are two possibilities: (i) 3s   or (ii) 3s  . For 

3s  , the symmetric caterpillar ca(1,2,1)T   has multidimension 4  with a multibasis 

1 1 3 2
{ , , , }u v v w . For 3s  , a symmetric caterpillar T  has multidimension 3  with a 
multibasis 1

2
1

{ , , }ss
u v w

 . We therefore investigate a multibasis and the multidimension of 

a symmetric caterpillar 
1 2

ca( , ,..., )
s

k k k  with 2  , where 3s  . 
 By Observation 3.4.1, the multidimension of a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  with the second end-set  , must be at least  . In fact, its 

multidimension is at least 1  , as we now show. 
Proposition 3.5.1. For 3s  , let T  be a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  with the 

second end-set  . Then dim ( ) 1
M
T    . 

Proof. If 0,   then the result holds. We may assume for 1   that the statement of 
the proposition is false. Then there is a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  having a 

multiresolving set W  with W   . By Observation 3.4.1, W   . However, then, 

1
( | ) ( | )

s
mr u W mr u W , contradicting W  as being a multiresolving set of 

1 2
ca( , ,..., )

s
k k k . 

 Proposition 3.5.1 states that 1   is a lower bound for the multidimension of a 
symmetric caterpillar. Furthermore, we also establish an upper bound for the 
multidimension of a symmetric caterpillar, as follows. 
Proposition 3.5.2. For 3s  , let T  be a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  with the 

second end-set  . Then dim ( ) 3
M
T    . 



  47 

Proof. To show dim ( ) 3
M
T    , it suffices to verify that there is a multiresolving set 

of T  having cardinality at most 3  . Let W  be the set of all second end-vertices of 
T  with W   . We consider three cases for .  
Case 1. 1  belongs to .  

We claim that 
1

{ }B W u   is a multiresolving set of .T  Assume, contrary to 
our claim, that there are two vertices x  and y  of T  such that ( | ) ( | )mr x W mr y W . 
We consider two subcases. 
 Subcase 1.1. Both x  and y  belong to B . 

First, we show that both x  and y  belong to .W  Suppose, to the contrary, that 
either x  or y  does not belong to ,W  say x . Then 

1
x u . Since 

1
u  and 

1
w  are the 

only two adjacent vertices of B , it follows that 
1

( | )mr u B  contains 1  and so 
1

y w . 
However, since 

1
( , )

s
d u w  and 

1
( , )

s
d w w  are the maximum elements of 

1
( | )mr u B  and 

1
( | )mr w B , respectively, it follows that 

1 1
( , ) ( , )

s s
d u w d w w , which is a contradiction. 

Therefore, both x  and y  must belong to .W  Next, we let x w


  and y w


 ,  where 

1 s    . If 1
2

s
 

 
    

 
, then ( , ) 2

s
d w w s


    and ( , )

s
d w w




2s    are the maximum elements of ( | )mr w B


 and ( | )mr w B


, respectively. 

Therefore,   , producing a contradiction. Similarly, if 1 ,
2

s
s 

 
    

 
 then 

1
( , ) 1d w w


   and 

1
( , ) 1d w w


   must be equal, that is,   , which is 

impossible. We may assume that 1
2

s


 
   

 
 and 1 .

2

s
s

 
   

 
 Since ( , )

s
d w w



2s     and 
1

( , ) 1d w w


   are the maximum elements of ( | )mr w B


 and 
( | )mr w B


, respectively, it follows that 1s    . Since T  is a symmetric 

caterpillar, it follows that ( | ) ( | ).mr w W mr w W
 

  However, since 
1

( , )d w u




1
( , ),d w u


 it follows that ( | ) ( | )mr w B mr w B

 
 , this contradicts our assumption. 

 Subcase 1.2. Neither x  nor y  belongs to B . 
We consider three subcases. 

  Subcase 1.2.1. x  and y  are spine-vertices. 
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Let x u


  and y u


 , where 2 s    . Applying Proposition 3.4.2, we 

obtain that 2
2

s


 
   

 
 and 1.s     Since 

1
( | ) ( | )

s
mr u W mr u W

  
  and 

1 1 1
( , ) ( , ),

s
d u u d u u

  
  it follows that 

1
( | ) ( | ),

s
mr u B mr u B

  
  which is a 

contradiction. 
  Subcase 1.2.2. x  and y  are first end-vertices. 

Let x v


  and ,y v


  where 1 .s     By Proposition 3.4.2, 

2
2

s


 
   

 
 and 1.s     Since 

1
( | ) ( | )

s
mr v W mr v W

  
  and 

1
( , )d v u




1 1
( , ),
s

d v u
 

 it follows that 
1

( | ) ( | )
s

mr v B mr v B
  

 , this is also a contradiction. 
  Subcase 1.2.3. x  is a first end-vertex and y  is a spine-vertex. 

If {1, },s   then it is shown in the proof of Proposition 3.4.3 for 1p   that the 
set 

1 1
{ , , }

s
u w w  is a multiresolving set of .T  We therefore consider the second end-set 

of cardinality at least 3.  Let min( {1, }).p s    By the symmetry of ,T  
1 max( {1, }).s p s      Let x v


  and y u


 , where 1 , .s    We consider 

two subcases for   and .  
   Subcase 1.2.3.1. 1 .s     

By Proposition 3.4.3 (i), 1
2

s


 
   

 
 and 2s    . Since ( , )

s
d v w


 and 

1
( , )d u w


 are the maximum elements of ( | )mr v B


 and ( | )mr u B


, respectively, it 

follows that 
1

max( ( | { })) ( , ) 3
s s p

mr v B w d v w s p
 


 

       and 

1 1
max( ( | { })) ( , ) 1mr u B w d u u

 
     are the same. Consequently, 2p   and 

so 1 1.s      Since 
1

( , )d u u


 and 
2

( , )d u w


 are in ( | )mr u B


, it follows that 
( | )mr v B


 also contains two ( 1)s   ’s. Notice that 

1
,
s s
u v


 and 

1s
w


 are the only 

three vertices of T  whose distance from v


 is 1 1s      . Since 
s
u  and 

1s
v


 do 

not belong to ,B  it follows that ( | )mr v B


 contains only one element of 1s   , 
which contradicts our assumption. 
   Subcase 1.2.3.2. 1 .s     

Applying Proposition 3.4.3 (ii), we obtain that 1
2

s
s

 
   

 
 and s   . 

Since 
1

( , )d v w


 and ( , )
s

d u w


 are the maximum elements of ( | )mr v B


 and 
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( | )mr u B


, respectively, it follows that 
1 1

max( ( | { })) ( , )mr v B w d v u
 

    and 

1
max( ( | { })) ( , ) 2

s s p
mr u B w d u w s p

 


 
       are the same. Certainly, 

2p   and so s   . Since 
1

( , )d v u


 and 
2

( , )d v w


 are in ( | )mr v B


, it follows 
that ( | )mr u B


 also contains two ( )s  ’s. Notice that 

1
,
s s
u v


 and 

1s
w


 are the only 

three vertices of T  whose distance from u


 is s    . Since 
s
u  and 

1s
v


 do not 

belong to ,B  it follows that ( | )mr u B


 contains only one element of s  , which 
contradicts our assumption. 
Hence, in subcases 1.1 and 1.2 above, ( | ) ( | )mr x B mr y B  for all , ( ).x y V T  This 
implies that B  is a multiresolving set of .T   
Case 2. 1  and 2  do not belong to .   

Symmetrically, 1s   and s  also do not belong to .  Let min( )p   . Then 
1 max( )s p    . We claim that 

1
{ , }

s
B W u v   is a multiresolving set of .T  

Suppose, contrary to our claim, that there are two vertices x  and y  such that 
( | ) ( | )mr x B mr y B . We consider two subcases. 

 Subcase 2.1. Both x  and y  belong to .B  
We first show that 

1
, { , }.
s

u v x y  Assume, to the contrary, that 
1

.u x  Since 

1 1
max( ( | )) ( , ) max( ( | )),

s
mr u B d u v mr y B   it follows that 

s
y v . However, since 

1 1
( , )d u u  and ( , )

s s
d v v  are the minimum elements of 

1
( | )mr u B  and ( | ),

s
mr v B  

respectively, and clearly, 
1 1 1

min( ( | { })) ( , )
p

mr u B u d u w p    and 

1 1 1
min( ( | { })) ( , ) 1

s s p
mr u B u d v w p

 
    , it follows by Proposition 3.3.3 that 

1
( | ) ( | ),

s
mr u B mr v B  producing a contradiction. Thus, x  and y  belong to .W  

Next, we let x w


  and y w


 , where 1.p s p       If 1
2

s
 

 
    

 
, 

then ( , )
s

d w v


 and ( , )
s

d w v


 are the maximum elements of ( | )mr w B


 and 
( | )mr w B


, respectively. Therefore,   , which is a contradiction. Similarly, if 

1 ,
2

s
s 

 
    

 
 then 

1
( , )d w u


 and 

1
( , )d w u


 must be equal, which is 

impossible. We may assume that 1
2

s


 
   

 
 and 1 .

2

s
s

 
   

 
 Since ( , )

s
d w v


 

and 
1

( , )d w u


 are the maximum elements of ( | )mr w B


 and ( | )mr w B


, 



  50 

respectively, it follows that 2.s     Since 

1
max( ( | { })) ( , )

s s p
mr w B v d w w

   
   3s p     and 

1
max( ( | { })) ( , ) 2

p
mr w B u d w w p

 
      are equal, it follows that, certainly, 

1s    , producing a contradiction. 
 Subcase 2.2. Neither x  nor y  belongs to .B  

We consider three subcases. 
  Subcase 2.2.1. x  and y  are spine-vertices. 

Let x u


  and y u


 , where 2 .s     By Applying Proposition 3.4.4, it 

implies that 2
2

s


 
   

 
 and 2s    . Since ( , )

s
d u v


 and 

1
( , )d u u


 are the 

maximum elements of ( | )mr u B


 and ( | ),mr u B


 respectively, 
max( ( | { }))

s
mr u B v


 

1
( , ) 2

s p
d u w s p




 
     and 

1
max( ( | { })) ( , ) 1

p
mr u B u d u w p

 
      must be equal. Necessarily, then 

1s    . This is a contradiction. 
  Subcase 2.2.2. x  and y  are first end-vertices. 

Let x v


  and y v


 , where 1 .s    By Proposition 3.4.4, 

1
2

s


 
   

 
 and 2s    . Since ( , )

s
d v v


 and 

1
( , )d v u


 are the maximum 

elements of ( | )mr v B


 and ( | ),mr v B


 respectively, it follows that 

1
max( ( | { })) ( , )

s s p
mr v B v d v w

   
   3s p     and 

1
max( ( | { }))mr v B u




( , ) 2
p

d v w p


     must be equal. Consequently, 1s    . This is also a 
contradiction. 
  Subcase 2.2.3. x  is a first end-vertex and y  is a spine-vertex. 

Let x v


  and y u


 , where 1 , .s    We consider two subcases 
according to   and .  
   Subcase 2.2.3.1. 1 .s     

By Proposition 3.4.5 (i), 1
2

s


 
   

 
 and 3s    . Since ( , )

s
d v v


 and 

1
( , )d u u


 are the maximum elements of ( | )mr v B


 and ( | ),mr u B


 respectively, it 

follows that 
1

max( ( | { })) ( , ) 3
s s p

mr v B v d v w s p
 


 

       and 
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1
max( ( | { }))mr u B u


 ( , ) 1

p
d u w p


     must be equal. Evidently, 

2s    , which is impossible. 
   Subcase 2.2.3.2. 1 .s     

Applying Proposition 3.4.5 (ii), it implies that 1
2

s
s

 
   

 
 and 

1,s     Since 
1

( , )d v u


 and ( , )
s

d u v


 are the maximum elements of ( | )mr v B


 
and ( | ),mr u B


 respectively, it follows that 

1
max( ( | { }))mr v B u


 

( , ) 2
p

d v w p


    and 
1

max( ( | { })) ( , ) 2
s s p

mr u B v d u w s p
 


 

       are 
equal. As verified above, s   , which cannot occur. 
Hence, ( | ) ( | )mr x B mr y B  for all , ( ).x y V T  This implies that B  is a 
multiresolving set of .T  
Case 3. 1  does not belong to   and 2  belongs to .  

Let T   be a symmetric caterpillar which is obtained from T  by joining end-
vertices x  and y  to the spine-vertices 

1
u  and 

s
u , respectively. Therefore, 1

T 
 . By 

applying Case 1, 
1 1

( { , }) { }
s

B W v v u    is a multiresolving set of .T   Since 
{ , },T T x y   it follows by Corollary 3.2.2 that 

1 1
{ , , }

s
B W u v v   is a 

multiresolving set of .T   
Hence, every symmetric caterpillar T  has a multiresolving set of cardinality at most 

3   and so dim ( ) 3
M
T    . 

 The following result is obtained from the bounds given in Propositions 3.5.1 and 
3.5.2. 
Corollary 3.5.3. For 3s  , let T  be a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  with the 

second end-set  . Then  

1 dim ( ) 3.
M
T       

 The multibases of symmetric caterpillars are characterized by the following 
result. Furthermore, the sharpness of Corollary 3.5.3. is presented. 
Theorem 3.5.4. For 3s  , let T  be a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  with 

2   and let W  be a set of all second end-vertices of .T  Then 
(i) if 1 , then 

1
{ }W u  is a multibasis of ,T  



  52 

(ii) if 1,2 , then 
1

{ , }
s

W u v  is a multibasis of ,T  and 
(iii) if 1   and 2 , then 

1 1
{ , , }

s
W u v v  is a multibasis of .T  

Proof.  (i) Assume that 1 .  By Case 1 in the proof of Proposition 3.5.2, it implies that 

1
{ }W u  is a multiresolving set of .T  Hence, dim ( ) 1

M
T     by Corollary 3.5.3, 

and so 
1

{ }W u  is a multibasis of .T  
 (ii) Assume that 1,2 .  By Case 2 in the proof of Proposition 3.5.2, it implies 
that 

1
{ , }

s
W u v  is a multiresolving set of .T  Therefore, dim ( ) 2

M
T    . Next, we 

claim that dim ( ) 2.
M
T     Let min( ).p    Since there are four components of 

,
p

T u  it follows by Theorem I and Proposition 3.2.3 that at least one vertex from the 
component of 

p
T u  containing a vertex 

1
,

p
u


 belongs to every multiresolving set of 

.T  Similarly, every multiresolving set must contain at least one vertex from the 
component of 

1s p
T u

 
  containing 

2
.

s p
u

 
 Therefore, by Observation 3.4.1, every 

multiresolving set of T  has cardinality at least 2.   Hence, dim ( ) 2
M
T     and 

so 
1

{ , }
s

W u v  is a multibasis of .T  
 (iii) Assume that 1   and 2 .  By Case 3 in the proof of Proposition 3.5.2, 
it implies that 

1 1
{ , , }

s
W u v v  is a multiresolving set of .T  Thus, dim ( ) 3.

M
T     

Next, we show that dim ( ) 3.
M
T     Since there are four components of 

2
,T u  it 

follows by Proposition 3.2.3 that every multiresolving set of T  must contain at least one 
vertex of 

1 1
{ , }u v . Similarly, every multiresolving set of T  must contain at least one 

vertex of { , }
s s
u v . We claim that every multiresolving set of T  contains three vertices of 

1 1
{ , , , }

s s
u u v v . Suppose, contrary to our claim, that there is a multiresolving set S  of T  

containing only one of 
1 1

{ , }u v  and one of { , }
s s
u v . By Observation 3.4.1, we may 

assume without loss of generality, that .W S  If 
1
, ,
s

u u S  then 

1 2
( | ) ( | )mr u S mr w S , which is impossible. If 

1
, ,
s

u v S  then 
1

( | )mr u S 

2
( | )mr w S , a contradiction. If 

1
, ,
s

v u S  then 
1

( | ) ( | )
s s

mr u S mr w S


 , producing a 
contradiction. If 

1
, ,
s

v v S  then 
1

( | ) ( | )
s

mr v S mr v S , which is also impossible. 
Therefore, every multiresolving set of T  has cardinality at least 3.   Hence, 
dim ( ) 3

M
T     and so 

1 1
{ , , }

s
W u v v  is a multibasis of .T   
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Let T  be a symmetric caterpillar 
1 2

ca( , ,..., )
s

k k k  with 1
i
k   for some integer i  

with 2 1i s   . If 
i

T v  is not a path, then by applying Theorems 3.2.1 and 3.5.4, 
dim ( ) dim ( )

M i M
T v T  . This observation provides us with the following more 

general result as we state next. 
Corollary 3.5.5. For 3s  , let T  be a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  with the 

second end-set 
T

  and let T   be a caterpillar 
1 2

ca( , ,..., )
s

l l l  that is a subgraph of T  
and is not a path, with the second end-set 

T 
 . If ,

T T
    then 

dim ( ) dim ( )
M M
T T  . 

Proof. Suppose that .
T T

    If ,T T   then dim ( ) dim ( ).
M M
T T   We therefore 

assume that .T T   Since T   is a subgraph of ,T  it follows that there is an integer i  
with 2 1i s    such that 1

i
k   but 0

i
l  . Symmetrically, 

1
1

s i
k

 
  and 

1
0

s i
l
 

 . 
Let { ( ) | 0}.

i i
F v V T l    Note that .T T F    Theorem 3.5.4 implies that every 

multibasis of T  does not contain every first end-vertex in .F  Therefore, a multibasis of 
T  is also a multibasis of T   and so dim ( ) dim ( ).

M M
T T   



 

CHAPTER 4 
CONCLUSION AND OPEN PROBLEMS 

 We conclude main results of this work and give some open problems for future 
work in this chapter. 

4.1 Conclusion 
 This section is to present our comprehensive work concerning the connected 
local dimension and the multidimension of graphs. The main results are as follows: 

4.1.1 The connected local dimension of graphs 
4.1.1.1 The connected local dimensions of some well-known graphs. 
1. Let G  be a connected graph of order 2n  . Then 

(i) cld( ) 1G   if and only if G  is a bipartite graph, 
(ii) cld( ) 1G n   if and only if ,

n
G K  a complete graph of order .n  

2. For an integer 3,n   the connected local dimension of a cycle 
n
C  is 

1 if  is even,
cld( )

2 if  is odd.n

n
C

n


 


 

3. Let 
n
W  be a wheel, where 7.n   Then cld( ) 1.

4n

n
W

 
  
 

 

4.1.1.2 Graphs with prescribed connected local dimensions and other 
parameters 

1. Let ,a b  and n  be integers with 4n  . Then there exists a connected 
graph G  of order n  with ld( )G a  and cld( )G b  if and only if 
, ,a b n  satisfy one of the following: 

(i) 1,a b n    
(ii) 1,a b   and 
(iii) 2 2.a b n     

2. Let ,b c  and n  be integers with 4n  . Then there exists a connected 
graph G  of order n  with cld( )G b  and cd( )G c  if and only if 
, ,b c n  satisfy one of the following: 
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(i) 1,b c n    
(ii) 1b   and 1 1,c n    and 
(iii) 2 2.b c n     

4.1.1.3 Connected local bases and local bases in graphs 
1. There is an infinite class of connected graph G  such that some 

connected local bases of G  contain a local basis of G  and others 
contain no local basis of .G  

2. For 3,k   there exists a graph with a unique connected local basis of 
cardinality 1k  . 

4.1.2 The multidimension of graphs 
4.1.2.1 The multisimilar classes of graphs 
1. Let W  be a set of vertices of a connected graph G  and let u  and v  

be vertices of G  such that [ ]
W

u v . Then ( | )mr u W  and ( | )mr v W  
have the same minimum (or maximum) element if and only if 

( | ) ( | ).mr u W mr v W  
2. If W  is a multiresolving set of a connected graph ,G  then the 

cardinality of multisimilar class of each vertex of G  with respect to W  
is at most diam( ) 1G  . 

3. Let u  and v  be vertices of a connected graph G  and let W  be a set 
of vertices of .G  Then 
(i) if [ ] [ ] ,

W W
u v  then ( | ) ( | )mr x W mr y W  for all [ ]

W
x u  and 

[ ] ,
W

y v  
(ii) if [ ] { }

W
u u  for all ( ),u V G  then W  is a multiresolving set of .G  

4.1.2.2 The characterization of caterpillars with multidimension 3  
1. A caterpillar 

i
T , where 1 4i   has multidimension 3 . 

2. A caterpillar 
5
T  has multidimension 3 . 

3. A caterpillar 
i
T , where 6 7i   has multidimension 3 . 
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4. For an integer 4,s   let T  be a caterpillar 
1 2

ca( , ,..., ).
s

k k k  Then T  
has multidimension 3  if and only if 

i
T T , where {1,2,...,7}.i   

4.1.2.3 The multidimension of symmetric caterpillars 
1. For 3,s   let T  be a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  with the 

second end-set .  Then dim ( ) 1
M
T    . 

2. For 3,s   let T  be a symmetric caterpillar 
1 2

ca( , ,..., )
s

k k k  with the 
second end-set .  Then dim ( ) 3

M
T    . 

3. For 3,s   let T  be a symmetric caterpillar 
1 2

ca( , ,..., )
s

k k k  with the 
second end-set .  Then 1 dim ( ) 3

M
T      . 

4. For 3,s   let T  be a symmetric caterpillar 
1 2

ca( , ,..., )
s

k k k  with 
2   and let W  be a set of all second end-vertices of .T  Then 

(i) if 1 ,  then 
1

{ }W u  is a multibasis of ,T   
(ii) if 1,2 ,  then 

1
{ , }

s
W u v  is a multibasis of ,T  and 

(iii) if 1   and 2 ,  then 
1 1

{ , , }
s

W u v v  is a multibasis of .T  
5. For 3,s   let T  be a symmetric caterpillar 

1 2
ca( , ,..., )

s
k k k  with the 

second end-set 
T

  and let T   be a caterpillar 
1 2

ca( , ,..., )
s

l l l  that is a 
subgraph of T  and is not a path, with the second end-set .

T 
  If 

,
T T

    then dim ( ) dim ( ).
M M
T T    

4.2 Open problems 
In Chapter 2, we know by (2.3) that 1 ld( ) cld( ) cd( ) 1.G G G n      It 

suggests the following question: For which quadruples , , ,a b c n  of integers with 
1 1,a b c n      does there exist a connected graph G  of order n  with 
ld( ) , cld( )G a G b   and cd( )G c ? 
In Chapter 3, the complete graph 

n
K  is only one graph that its dimension is 1n   but 

not so for multidimensions. It follows by (15) and (16) that the multidimension of 
complete graph is not defined. Thus, (3.1) leads us to the conjecture: If G  is a 
connected graph such that dim ( )

M
G  is defined, then dim ( ) 2

M
G n  . 
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In section 3.4, for an integers 2s  , let T  be a caterpillar 
1 2

ca( , ,..., )
s

k k k  of order n  
such that     and dim ( )

M
T  is defined. It then follows by Theorem I that 

dim ( ) .
M
T n      

Moreover, by Corollary 3.4.7, caterpillars 
1 2 3
, ,T T T  and 

4
T  also illustrate the sharpness 

of this lower bound. It would be interesting to determine whether this upper bound is 
sharp or not. 
In section 3.5, a subdivision T   of a symmetric caterpillar T  is a graph that is obtained 
from T  by inserting vertices of degree 2  into some, all or none of the edge of .T  It 
would be interesting to study a multibasis of a subdivision T   of .T  
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