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The electromagnetic form factors of the nucleon, the common name for the
proton and the neutron, are fundamental properties that play an essential role in the
study of the internal structure of the nucleon. In this work, the electromagnetic properties
of the nucleon were calculated using the Perturbative Chiral Quark Model (PCQM). In
the PCQM, the nucleon is considered to be the bound state of the three valence quarks
surrounded by the cloud of the Goldstone bosons: the pions, kaons and eta meson.
Previously, the electromagnetic properties were studied based on this model and using
the truncated quark propagator, restricted only to the quark in the ground state. An
attempt to include the excited states quark propagators in the study of the nucleon
electromagnetic form factors was performed with this model; however, it did apply to the
case of the neutron, but not the proton. Therefore, to bring the consistency to the
nucleonic level, the study was extended by including the second excited state quark
propagators to calculate the electromagnetic form factors and applied to both the
proton and the neutron. The results were in good agreement with the experimental data
and showed the significance of the contributions of the quark excited state propagators

to the electromagnetic properties of the nucleon.
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CHAPTER 1
INTRODUCTION

Nucleon, a collective name for proton and neutron, is an important particle in
Particle Physics. Understanding the internal structure of the nucleons and their
properties are fundamental importance. However, the ultimate understanding of the
nucleon has not been achieved yet. Both theoretical and advanced experimental works
at ELSA, JLab, MAMI, MIT, NIKHEF and other laboratories are still ongoing in order to
reach that goal. Up to date, there is no theoretical framework that can thoroughly
describe the nucleon electromagnetic properties.

One of the difficulties comes from the fact that studying the internal structure of
nucleon by directly using the fundamental theory—-the Quantum Chromodynamics (QCD)
is extremely difficult and needs many complicated diagrams. Meanwhile, the other
approaches, such as phenomenological models, or formulation of QCD on the lattice
(lattice QCD) are options for studying nucleon properties but still needs higher
performance computation. The complicated calculations of QCD in the non-perturbative
region, or at low four-momentum transfer, raised a necessary on development of other
models, such as the effective field theory (EFT). It was around the early of eighties a new
model has been introduced, the so-called chiral quark model (1). Originally, this idea
was formulated in the context of the cloudy bag model in which the nucleon is treated as
a bound system of valence quarks with a surrounding meson cloud. So far, this chiral
quark model has been researching and developing continually, and up to now, this
model plays an important role in low-energy physics.

In 2001, Lyubovitskij et al. (1) proposed an extended relativistic quark model,
which not only improved the calculation results when comparing with experimental data
but also be able to fulfill many chiral constraints. The Goldstone bosons are introduced
as a consequence of chiral symmetry breaking. In the study, the core improvements of
the proposed model were mainly i) starting the SU(3), i.e., the meson cloud composes of
the m, K and n mesons which are treated perturbatively; ii) consistency of perturbation

theory for both on the quark and nucleonic level by use of renormalization methods; iii)



allowing to account for excited quark states in the meson loop diagrams; iv) fulfillment of
the constraints imposed by chiral symmetry, including the current quark mass in the
nucleon. Furthermore, the sea-quark contributions were already included in the
Goldstone mesons cloud effect of this model, so-called the Perturbative Chiral Quark
Model (PCQM).

In this study, we use the PCQM in order to calculate the electromagnetic
properties of the nucleon, i.e., the magnetic moments, charge radii, magnetization radii
of both proton and neutron. Besides those properties, we also investigate the four-
momentum transfer Q2-dependent electric form factors GY (Q?) and magnetic form factor
G (Q?) of the nucleon. The slope of the electric form factor G (Q%)and magnetic form
factors GN(Q?) at zero momentum (Q? = 0) provides the electric and magnetic root
mean square radius value, while the values of the electric and magnetic form factors at
zero momentum give the electric charge and magnetic moments of the nucleon. The
effective Lagrangian of the PCQM is formulated to describe quarks moving in a radially
quadratic effective potential Vorp = S(r) + yOV (r) with r = |X|. We determined the scalar
potential S(r) as a potential which is responsible for the confinement of quarks and the
vector potential V(r) as a potential which is responsible for short-range effects of the
gluon field. From the results of previous works (1, 2), we may consider the mesons fields
as small fluctuations to the system, makes us be able to restrict our calculations only to
the linear form of the strong meson-quark interaction, is given by

Lig = —@(X)S(r)iyf’@ V(%) (1.1)

For our perturbative scheme, we calculate the meson loop diagram restricted to
only one loop, or up to the order of O (:—2) We also treat the mass term of the valence
quarks as a small perturbation to the system.

There were calculations reported in Ref. (1, 3-6) on the Electromagnetic form
factors of the nucleon. In Ref. (2) the quark propagator with the excited quark states is
included in the calculational technique of the PCQM. However, only applied the charge

form factor of the neutron. It is well known that the three valence quarks give zero



contribution to the charge form factor of the neutron, and the main contribution comes
from the meson contributions.

The valence quarks inside nucleons are structureless and spin-1/2 particle.
Therefore in our model, they are described by Dirac wave function ¥, (x) of any state of

a including ground state @ = 0 and excited state @ = 1,2,.., where x = x* = (t,x,y, 2),
VYo (%) = boua(X) exp(—i&,0). (1.2)

The wave function u,(X) is the solution of the Dirac equation with a general quadratic
form of confinement potential,

[—id- 7 + BS() + V() — E,Jua @) = 0. (1.3)

For the quadratic-like potential S(r) and V(r), the explicit form of u, (X) is

Uy (®) = N, exp (_ #2 )( 9a(r) )‘ya(ﬂ?)){f)(c' (1.4)

282 \iG - 2f, (1)

The g,(r) and f,(r) are the upper and lower components of the quark spinor,
respectively. It means that we have two free parameters in our quark wave function. We
know that these two parameters are important factors in shaping the quark wave
function, which can affect our results. Further, because they are related to energy &, of
the quark propagator, so values of the parameter should vary with respect to the
number of excited states we consider in the model. Here we define AE, = €, — &, to be
the difference between the energy of excited state a, denoted by &, and the ground
state energy, denoted by &,. The important relation for AE,, in terms of the quantum

numbers n and [, is

(A5a+3f)2(A8a+piR) =If—3(4n+21—1)2. (1.5)

In phenomenological methods, using an appropriate set of parameters can
provide good calculation results when comparing with experimental data and also
reveal some hidden information.

In this work, we will base on the PCQM in order to calculate electromagnetic

form factors and properties of the nucleon by using the modified quark propagator.



Research objectives

1. To modify the model by using the quark propagator in the first and
second excited states and use this quark propagator to calculate the electromagnetic
form factors of the nucleon.

2. To fit the static properties such as the magnetic moments, charged
radius and magnetic radius of nucleon by using the appropriate values of the model
parameters p and R extracted from the experimental data..

Significance of research

For consistency, in this work, the excited state of quarks will be included to
both proton and neutron to study the electromagnetic form factors of nucleon.
Therefore, the contributions to the electromagnetic properties of nucleon by the quark
excited state in the propagator will be clarified.

Scope of research

1. In this work, the order of accuracy of the PCQM up to the order of
0 (%r?z ms) will be considered.

2. We will restrict ourselves to the case where the low-lying quark excited
states are included in the quark propagator.

3. Only the small four-momentum squared region up to 0.4 GeV? will be

considered (Q% < 0.4 GeV2).).



CHAPTER 2
LITERATURE REVIEW

Recently, there has been a lot of theoretical researches and experiments in the
field of the nucleon and other baryon octet focused on electromagnetic properties, in
order to understand the internal structures of those particles. In decades, the theoretical
description of electromagnetic form factors was performed in detail by approaches of
hadron physics, such as QCD Sum Rules, Chiral Perturbation Theory, Lattice QCD, and
AdS/QCD technique. In this chapter, we raise some essential works which are
concerning our model of study and some of the works which are recently in the area of
interest from hadronic particle physicists.

In 2001, Kubis et at. used the chiral expansion method in order to analyze the
electromagnetic form factors of the baryon in (3). The effective Lagrangian of the system
consists of a string of terms of increasing chiral dimension. In the study, they analyzed
internal structures of the baryon by probing with four-momentum transfer Q2 = 0.4 cev?.

The effective Lagrangian of the model is given below.

2 1 2 3 4 2.1
Lopr = LA+ LO+LA+L80 48 + ... (2.1)

Where the ellipsis denotes terms of higher-order not needed. The chiral effective pion-

pion Lagrangian is given by

2
2 =2 k4 1), 22)
The pion—nucleon Lagrangian at leading order is
Lfrlla =y (iy“D -m+ %Ay"uuys) v, (2.3)

They evaluated the electromagnetic form factors in term of matrix element which is

described in terms of both the Dirac form factor F¥ (Q?)and Pauli form factor FY(Q?) as,
(NGO OINGD) = 30p) [rFY @) + LY @)]uwy. (29

and also in terms of the electric and magnetic Sachs form factors G¥(Q?) and G (Q?)

which defined by



YD) = FN Q) - L FY (0D,
N (2.6)
G Q) = F'(Q*) + F'(@%).
As a result, they could perform the calculations, which gave a good description of the
nucleon charge form factor. Even though the results still needed some improvement, but
the results had shown the consistency of the effective chiral perturbation method with
the experimental data.

Furthermore, they extended the study to investigate the octet baryons form
factors in (4). They changed the SU(2) calculation to be the SU(3) case. In the
theoretical calculation, they spelled out the effective chiral Lagrangian into two parts, the
meson-baryon Lagrangian and the chiral effective Lagrangian from Goldstone bosons.

The meson—baryon Lagrangian at leading order was

L5y = (B(y*D —m)B) + 2= By ys(uy, B))- (2.7)

And the chiral effective Goldstone boson Lagrangian was given by

prz(% = i—z(u”u“ AN (2.8)

They evaluated the electromagnetic properties of the nucleon and also predicted the
charge and magnetic radii of the octet baryons, together with their magnetic moments
which still had no experiment data yet, for example, A and £t . In the results, they found
those properties, including magnetic moments and electric radii, show the same
tendency to the experimental data. Nevertheless, the magnetic radii still needed some
improvement.

In 2004, Fuchs et al. calculated the electromagnetic form factor of nucleon at g*
and made use of the extended on-mass-shell renormalization method (5). They
evaluated the electromagnetic form factors in term of matrix element which is described
in terms of both the Dirac form factor FN(Q?) and the Pauli form factor FY(Q?) and in
terms of the electric and magnetic Sachs form actors G (Q?) and G (Q?). The Fourier
transforms of the Sachs form factors can be related to the distribution of charge and
magnetization inside the nucleon. They compared the results with those obtained in the

heavy-baryon approach and in the infrared regularization and found the results were



almost similar. However, there were small differences between the two methods, due to
the way how the regular higher-order terms of loop integrals were treated.

For further improvement, in 2005, Matthias R. Schindler included the vector
mesons as explicit degrees of freedom into the model of study (6). The coupling of the

vector mesons to pions and external fields is given by
£8) = —f, Te(p" 1) = fu® 1) = Fp ) + - (29)

They found the results for the Sachs form factors in the low momentum transfer region
0 GeV? < Q% < 0.4GeV? with vector mesons were considerably improved. Moreover, the
most dominant contributions to electromagnetic form factors came from tree-level
diagrams, while loop corrections with internal vector meson contributions were small.

In 2018, Thomas Gutsche, Valery E. Lyubovitskij, and Ivan Schmidt reported
calculation results of electromagnetic properties of the nucleon and the Roper
resonance based on the AdS/QCD (7). In the study, they described the system by
conformal Poincar’e metric,

M, N _ .a_a M, N
GunX" X" = EyENTgpX T XT)

N ) 4 (2.10)
= Z—Z(dxﬂdx —dz

The action S which is a temperature-dependent (T), contains a free part S,, describing
the confined dynamics of AdS fields, and an interaction part S, describing the
interactions of fermions with the vector field.

S =350+ Sint

So = f d*xdz \/Ee“p(Z'T){LN(x, z,T)+ Lr(x,2,T) + Ly(x,2,T)},
(2.11)

Sint = fd‘*xdz Jae ?ED{Lyyy (x,2) + Lygg(x,2,T)
+ Lyry(x,2,T)}
The definitions of the temperature-dependent nucleon Sachs form factors  G§,(Q?,T)
the temperature-dependent electromagnetic radii (rZ,(T))" in terms of the Dirac form
factor FN(Q?,T) and Pauli form factor F)Y(Q?,T) are shown below

2
GFQ%T) = F'(Q*T) = e FY (@ T,

(2.12)
Gu(Q* 1) =F'(Q* 1)+ F' Q%7



dGN(0% T
(2N = —6L)
aQ? 2
Q%=0
2 N _ 6 dGy(QiT)
O = - A

Recently, lattice QCD is becoming one of the powerful approaches to
investigate the properties of nucleons. However, it still needs some higher performance
in a computer simulation. In 2017, C. Alexandrou et al., performed the calculations by
using the lattice QCD method [6]. In their work, they used three methods to extract
information on nucleon electromagnetic properties from the lattice data. The three
methods were 1) Plateau method, 2) the Two-state fit method and 3) Summation
method. The simulation parameters and results of calculations such as isovector and
isoscalar contribution at physical pion mass of around 130 MeV were evaluated. Also,
the Sachs nucleon form factors, including the disconnected contributions, were
presented directly at the physical point. In the study, the Isovector and isoscalar form
factors data were compared with the dipole fits as below.

Gi(Q>) = =3 (2.13)
(1"'1\,1—13)2

The PCQM is another approach to investigate the internal structures of
nucleons for more than two decades. Application of the PCQM to study various baryons
properties are reported, e.g., the TN o-terms (8, 9). The the N o-terms are known as
the fundamental parameters of low-energy hadron physics since they provide a direct
measure of the scalar quark condensates in nucleons. In particular, the sigma-terms are
mostly determined by the quark-antiquark sea and not by the valence quark
contribution. The PCQM will be mentioned in more detail in chapter 3. In this model, the
cloud of virtual Goldstone mesons that surrounds any baryon contributes to the mass
and other properties of that particle. As a result, the sigma-term g,y with the quark
propagator restricted to the ground state was calculated in (9).

In 2001, V. E. Lyubovitskij et al. applied the PCQM to evaluate analytical results
for the nucleon charge and magnetic form factors (1). The model was based on an

effective Lagrangian, where nucleons were described by relativistic valence quarks



surrounded by a perturbative cloud of Goldstone bosons. The Lagrangian of the system

was given by

Leff = ‘Cf;;l; + L)(SB- (2.14)
Where,
; — 1 ~
Li7,00 = P[0, = S@) =y V(@) + 5 3,8())?
— L) (2.15)
= SOy —= 90,
Lyss =~ M) — = Tr[@2 @) M].
The quark wave function restricted to the ground state was given below.
P(x) = bouo(Dexp(—izot), (2.16)

The wave function u,(X) belongs to the basis of potential eigenstates. S(r)is the scalar
confinement potential and V(r) is the vector potential of the model. Both of them are

quadratic radial dependence.
S(T) — Ml + C1T2, (217)
V(r) =M, + c,r>.

Furthermore, for the sake of simplicity and be consistent with the potential model, they

introduced a Gaussian ansatz as the quark wave function with the explicit form as

Ug(X) = Ny exp (—%) (iplE:> XsXfXe (2.18)
Besides, they introduced a nucleon charge and quark mass renormalization into the
calculation, in order to: i) to maintain the proper definition of physical parameters, such
as nucleon mass and, in particular, the nucleon charge and ii) to effectively reduce the
number of Feynman diagrams to be evaluated. Then the renormalized quark field

becomes as below.

WECemy) = bowp G mpexp(—ieh (m)e),

(2.19)
T (2T r ry X 1 G2
s Gsmy) = No (mpexp (=e(nD) 5z) {1 22 | 1s7e

In the results, they found the most of the electromagnetic properties, such as magnetic

moments, proton charge radius and magnetic radii, except the neutron charge radius,
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were in the same tendency of experimental data. Even though the magnitude value of
the neutron charge radius was too small, but the sign was correct.

In 2004, in order to investigate the internal structure of other baryon octets
besides nucleon, S. Cheedket et al. applied the PCQM to evaluate the electromagnetic
properties of the baryon octet (2). They evaluated the electromagnetic form factors of
the baryon in the Breit frame, where gauge invariance is fulfilled. The Sachs charge form

factor GE and magnetic form factors G§ of the baryon in term of momentum transfer

Q?as below.
<BS' (g) INOIES (‘%)) = x4.x5,GE(Q?),
(2.20)
(22 (9)[F[B. (~2)) = 24,225,507
Expressions for the Sachs form factors in the PCQM are
xixsGEQY) = a0

(0] E2co J 8(6) d*d* s . d*ne OFTILET (1) o LET (1 )I2CO) 1)

and

)(;'r im(;BerB XBSGﬁ(QZ) = (2.2)

(60| Zhcos [ 8 dhxd*xy .. dbxye TETLLET () oo L3 ()] (0|0
Note that, in this study, the modification of the quark propagator is investigated only to
the charge neutron form factor. Nevertheless, it was shown that the excited states quark
propagator, together with effect from the meson cloud, help to improve the values of the
low-Q? region of the charge neutron form factors.

Furthermore, in (10) Pumsa-ard et al. applied PCQM to investigate the
electromagnetic transitions of the nucleon to baryon excitations properties, which
provide important information about hadron physics and the structure of the nucleon. In
the study, they considered the determination of the momentum dependence of the
helicity amplitudes A;, and Az, of the N — A transition at one-loop, and also
investigated the role of excited quark states in meson loop diagrams. In the PCQM the

helicity amplitudes A;,, and 4s,,, are defined as below.
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e 1 )
A1(0%) = — <At 1 2‘——.[6 t)d*xd*x,;d*x,e~t9*
X T[LEer (1) LEer (x2)]7 () - €]Ip, —1/2 >, (2.23)
e 1 .
A3(0%) = — <A%,3 2‘——.[6 t)d*xd*x,;d*x,e~t*

X T[Le () Lier (x2)]7(x) - €]Ip, 1/2 >,

As a result, they accomplished in calculations numerically of the transverse helicity
amplitudes for the N — A transition by the PCQM approach. Besides, they could also
showed the importance of meson cloud corrections related to the magnitude of the
helicity amplitudes. They found that the excited quark states could contribute
significantly at the level of 15% to fully account for the measurements.

The strange quark contributions to the properties of the nucleon also have been
studied and reported in (11). They evaluated both of the strange vector and axial-vector
nucleon form factors and seemed to be consistent with the SAMPLE and HAPPEX

experimental data. The definitions of nucleon form factors were shown below
2

GE(Q?) = Ff (@) -

amz 2@, (2.24)
Gi1(Q%) = F£(Q*) + F5(Q%).

Besides, in 2006 the PCQM was used to study the nucleon spin-independent

polarizabilities(ag and By) by Y. Dong et al. (12). The results of including excited quarks

states were calculated and compared with the excluded ones.

So far, most previous calculations have been truncated to the use of the ground
state quark propagator. Recently, the progress of improving the charge form factor of
the charge neutron in the PCQM has been performed with the modified quark
propagator but with different potentials (13). X. Y. Liu used the PCQM to investigate the
charge form factor and charge radius of the neutron with considering both the ground
and excited states in the quark propagator. In their work, they introduced the Cornell-
like potential and solved the Dirac equation to get the ground state quark wave function,
and the excited quark states. Due to the scope of the study, in the calculation, they

restricted the energy of excited quark states to E, = 1GeV, which

are 1p1/2,1p3/2,1d3/2,1d5/2,1f5/2, 1f7/2,281/2,2p1/2,2p3/2 and 351/2, while meson cloud
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contributions were from m-meson cloud only. The interaction Lagrangian of the model is

given below,

LY (x) = - 8,2, POV Y AP (x). (2.25)

where F = 88Mel is the so-called the m-decay constant. Four types of diagrams
contribute to the charge form factor of the neutron, which are (i) meson cloud diagram,
(i) vertex correction diagram, (iii) self-energy | diagram, and (iv) self-energy Il diagram.
Furthermore, the charge current of the system can be divided into three pieces, which
are the quark charge current, meson charge current, and the interacting term between

quark and meson. The total charge current j, is given by,

f81]

Jo =9y°Qy + [fsu ®;(x) 0, P; (x)

(2.26)

+ [f3ij fs”] Py°y .
In the results, for the low four-momentum transfer Q?range, they found that the excited
quark states were considerably influential in the charge form factor and charge radius of
the neutron. The total result of the neutron charge radius (r2)" increases from -0.014 to
be -0.072 when the excited states are included.

Besides the study of nucleon properties through the Sachs form factor, there
are also many kinds of research through the axial form factor approach. Those systems
are described by the Weinberg-type form, containing the axial-vector coupling. In 2004,
K Khosonthongkee et al. applied the PCQM to study the axial form factor of the nucleon
(14). The axial form factor is one of the fundamental weak interaction properties. In the

study, they have used the axial-vector coupling Lagrangian £Y (x) of the Weinberg-type,
LY (x) = Lo(x) + L] + 0(n?),

(2.27)
Lo(x) = P{y* = S@) =y V() - %ﬂ(X)(D + MZ)m(x).
Where, the strong interaction Lagrangian, L}, is given by
L (x) = —aﬂﬂ(X)ll_)(x)V”VSﬂ.b(x) (2.28)

— 20 7, (x) 3,15 COP ()Y P ().

4F?
And the interaction between pions and quarks by the electromagnetic field L}, (x) is

given by,
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Liem () = —eAF™PT () QyHY" (x)

+ S AT Y [ (03 — T T @)Y () (2.29)
—e ATy [ (00,m;(x) — L2 Oy ry ST ()|

The renormalized electromagnetic current is given by,

I = g I+l S (2.30)

where, jl’;r is the quark current, j¥ is the charged pion current, jgrn is the quark-pion
current and ij;,r is the contribution from the counterterm.

The partially conserved axial vector current A% is given by,
- T; Eijk —
A,lft = Fal«”l'i + l/)TyI«t],S 511/)1‘ iz %lpryu.[jl/)rl_k
1 —_
+ Yy (g —ml)Y" (2.31)

+P7(Z — DyHy® %d)r + o(m?)

The axial form factor G,(Q?) of the nucleon is given below,

<N5' (g) I [ d3x el9%A,(x)|N, (—g)) = X?\LISUNTBTNXNSGA(QZ)- (2.32)

They could predict the value of the axial charge, g4 = 1.19. Furthermore, they could
prove that the contributions of excited quark states in the one-loop diagrams are
essential, in order to adjust a small correction to the tree-level diagrams and lead to the
search for an appropriate value of parameter p .

In 2014, X.Y. Liu et al., used the PCQM to study the electromagnetic properties
of baryon octets (15). They have used a predetermined relativistic quark wave function,
the Sturmian functions, instead of the typical Gaussian ansatz. The radial quark wave
functions have two components. In the ground state, the wave functions were expanded
in the set of Sturmian functions, S,;(r). The upper g(r) and the lower f(r) are defined

as

90r) = oAy 222,
(2.33)

fO) = f 0By 22,

, with
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1

Su() = [ =] 2br)"*1e P12 (2br).

(n+21+1)!

(2.34)

where, L2*1(x) are the Laguerre polynomials.

They show that the first five Sturmian functions withn =0, 1, 2, 3, 4 could give a
good value of the proton charge form factor when compared to the experimental data.
Furthermore, after obtaining the proton charge radius, they extended to predict the
charge radii of other baryon octets. The theoretical calculations showed that p,Z~
charge radii were reasonably agreed with the experimental data. Besides, for the
charge radii of the charged baryons, they claimed that the 3g-core diagram dominantly
contributes around 90% and less than 10% comes from the meson cloud effect.
However, the theoretical results of the charge radii of neutral baryons (n,2° A,2°) were
small.

In 2015, X. Y. Liu et al. used the PCQM to study the meson cloud contributions
to the baryon axial form factors, with the quark wave functions, expanded in the set of
Sturmian functions (16). In the study, they used the quark-meson interaction Lagrangian

below,

1 —
L1 () = 55 0, i ()Y (Y *Ap(x)

(2.35)
+ L @, ()9, @, P Y 2, (x).
The axial-vector current 4 can be determined by,
- A fiin -
A = Ford; + Pyty® S = by Ay
(2.37)

+Y(Z - 1))/“)/5%1,[) +o(®;%)

+1/7(Z - 1))/“]/5 %d)r + o(m?).
The diagrams that contribute to the axial form factor are (i) 3g- core leading order (ii) 3g-
core counterterm, (iii) self-energy I, (iv) self-energy Il, (v) meson exchange and (vi)
vertex correction.

The axial radii of octet baryons were defined by

1 dGE(QY)
2y _ _g20allT) (2.38)
(TA )B gg sz 0?0



15

The nucleon axial radius (r?)y was a little bit larger than the experimental data. Besides,
they also predicted the axial radius of (r?)y and (r?)zin the same order as of the
nucleon. Furthermore, they studied the contribution from pion, kaon and eta meson to
the axial charges separately. They found that the contribution from pion was the most

significant.



CHAPTER 3
METHODOLOGY: THE PERTURBATIVE CHIRAL QUARK MODEL

In this study, we use the PCQM to investigate the nucleon properties and
electromagnetic form factors. The main objectives are i) to search for suitable
parameters (p,R) of the Gaussian ansatz quark wave function when includes the
excited states, ii) to study the static properties and the nucleon form factors and iii) to
study the contributions of excited quark propagators to the electromagnetic properties.

The methodology used in this work is presented in detail below.

1. Construction of an effective Lagrangian of the PCQM

The PCQM is based on an effective chiral Lagrangian. In this model, we
consider the quarks within a nucleon as relativistic quarks, surrounded by a cloud of
pseudoscalar mesons (m,K,n) as required by spontaneous chiral symmetry breaking.

The model Lagrangian of the PCQM is given by

Leff =Ly + Lfﬁ{ + L)(SBI (3.1)

where

8
i ] 1 2
£o = Py 9, = vV @) - SO +35 ) [3.2]" (8.2
i=1
is the Lagrangian for the massless current quark field ¥ (x) moving in the potential
S() +y°V(r) and the massless mesons field ®;(x). Here, we defined r = |¥|. The
interaction Lagrangian term L3f7 is the strong interaction Lagrangian between the

valence quark and the meson field, which can be written as

L3 = —PS@iys X2 y), (3.3)

where F = 88 MeV is the m-decay constant (1), and ®(x) is the pseudoscalar mesons in
the matrix form, defined as below.
”_0 + +
. N +n/VJ6 n K
i __ 0
=I5 = o —Zaane KO
K~ K° —2n/V6

Sl

2
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Finally, due to the masses of the current quarks which results in the explicit chiral
symmetry breaking, we obtain the Lagrangian L, for the mass terms as

Lysp = ~PCIMY() — 5 Tr[F ], 39

where M = diag{m, m, m,} represents the quark masses. Note that we considered in the
isospin symmetry limit and define m = m,, = my, with the chosen values of m =7 MeV
and mg = 25. In addition, B = 1.4 GeV is the quark condensate parameter (1). The

meson masses satisfied the following relations

M =2@B, M} =(f+m)B, M;="2(m+2m)B, (3.6)

The renormalization of the PCQM was done by using the counter-term technique. See
Ref. (1) for a detailed procedure for renormalizing the PCQM.
In the calculation, we use the variational Gaussian ansatz in the ground state

which is given by

] AV
uo(x) = NO exp <— 2R2> <lp (O x) XsXrXcr (37)
R

The normalization condition fd3xu§(5c’)u0(5c’) =1 is used for fixing the normalization
constant, Ny = [r3/2R3(1 + 3p2/2)]_l/2. Other parts of the wave function are the spin
part s, flavor part xr, and color part .. In this model, p and R are the free-parameters.

The quark wave function u,(x) is the solution of the Dirac equation

[—id - 7 + BS(r) + V() — EoJuo(E) = 0. (3.:8)

the space-time quark wave function can be written in the form of,

PYo(#, £) = ug(x)e %ot (3.9)

where &, refers to the ground state quark energy. By inserting u,(¥) into the Dirac
equation, we have the explicit form of the potential S(r) and V(r) for the Gaussian

ansatz and both of them are in the forms of

1-3p? p 3.10

S(r) = R +ﬁT2_M1+C1T, ( )
1+ 3p?

V(r)=¢§, Py P 2 M, + c,r (3.11)
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To fix the parameters p and R of the PCQM, the parameter p links to the axial

coupling constant g4 by

5 2p* (3.12)
gA_§ 1- 3 5 .
1 +7,D

With the value of g, approximated to be 1.25 and restricted to the zero-order diagram,
the value of p becomes p = ,/2/13 = 0.39. Together with the proton charge radius in the

leading-order (LO) term, we obtain

5 2
3R? (11377 (3.13)

()0 = ——
2 \1 +%p2

By using the value of p =\/m and assume that the values of (r?),, lies between
0.5 fm? and 0.7 fm?, the values of R is found to be 0.55 fm to 0.65 fm. We, therefore, took
setp = \/m and R = 0.60 fm as the fixed model parameters. In our study, both values
of p, R needed to be reconsidered when we modify the quark propagator by taking the
excited states into account.

Starting from the specific forms of the potentials S(r) and V(r), the quark wave
function in the excited states a, u,(X¥) can be obtained by solving the corresponding

Dirac equation. The general form of the quark in the « state is

> X2 o () .
u,(¥) = Ny exp (— ﬁ) <i5‘_g£;.; (r)) Ya D xsrxc (3.14)

with the energy ¢,. Therefore, the quark field of in the excited states a becomes

V(@ 1) =u,(De %t | P, (%,1) = Uy (¥)e'at, (3.19)

The normalization constant N, can be fixed by using the condition fd3xujl(5c’)ua(5c’) =1,

as

-1/2
_ —2(n+l+%) % 3 (2n + 2D)!
No =2 TR o D = D1

(3.16)

{1 +pi@2n+1- %)}]

The numbernis the principal quantum number of states, with n=1,2,... and [ is the
angular momentum. Here, we define AE, = €, — &, 10 be the difference between the
energy of excited state a, denoted by&, and the ground state energy, denoted by &,.

The A&, are related to p and R by the relation



(

3p 1 p
AE, +?) <Aga + —) = F(A}n + 21— 1)2.

2

PR
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(3.17)

We summarize the ground state and excited states of quark propagators in Table 1.

TABLE 1 The corresponding energies of the quark in the low-lying states of the PCQM

Quark state Quantum state Label AE,(GeV)
Ground state n=11=0,s=+—- 1s1/, 0.00
1
n=1ll=1s=—3 1p1/2
1* excited state 0.227204
n=1l=1s=+= 1p3z/2
1
n=1.,l=1s=—= 1ds5),
2
nd . 1
2" excited state n=11l=1,s= _|_E 1ds/, 0.425221
n=21=0,s=+- 251/,

The angular dependent, resulting from the coupling of the spin and the orbital parts, of
the wave function is Y, (x). The component, g,(r) of the quark wave function is given

by

9a() = (i)l Lz (_) ‘T _ (3.18)

Rg/ "Ml AR
whereas the lower components, f,(r), which depend on the value of the total angular

momentum j, has the following form,

(i) in case of the total angular momentum j =1+ % :

() = pg (Rr_a)l“ [L51+_31/z (%) + Lffz/z (%)] —%, (3.19)



(i) andj=1-=,
) = =1 (5) o 1= D20 () + i ()]

We summarize the f,(r) and g, (r) of each state in the Table 2.

TABLE 2 The lower and the upper components of the quark wave function

20

(3.20)

State a
Label 9a(r) fu )
(ug)
151/2
n=1, 2 or 1
tho go(r) = e 2R? fo(r) = Fe_ﬁ
=0,
s=+1/2
1py2
n=1,
r2 fl(r)
Uq =1, = 1_ "2R,? r\2 _i
e B )
s=-1/2




TABLE 2 (Continued)
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State o
Label

(uq)

9o ()

fa(r)

ro_r
g2(r) :R_e 2R,*

Us

Uy

70 =

r\3 -
%)

Us

gs(r)

3 /1r\%\ 4>
=(==- <_) e 2Rs’
<2 R;

_ AT
fs(r) = Re

(

7

2

y

Rs

)

2
e 2R

In this study, we also investigate the effects of higher excited states on the

magnetic moments of the nucleon. As we know that the higher excited states also

contribute to the value of the magnetic moments of the nucleon but still be unclear how



22

much they could contribute. For higher excited states up to the 5" excited states and the
notation are shown in Table 4 and the upper and lower spinors are shown in Appendix
F.

The parameters p and R for a quark in the ground state are related to the

parameters p, and R, for the quark in the state a by

oy = <R_a)3 (3.21)
a p R )
Ry = R(1+ AE,pR)™Y/*. (3.22)

In this model, the free meson propagator as indicated by the Quantum Field
Theory is

d*k exp[—ik(x —y)] (3.23)
2m)*i M2 — k2 —ie ’

hij(x—y) = 51’1_[(

where My denotes the meson mass. (® = w,K,n ). In the case of the quark, we apply
the bound states quark propagator, which is written in terms of the quark field. For
simplicity, the ground state of the quark was assumed to dominate the quark
propagator; therefore, only the quark propagator in the ground state is used i.e.

iGy (%, y) = uo (Do () expl—i&o (xo = y0)] 6 (xo — ¥o). (3.24)

A straightforward modification to the quark propagator by summing up all the excited

states of the quark results in

iGw(x: }’) = 9(x0 - yo)zua(f)ﬁa()_’)) exp[_ig(x(XO - YO)] (325)

To test the validity of the model, the first two excited states (1p, 2, 1p3/2, 1d3/,, 1ds,, and
2s,/, states), together with the 1s;,, state have been included in the calculation of the
octet baryons electromagnetic form factors, as mentioned in (2). Nevertheless, such
modification of the quark propagator in the calculational technique was shown the
significance of the modification to the charge form factor of the neutron only.

Obviously, for consistency on the nucleonic level, such modification must be
done to the study of the electromagnetic form factors of both the proton and the neutron.

We expect that the previous values of the parameters of the model must be changed.
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We intend to fix the parameters p and R by using the nucleon magnetic moments
reported from the experiments. For simplicity, however, we set the value of R to be
0.60 fm as same as in the previous works and attempt to find the value of the

parameter p that reproduces the nucleon magnetic moments.

2. The Electromagnetic Form Factors of the Nucleon
The standard minimal substitution procedure is used for introduction of the

electromagnetic interaction by the modifications of

aﬂl/)r N Dul/)T — a”l/)r + ieQA”l/)T, (326)
3,®; - D, ®; = 8, + e <f3ij + %) A, (3.27)

Here, A, is the field of the photon and " is the renormalized quark field. The matrix, Q,
indicates the quark’s charges as Q = diag{2/3,—1/3,—1/3} and f;j are the structure

constants in the SU(3) formalism. Note that
Jr = Jyr +Jo + Sy, (3.28)
represents the electromagnetic current, where J'f/jr is the current of the quark, j& is the

current of the (charge) meson and 6]&} is the current due to the counter-term, see [9] for

detailed discussion. Theses currents can be written explicitly as

Jijr = PTYRQYT, (3.29)
= L (3.30)
Jo =\ f3ij +E ;04 P,
and
Sjyr = ¥"(Z = Dy QYT (3.31)

where Z is the renormalization constant matrix, Z = diag{Z, Z, Z;}, and with the isospin
symmetry, Z=2Z7,=27,. We obtain such constants by considering the charge
renormalization of the corresponding baryons. Only Z is relevant in the nucleonic

sector, since there is no S-quark in the nucleon.
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The nucleon electromagnetic form factors are calculated within the Breit frame

and the so-called Sachs form factors, GY (Q?) and G (Q?), of the nucleon are defined by

X GE (@) = (N (%) ROINE %)) (3.32)
and
x, iiNMzﬁ){NsGﬁ(Qz) = (g (%) jo|w. (- %)) (3.33)

where GY(Q?%) and G(Q?) denote the charge and the magnetic Sachs form factors,
respectively. Here, on the left-hand side, the calculation must be performed on the
nucleonic level. For the elastic scattering and in the Breit frame, Q2 = —G% > 0. The

charge Sachs form factors of the nucleon are normalized at the zero recoil (Q% = 0) as

GP(0)=1 GP(O)=0. (3.34)

are the charge of the proton and the neutron, respectively. On the other hand, we have

Gh(0) =, =2793,  GR(0) = p,, = —1.913, (3.35)

where u, and u, represent proton and neutron magnetic moments, respectively.
In the PCQM formalism, the Sachs form factors can be calculated from the

relations

xu, xn,GE (@)

= (0| Zco ) SO xd s .y TILET () o L5 ()R O] %)f
(3.36)
and
X, iiNMzﬁXNSGﬁ(QZ)
= (o] Tico by B xA*xy . ¥, T TILE () o L2 ()] ()] %}j

(3.37)
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Besides, the renormalized strong interaction Lagrangian £ (x) in the PCQM is in the

form

L}Str(x) - LftT(X) + (SLStT, (338)

where

LT (x) = =" ()S()iy® @gbr(x), (3.39)

and 6 L5t is the strong interaction Lagrangian corresponding to the counter-terms, see
Ref. (1) for details.

The charge radii and magnetic radii of nucleons are given by,

-6 dGY,(0
<TE2v'M)N _ E,M( )

3.40
- GYy(0) dQ? (940

)

Q?=0

Since the charge of the neutron is zero, the charge radius of the neutron is defined by,
dGg (0)

3.41
o (3.41)

)" = -6

szo.

The relevant Feynman diagrams for the nucleon Sachs form factors are
presented in Fig. 1.

The a and B in the diagrams shown in Fig.1 indicate the insertions of the quark
in the a and B states to the quark propagator. The diagrams that involve in the dressing
of the quark propagator are the meson-cloud diagram and the vertex-correction
diagram. We present the analytical results in detail as follows.

1. The three-quark (3q) core diagram:

The analytical expressions for the leading-order (LO) terms and the next-to-

leading (NLO) terms of the Sachs form factors for the 3q core diagram are indicated by
Lo NLO
G (@) = GEu (@), +GEu @D, (3.42)

where, for proton (N = p)

QZRZ Q2R2p2
Gg(Q2)|§Z = exp <_ 4 1 ——32 ) (3.43)
4(1+3p?)
Q2R2 Q2R3p

2@’ = e (3.44)

=T
* >m 4(1 +%p2)2



1+7p2+22p* 22,2
x —
1+%p2 4 f

<_ Q2R2> 2mypR

LO
GIE(QZ)|3q = )

4 3
1+7,02

NLO

Gy (@), = Gn@dl,,

3
Lo mpR QZRZ_Z—EP

_pz 4
and for neutron (N = n)

GE(QDI5S = GR(@INE® =

2 Lo
G @)I5] = — 36, @),

NLO

G @I = - G’”(QZ)I :
Besides, the quark mass renormalization is

m’ :m_WZf dPPZFJ(pZ) Fa(pz)
a 0

9
wn(pz)[wn(pz)wg ]

( \

| |
x { t o@D wK(pZ)ms ] }

| weevral

+ wy(p?)[wy(p?)+4E4]
where
we(p?) =2+ M2 , x = cos 8 and A, = &,
and

Fe@?) = =NoNe [ dr 12SOIfs(r)9a ) + fo()go(r)]
0
T 2m —iprcosf
X [, sinfcos0do [, dep (Co¥o0)(A1Ya0)e™?
Note that the subscript a« =0 refers to quark in the ground state (151/2 ) The

11 11)
2122

corresponding Clebsch-Gordan coefficients, €, and A,, defined by C, = (005—|

and 4, = (IQO%% |ja %) respectively, where (I, m;, s ms |j,m; ) represents explicitly the

3
1+§p2

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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coupling that leads to the Clebsch-Gordan coefficients. The Y; ., are the spherical
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harmonics function and my is the mass of the nucleon. In this work, the nucleon mass
has the value of my = 0.938 GeV.

2. The three-quark counter-term (CT) diagram:

Gpn (@), =(Z - 1)G,§M(Q2)|’3’Z, (3.53)
GFQ@Dler =0, (3.54)
G (@ler = (2 - 1)GH (@5 (3.55)

The renormalization constant Z is

N 1 r
z=1 _sz dpp?F,; (p?) F,(p?)
a

x 1 - 2 (3.56)
w,(P))[w,(p?) + 4E,]1?  wr(PD)wk(?) + AE,]?

1/3 }
+ 2
wy (P?)[w, () + 4&,]
3. The meson-cloud (MC) diagram:
GE (@D emc

= (0| Zacoip S 6O 3" 2, .. d¥ e OTILET (1) o £ (1) S ()]

#o).

4ol — %f 5(t)d4xd4x1d4xze_iq'x : (—1/;(x1)iy5 /},—k‘pk (xS () Pq (x1)>
J

|
- A | ob;
x (—wa(xz)iys ;lcbl(xz)S(r)vJ(xz)) x (fgl-j + %) ,(x) 51@: o)
|
(3.57)
For proton N =p;
Gy (@D, e
[e9) 1 2

=(2n)%1;2f dmﬂf dx P+VQx * F1% F2

’ B JPZ+QZ +2p/Q%x (3.58)

2
y [ (wr (D) + Aeg)(wr (P + §) + Aeg) (W (P) + (w (P + 7))
4

|t (or ) + den)(@r (B + ) + den) (@) + @i (P + 3)))




Where F1and F2 are defined as below,

oo A
F1=(—NyN,) rzdrj sinfcos6do
0 0

o (3.59)
X | dpSE)(fo(ge () + f2(r)go(r))
0
X (CoYg) (A4 Yé))eilﬁﬁlrcose
F2 = (—NyN,) oorzdrjnsinecosedé?
0 0
2m (3.60)
x| dpSE(fo(ge () + f2 () go(r))
0
X (CoY{) (A Y)etpreosd
For neutron N =n ;
1 (> ! 2
GE(O?)|ame :ﬁf dppzf ' | p ++/Q%x . F1
(ZiT)F 0 -1 \/2+Q2+2\/@x
{ / (3.61)

-2

x F2 (wn'(p)+A€a)(wn'(p+Q)+425a)(wn(p)+(wrr(p+qn

i (wg(P)+48a) (wg (P+q)+484) (W () +(wk (P+))

By definition, Ga(Q%)lamc is given by,

ioy X q
)(;\rzs, 2M, a7 AN M(Q )laMC

2oy [ (8 d*xd x; d*a, e T LT () L3 () ()]

N
b0)
) _ A
= 4(¢po| — %f S(t)d*xd*x d*x,et % <_¢(x1)i7/5 Fk(pk (x)S(M)Yq (x1)>
| |

_l A fai B
X (-%(xz)iysFq?z(xz)S(T)ll)(xz)) X <f3ij \/é><1> (X)Vfb (0): o)

= (%0

(D+a ﬁ.‘)
e on|al [ o xR0

(ZH)“F2 15+ 151

28

de3x1 (ﬁo(9_5)1)i]/55(x1)ua(£1)ei(ﬁ+(7)'f1)fd3x2 ﬁa(fz)i]’ss(xz)uo(Yz)e_imz

f8l]> Alj b
<[+ 5 G+ "

(3.62)
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In order to calculate the matrix elements, we can restrict ourselves to the nucleon spin
up only. Finally, we can get the G (Q*)|qmc as below,

For proton (N = p);

2my [ 1
1 @le = Gryr L dpp’ J_ldx\/

1 —x?

(—NONa)f redr
p?>+Q?% + 2p./Q%x 0

X jnsinecosede jzndqﬁ (fo()ga(r) + fo(r) 9o (1) S () (Co Y (AL YD) e P +alreosd
0 0

X (—NONa)j rzdr.[ sinecosede.[ dd S (fo(1)ga () + £ (1) go (1))
0 0 0
X (CY9) (A, Y)ePTeost

< () @i + D + 0P + 4e0)

(wr(P) + Aeg) 0 (P) (W (P + @) + A& )0 (P + @) (wr (P) + (wr (P + )

(3) (kG + D + wx @) + 2e,)
(wg(P) + Aex)wi (D) (Wi (P + @) + Aeg)wi (P + @) (wk (D) + (Wk (D + 7))
(3.63)
For neutron (N = n) ;
G (@3 mc
(er;lszz f dpp? f dx (—NyN,) foorzdr
. \/ 24Q2 +2p\/_x 4

s 2T
x f sinfcos0do f do (fo(r)ga @) + (fo () 9o (1)) ST (Co Y (A ¥9)e P Hlreost
0 0

* T 21
X (_NONa)f rzdrf sin@cos@d@f do S(T)(fo(r)ga(r) +fa(7”)g0(r))
X (COYOO)(Alth)e_iPTCOSQ

X - (%) (0P + @) + wr () + 4e,)
@) + 2e)0n ) (@e (P + D) + A0 B + D (@ (P) + @r(P + D)

~(3) @k G+ D) + wx(B) + dee)
(wg (@) + de)wr (D) (Wi (P + @) + Aex)wk (P + P (w (@) + (wx (@ + Q) |

(3.64)
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4. The vertex-correction (VC) diagram:
From the definition of G} (Q?)
X, X, GE (@l apye

in ) N
BinorJ SO xd ;. d e T TILE () o LE7 ()]G [
. c

= (o

= 2g0l - 5 [ @@ et dtrseiex: (—ww %T SN <x1)>
|

1 _ ]
x (@ GOV P () (—z/),;(xz)iys Flcbj(xz)smw(xz)): |bo).

[ S
(3.65)
For proton,
1 [00]
14 2 _ 2
Gy (@ )|aB'VC _—(Zn)ZFZ_fO dpp?F1%F2 * F3
: ]
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For this diagram, we cannot apply excited states quark propagators, and there is no
contraction between the quarks in this case. After using some algebras, we found that
the integral corresponding to the energy part is zero, makes the value of GY(Q?)|ur

becomes zero identically for proton and neutron.
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Finally, the analytical expressions for the magnetic form factor of the MF diagram are
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FIGURE 1 The Feynman diagrams for the Sachs form factors in the PCQM: (a)
3g-core, (b) counter-term, (c) meson-cloud, (d) vertex-correction, and (e)

meson-in-flight.



CHAPTER 4
RESULTS AND DISCUSSION

We study the electromagnetic form factors of the nucleon in the framework of
the PCQM. We emphasize our analysis in the region of low @2, from 0.0 up to 0.4 GeV?,
where the meson cloud contributions are expected to play an essential role in the
electromagnetic form factors. In our approach, we study the effect of the inclusion of the
excited quark states on the quark propagator. We include two low-lying excited states
which are 1py,, 1032, 1d3 2, 1ds, @nd 2s, s, states. For simplicity, we start by setting the
value of the parameter R = 0.60 fm, as previously done before in the PCQM. The
appropriate parameter p is fixed by considering the experimental data of the magnetic
moments of the nucleon, u, and u,. We found that the value of p between 0.51 and 0.59
can reproduce the experimental values of w, and u,. Table 3 shows our results for
some properties of the nucleon, see also (17).

The pu, is best described with p = 0.51, whereas the best result for u, refers to
the value of p = 0.59. Therefore, in Table 3, we also report the numerical calculations at

the central value of p = 0.55.

TABLE 3 The results for the nucleon magnetic moments (in units of the nuclear
magneton), the charge and the magnetic radii for the nucleon. The experimental data

are taken from the PDG (18). Note that we fixed R = 0.6 fm.

p =051 p =055 p = 0.59 Exp (18)
i, 2.7913 2.728 2.6716 2.793
" -2.0278 -1.958 -1.898 -1.913
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Table 3 (Continued)

p =051 p =055 p = 0.59 Exp (18)
0.8751,
<rp>, 0.8915 0.8956 0.900
0.84087
<12 >, -0.1425 -0.1129 -0.0537 -0.1161
<1y > 1.010 0.965 0.8779 0.851
<1y >y 0.8447 0.9028 0.8335 0.864

Obviously, the modification of the quark propagator significantly improved the
results. Consult (17) for an additional discussion.

Detail analysis of our results for the parameters p = 0.55 and R = 0.60 fm are
shown in Table 4. Their values with quark excited states are improved significantly and
become closer to the experimental data in the range error of £2 %. Furthermore, the
excited states contribute the most in the neutron charge radius, which is about 31 %.
The neutron charge radius value is very close and does not exceed the experimental
data, whereas the proton charge radius with the quark excited state is also nearly equal
to the experiment, but a bit exceeds the experimental data (0.8751) around +2 %. The
ground state contribution is only 67 % compared with the experimental data (-0.1161).
For magnetic radii, the ground state contribution to the nucleon is at the level of 80 %
comparing to the experimental data. Their values become much more prominent when
we include the excited states, but it seems to be a bit excessive. The neutron magnetic
radius is 4% bigger, while the proton magnetic radius is about 13% bigger than the

experimental data.
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TABLE 4 The separation of contributions from the ground state and the excited states to

the nucleon properties for R = 0.6 fm and rho = 0.55.

Percentage
The ground | The excited contribution
Total Experiment
state states of the
contribution (18)
contribution | contribution excited
states
™ 2.5105 0.2175 2.728 9% 2.793
tn -1.778 -0.18 -1.958 10% -1.913
0.8751,
<rg >, 0.8537 0.0419 0.8956 5%
0.84087
<r2>, -0.07785 -0.03505 -0.1129 31% -0.1161
<1y >, 0.6835 0.2819 0.965 29% 0.851
<1y > 0.6732 0.2296 0.9028 25% 0.864

Table 5 shows our calculation results of each diagram for the set parameters

p = 0.55 and R = 0.60 fm, along with its contribution in detail. We found that the three-

quark diagram (3qg core) contributes the most in proton charge radius (87.4%), the

magnetic moment of the proton (87.3%) and neutron (81.1%). However, the values
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decrease in proton magnetic radius (50.1%) and neutron magnetic radius (43.8%),
which becomes the same level of contribution as from the meson-cloud diagram.
However, it contributes nothing to the charge neutron radius. The counter-term (CT)
diagram always contributes the opposite sign to the three-quark diagram (except the
neutron charge radius, which its value is equal to zero). The percentage of meson cloud
diagram contribution is also reported in the table. It contributes mostly to the neutron
charge radius (113%) and shows a crucial effect on that value. However, its contribution
decreases significantly in the proton magnetic radius (50.1%) and neutron magnetic
radius (40.0%), and becomes only 10-20% in the proton charge radius, magnetic
moments of proton and neutron. The meson-in-flight (MF) diagram comes in a third of
the ranking of contributions. It contributes 29.2% in neutron magnetic radius, 26.6% in
proton magnetic radius and roughly 10% for nucleon magnetic moments. From our
calculations, it contributes 0% in proton and neutron charge radii. The Vertex correction
diagram has only a few percentage contributions but plays an important role, especially
in the neutron charge radius (because all the contributions come from the vertex-
correction diagram and the meson-cloud diagrams). It contributes less to both magnetic

moments of proton and neutron.

TABLE 5 Contribution of each diagram to the nucleon electromagnetic properties for R

= 0.6 fm and rho = 0.55.

Diagram

Meson Vertex Meson in 3quark | Counter

Total
Cloud Correction flight core term

Properties

0.3426 | -0.0072 | 0.1987 | 2.3816 | -0.1882
My 2.728
12.6% -0.3% 7.3% 87.3% | -6.9%
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Diagram
Meson Vertex Meson in 3quark | Counter
Total
Cloud Correction flight core term
Properties
Hn -0.3141 0.0165 -0.1987 | -1.5877 | 0.1255 | -1.958
16.0% -0.8% 10.1% 81.1% -6.4%
<TE >p 0.1401 0.0079 0.000 0.7007 | -0.0467 | 0.8021
17.5% 1.0% 0.0% 87.4% -5.8%
<71 >n 01285 | 0.0156 0.000 0000 | 0.000 -
0.1129
113.8% -13.8% 0.0% 0.0% 0.0%
<Tii >p 0.467 -0.1331 0.248 0.46712 | -0.1168 | 0.932
50.1% -14.3% 26.6% 50.1% | -12.5%
<ri>
M ~n 0.334 -0.066 0.238 0.357 -0.048 | 0.815
41.0% -8.1% 29.2% 43.8% -5.9%
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In addition, the nucleon electromagnetic form factors up to Q% = 0.4 GeV? are
presented in Fig.2 to Fig. 5. In Fig.2, we compare our result for GE(Q?) to the dipole fit
GD(QZ)’

Gp(Q) = (4.1)

1

Q? )2
(1 +0.71
Similarly, our results for GL(Q?%) and G} (Q?) are shown in Fig.4 and Fig.5 in comparison
to the u,Gp(Q?) and u,Gp(Q?), respectively. Finally, Fig.3 shows our result for G¢(Q?) in

comparison to the lattice QCD calculation and the experimental data.

‘ ‘ ‘ - Q%(GeV?
0.0 0.1 0.2 0.3 0.4 9 V)

FIGURE 2 Proton charge form factor for R = 0.6 fm and rho = 0.55.
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Ge(Q’)
V Edenetal., 1994
0.12 O Bruinet al., 1995
0.10 X Herperg et al.,1999
N\ Ostrick et al., 1999
0.08 o Glazier et al.,2005
A Lattice-QCD, 2017

0.06 { ) I { %
0.02 /_L | | ‘ ‘ QZ(GeV 2)
0.4

0.0 0.1 0.2 0.3

FIGURE 3 Neutron charge form factor for R = 0.60 fm and rho = 0.55. The

experimental data are taken from (19) and the lattice data are taken from Ref.

(20-24).

““““““““““ZGVZ
0.0 0.1 0.2 0.3 O.4Q(e)

FIGURE 4 Proton magnetic form factor for R = 0.6 fm and rho = 0.55.
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e Q¥(GeV?)

FIGURE 5 Neutron magnetic form factor for R = 0.6 fm and rho = 0.55.

Our calculation results for G£(Q?), G5 (Q?) and G1,(Q?) are consistent with the
data from dipole fit quite well, especially at the low Q2. However, the value of GZ(Q?) is
still smaller when compared with the experimental. There is one point that can reach the
lattice QCD calculation at Q2 = 0.15 GeV?2. Our calculation results of GF(Q?) and G}(Q?)
at Q? =0are equal to one (the proton charge) and zero (the neutron charge),
respectively, as expected. And the shape of GF(Q?%) , Gy (Q%) and G} (Q?) when Q? >
0 are in the same tendency with theoretical calculation results from G, (Q?).

Furthermore, we investigate the energy level of the quark in the excited states,
up to the fifth excited states. We try to modify the parameters of the model a bit and
calculate the energy eigenstate with a new value of p = 0.65 , and R = 0.60 fm. The
energy of the quark in the ground state and in the other states up to the fifth states are

shown in Table 6.
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TABLE 6 The energy levels and notations of the quark states for R = 0.6 fm and rho =

0.55.

States Notation AE, (GeV)
Ground state 151/, 0
1% excited states 1p1/2, 1p3)2 0.239317
2" excited states 1ds 5, 1ds, 251 0.448240
3" excited states 1fs /20 1 /2 201720 2P3 2 0.638042
4" excited states 197/2, 19o/2, 2d3 2, 2ds /2,351 /2 0.814244
5" excited states 1hg 3, 1h11/2, 2f5/2, 2f7 /2, 3D1/2, 3P3)2 0.980063

In Table 7, the results of the nucleon magnetic moments after the inclusion up

to the fifth excited states to the quark propagators with a new value of p = 0.65 and the

value of R = 0.60 fm give a better agreement to the experimental data, which is 2.7514

for the proton magnetic moment and -1.934 for the neutron magnetic moment. This

value of p is quite different from the previous work, which is p = 0.39 in Ref. (2). We

found that the suitable value of p depends on the number of excited states that included

in the calculation. The ground state contributes at the same level to both proton and

neutron, which is about 90%, while the excited states contribute about 10%. Moreover,
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each excited state from the first excited states to the fifth excited states contributes
nearly the same percentage on the nucleon magnetic moments, about 2% each. From
these results, we can express the importance of those higher excited states of quark

propagators.

TABLE 7 Results for the magnetic moments of the nucleon with the modified quark

propagator (up to the fifth states) for R = 0.6 fm and rho = 0.55.

Up Hn
States of quark
Value % Value %
propagator
Ground state only 2.4592 89% -1.7021 88%
1* excited state 0.0698 3% -0.06104 3%
2" excited state 0.0536 2% -0.04306 2%
3 excited state 0.0542 2% -0.0412 2%
4th excited state 0.0592 2% -0.0446 2%
5th excited state 0.0554 2% -0.042 2%
Total (GS+ up to 5" 2.7514 -1.934
excited states)
Experiment (18) 2.793 -1.913
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Finally, in Table 8, we present the contributions, up to the fifth states, of each
diagram to the values of the nucleon magnetic moments. The 3q core diagram plays a
crucial role in the magnetic moments of nucleons. It contributes 82.5% for proton and
78.2% for neutron, respectively. The mesons also provide significantly high
contributions, which is 17.5% for proton and 21.8% for neutron in magnitude. This
implies that we cannot neglect the effects from the surrounding mesons and the mesons
those involved in the strong interaction between the valence quarks inside the nucleon.
In the mesonic effect, we found that the meson- cloud diagram gives the most
significant contribution, whereas the vertex correction gives the smallest contribution.
The contribution from the meson-in-flight diagram is nearly equal to the contribution from
the counter-term diagram. Moreover, the sign of the counter-terms is always the
opposite of the 3g core diagram. These results are in the same tendency of the previous
results, with the truncation to the ground state quark. It shows the consistency between

the including and not including the quark excited states into the quark propagator.
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TABLE 8 Contribution of each diagram to the magnetic moments of the nucleon with the

modified quark propagator (up to the fifth states) for R = 0.6 fm and rho = 0.55.

Meson effects
39
39 Vertex
Type Counter | Meson Meson
(LO) Next correcti Total
term cloud in flight
to LO on
0.248
Value | 2.2698 -0.1621 | 0.282 | -0.0052 | 0.1181 2.751
Proton 9
% 82.5% 17.5% 100%
Value | -1.5132 | 0.165 | 0.1081 0.256 | 0.0112 | -0.1181 | -1.934
Neutron
9 2
% 78.2% 21.8% 100%




CHAPTER 5
SUMMARY AND CONCLUSION

We have investigated the electromagnetic properties of the nucleon and the
Sachs form factors in the low Q% domain, up to 0.4 GeV2. The first two quark excited
states have been added to the quark propagator for the studying of the nucleon
properties. We summarise our main results as follows.

At Q? =0 the excited states contribute significantly to the nucleon magnetic
moments, which made the calculation results better and closer to the experimental data.
Furthermore, for Q2 > 0 the excited states contribute around 30-40% on average.
Especially in the neutron charge radius, they contribute 45%, which made the
calculation tightly fit the experimental data. These results can prove the necessity of
excited states quark propagators for nucleonic sector electromagnetic properties.

The new appropriate set of parameters for the Gaussian ansatz quark wave
function are p = 0.55,R = 0.60. These parameters are variable with respect to the
energy of the valence quark and directly affect the quark wave function.

At Q% = 0, the most contribution to the nucleon magnetic moments coms from
the 3g-core diagram. However, at Q2 >0 the 3g-core diagram contribution drops
drastically to around 50%, while the contribution from the meson-cloud diagram
significantly arises to the same level of contribution coming from the three-quark
diagram.

From Fig.2 to Fig.5, our results of the GF(Q?), G} (Q?) and G} (Q?%) at low-Q? are
less than the dipole fit, because the Gaussian Ansatz form of the wave function has
been used in our calculation. Besides, the value of G2(Q?) is still small when compared
to the experimental data.

Furthermore, in order to consider the effects of the higher excited states of
quark propagators on the value of magnetic moments of the nucleon, we also include
the third, the fourth and the fifth excited states to the quark propagator. The new value

of p = 0.65 seems to improve our results. Our results of the nucleon magnetic moments
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with a new value of p = 0.65 give a better agreement to the experimental data, which is
2.7514 for the proton magnetic moment and -1.934 for the neutron magnetic moment.
As indicated before in previous works of this model, the 3g-core diagram plays
a crucial role in the case of the nucleon magnetic moments, and they contribute about
70%. The rest 30% comes from the interplays between the meson cloud effect and the

quark propagator in the excited states.
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The Pauli matrices and Dirac Gamma matrices and some properties

The Dirac equation is given below,
L(x) = Pp)[iy*d, — m]p(x)

We can obtain the equation of motion from the Lagrangian, the so-call Dirac equation.

(iv*a, —m)yp(x,t) = iy° %f’t) +ip-TY@ER ) =0

The Dirac gamma matrices are four unitary and traceless 4 x 4 matrices:
1 0 : 0 ai)
0 — | -
y _(0 _1) :V _(_O_i 0 .

The Pauli matrices are Hermitian, unitary and traceless 2 x 2 matrices:

e=(% B r=n =0 )

0.1

And

o3=0,= ((1) _01)

We can expand the above equation to obtain the Dirac equation in terms of a matrices

and £ matrix.
(=i + )t ) = 1 LD
or in terms of momentum,
@ P+ Bm)p(x,t) = ial‘bgj’ t)

By definition, the @ matrices and B matrix are 4 x 4 matrices, given by
i _ 0 o'i) _ 1 0
“ <ai o) P (o —1)

Some important properties of Dirac gamma matrices are given below,

(i) VO =B,

(i) y'=pa,

(i) v"}=29"",

(iv)  {rwr'}=26,

N2
v @Y =-1, ¢9*=1,



i) () ==, GOt =90,
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Besides, there are frequently two combinations of gamma matrices in particle physics.

The so-called sigma-matrices are defined as below,
i
Opv = E[Vu' VV]

Another important matrix is y> defined as

y? =iyyyy3 =vs

and we can get
U
which is also a Hermitian matrix and have some important properties,
M o=y,
(i)  »*=1,
(i) *v*3=0.
Further, we introduce important properties of the Pauli matrices are given below,

(i) they satisfy the commutation relation

[ai,crf] = 2i€; 0",

(ii) and the anti-commutation relation

{O'i,O'j} = 25ij'

(iii)  satisfy the product rule

ol = 6;; + i2eUk "

(iv)  For any two vectors Aand B, we can write in the form of
(¢-4)(G-B)=4-B +ig (A xB)
(G- G+D)G D =G+ -p+ic - (F+3 xp)
(v) operation in an intrinsic spin space of a two-body system
6(1)-6(2) ='(1)a(2) + d2(1)a2(2) + 3(1)a3(2)
= 0,(D0x(2) + 0,(1)0,,(2) + 0,(1)0,(2)

For example,



G(1)+6(2) |- =1 +i1) L —2 m]>

=0, (D0 (2) + 7, (1), (2)

+0,(1)0,(2) ’—% [(TL+11) L =2 m]>
=0, (D)o (2) |- (1L +11) L =2 1))
+0,(1)0, (2) ’—% (T +11) L =2 m]>

+0,(D0,(2) |- = [(1 +11) -2 m]> :
= — L[ +1) L =2 1]+ = [T +1) L +2 111]

1
— [T -11) L —2 L]
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Properties of SU (3) Groups

In general, we usually use Gell-Mann matrices as the generators of 3 x 3

matrices (or N = 3). The Gell-Mann matrices are given below.

0 0 —-i 0 1 0 0
0) 4,=1i 0 0)A3={0 -1 0],
0 0 0 O 0 0 O
1 0 —i 0 0 O
0) 4s=10 0 ,4=(0 0 1],
0 i 0 01 0

(0 0) 1( 0 0)
17: 0 —i 118:_ 1 0 .

0 0 & 0 -2

The generators matrices 4; obey the commutation relations and anti-commutation

PN
Ky
Il
/N
o O
~ OO0 OO O OO

SO ococo

relation of the group.
22 = ifp, ijk=12.8
(A} =26+ 2dyde , ik =12,.8.
Where f;;x are the structure constants of the SU(3) group. They are anti-symmetric
tensors, which values are given below.
fi23 =1, fasg = fers = g,
f1a7 = fs16 = faae = fas7 = faas = fe37 = %
In our model, in the strong interaction Lagrangian term the Gell-Mann matrices will
operate on the flavor part of the quark wave function, in which including the u-quark, d-

quark and s-quark vectors. We can represent the u-quark, d-quark and s-quark in terms

of basis vectors as below,

SR

Here we show the results of the operations acted by Gell-Mann matrices on each flavor.

0 1 0\/1 0
Au=|[1 O) O>= 1|=d,

0 0/ \0 0

0 0\ /0 1
wa=(1 0 o(1)= (o),

0 0/ \0 0

0 —i 0\/1 0
w=(i 0 0)(o)=i(1)-u

0 0 0/\0 0

SO R OO
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(e

)
(2

0
0

—i

0
i
0

Azd =

)

2

)

0
-1 0
0

0 O
-1 0
0

1
0
0

<
o

1311 =

2 3

1
0
0

0
0| =is,
1

1
0
0

Asu =

0
0
0

0
1
0

0
0

-

1
0
0

il

0 0
0 0

i
0 0
0 0
0

|
o

Au

0
0)]=is,
1

-

0
1
0

il

i

Wave function of a nucleon with spin-up, |N,T)
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Calculation of matrix elements of the nucleons with spin up

Nucleon, which is a proton or a neutron, consists of 3 valence quarks. The
valence quarks are fermions, so they make the nucleon become a fermion too. All
fermions obey the Pauli exclusion principle, which makes the nucleon wave function
must be an anti-symmetric wave function. The wave function of a nucleon consists of
several parts, there is the spatial part, spin part, flavor part, color part. Each part
describe its characteristic, the spatial part describes the locations of the quarks. The
spin part represents the spin of each quark. The flavor part represents the flavor of each

quark. And the color part specifies the color of each quark.
Y = P(space)y(spin)yp(flavor)p(color)

When we evaluate the matrix element concerning with spin and flavor of quarks we can
just pick up only spin part and flavor part of them in order to calculate the matrix
element. The wave function of two parts become SU(2) x SU(3) and can be written as

below,
Y =Y (spin)yp(flavor),
ly) = % |Pusxms + Puaxmal

1
W= ﬁ(d’MSXMS + Pumaxma

Where ¢, is the symmetric flavor wave function, ¢y, is the anti-symmetric flavor wave
function. yys is the spin-symmetric, and x4 is the spin anti-symmetric function. We can

write neutron with spin up and proton with spin up in terms of ¢ys , Pma aNA Xus » Xma @S

below,
Neutron:
|Biis) = =7 [(ud + dwd — 2ddu] , 1$f;,) = 7 (ud — dwd,
[fis) = =2 [ALHD L =2 W11, [xfi) == (1 =ID L
Proton:
|phs) = % [(ud + dw)u — 2uud] , |pp,) = \%(ud —dwu,
i) = I+ T =2 1], [x,) = = (1L =D 1.
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We evaluate the matrix elements which appear in the strong interaction
Lagrangian of our model. The matrix elements compose of SU(2) x SU(3) those the spin
operators and flavor operators are in the between of the initial state and final state. In our
approach, the Pauli matrices ¢ are the spin operators which act on the spin part and
Gell-Mann matrices 4;,i = 1,2..,8 are flavor operators which act on the flavor part of the
quark wave function.

The definition of the matrix element of the meson in flight diagram for mass shift inside
the nucleon is defined by,

(ot ably s 30 AR o2t o)

= (V1| i Gap - G500 DA ) [N 1),

=2(N1T|6(1)-3(2) 4(1) 4,(2)|N 1)

+2(N 1 |a(1) - 3(3) 4;(1) 4;(3)|N 1)

+2(N 1 |3(2) - 3(3) 4;(2) 4;(3)|N 1)

From SU(3), when j = 1,2,3 the above matrix elements are the contribution from pion
mesons, while j = 4,5,6,7 the matrix elements are the contribution from kaon mesons,
and the last one, j = 8is the contribution from eta meson.

Here, we show the evaluation method of the matrix element which is the contribution

come from pions (j = 1,2,3). First we evaluate for a neutron with spin up |n 1) .
8

D (1[4, 4@3) 6@ 1)

j=1
We show the method of calculation of matrix for j = 1, in details as below.
nT14,(1) 4,(2)d(1) - 3(2)In T)

= (his| 4 (D) 2 DNBfis) ksl 1) - () xiss)
+ 2 (s ] 21 (D) 1 DIBfiaxiis |3 (1) - (D xsa)

+ 2 (Dhal (1) A ()1 bfas Y oxbial (1) - (2D xfys)
1
+ 3 (Phial 11 (D) 21, Pra)xriald (D) - (2 xira)

We are able to separate the terms into pieces and evaluate all the pieces, and after that

we sums the results totally.



1) (Pais| 21(1) 41 (2)|ppis)

- <_% [(ud + du)d — 2ddu]

- <_% [(ud + du)d — 2ddu

=—X2==

6 3

oy (Bl (1) 2 (Dlps)
1

= <T (ud — du)d

A,(1) ,11(2)| e lud + dwyd - 2ddu]>

]‘— % [(du + ud)d — 2uuu]>

A, (1) /11(2)‘— % [(ud + du)d — 2ddu]>

= <\/_ (ud - du)d‘ [(du + ud)d — 2uuu]>

3) (Pral 21(1) A1(DPpa)

L ud - awdl| 2,1 11(2)‘ %(ud s du)d>

y <\/§
° % (ud — du)d’ %(du ~ ud)d)

1
=—(-1-1)=-
> ( )
The spin part of neutron are shown as below,

1 1
= —ﬁ[(Tl +HIN L =2 U, Ixka) = E(Tl =Nl

And then the matrix elements can be calculated as below.

1 (xﬁslﬁ(l) - 3(2)|xws)

. (u +IN !
- %[m +I1) 4 =2 1] +0-;3fgi)o-;§?;) ——[m; '
6 +0,(1)0,(2)

R
33 3
While the detail calculation are shown as below,

(—— [(TL +11) L =2 L11] ax(l)ax(2)| Z [T+ L2 m1>

NG

%

Nﬂl

[(N+IT) L =2 UT]|—

]‘ ﬁ[(“ 1) 4 -2 m]>

x(2) = 3.
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< (1411 L =2 L]0y (D ()] \F(n 1) L =2 u1])

[(Tl M1 =2 U7 AT+t 1 +2 TTT]>

|-
=—x(2)=§
1

[(Tl +IM) 1 =2 UT]

02(1)02(2)| [(TL+11) L —2 m]>

[(MLHD L =2 UT (=N =Inil-2 llT]>

-2

(Xusld () - 32 xwa)

1 R R 1
_ <—ﬁ[(u +11) L =2 Lgleq) -0(2)|T(Tl —i1) l>
0,(1)o,(2) 1
= (=Ll +11) ¢ =2 Wt|+o, (Do, @] -L (1L =11
Ve o)

=0+0+0=0.

While the detail calculation are shown as below,

1
<—% [(1L +41) L =2 L1

ax(l)ax(2)|\/—1§(Tl B l>

- [ 1 _
_< Z [ Hn zm]‘ LG l]>
=—%x(1—1)=0.

<_i [(TL D) L =2 m]‘ay(l)ay

. (ML —1In ¢>

@[5

- <_T [(TL+11) L =2 llT]‘ \/%[m —10) l]>
= \/_ x(1-1)=0.
<_T (1L +11) L =2 Ut]|e,(1)a, (2)| 7 (T =i l>
1

=<—T[m +11) L =2 U1 ‘\/_( L+ l> —H X -1
=0.
(Xrald (D) - 32 xs)

< = 3(1) - 0(2)‘ [(TL+11) L =2 m]>
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o |
L 0} —11) L |+, (D0, (2| — L [(10 +41) L =2 147
|z to,(Wo,@)| Vo
= 0+0+0=0.

While the detail calculation are shown as below,

1 1
<T (-1 ax(l)ax(Z)‘—%[(Tl +I) L -2 uﬂ)

< 1 lT)l‘ Z L2 TTT]>

—Lx(1—1)= 0.

V12
<T (1L =D ay(1)ay(2)‘ a2 u)
_ <ﬁ (L=l ’—%[(u 410 L 42 m]>
1
( (1IN 02(1)02(2)‘ (AL +11) L -2 m])

= (G - L |-l - L2 )

—ix(1—1)= 0.

V12
4) (Xialo (1) - 6 (2)1x5a)

_ |1 sy 2en| Loy

= < - 6(1): 62| Z5 (14 =11) l>
1 o,(1)o,(2) N

== =D [+o,(Dao, (D=L =ID 1
V2 to,(0,2)| V2

=-1-1-1=-3.

While the detail calculation are shown as below,

Li—iny ax(l)ax(Z)‘%(Tl —11 l>

e

_ <% (ML—1n L ‘%m ~10) 1)

1
=ox(-1-1= -
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1 1
<ﬁ (LDt ‘ay(1)ay(2)‘ - )

1 1 .. , , ,
<ﬁ (ML—it) L ‘ﬁ(l L) T=(=D)Til) ¢>
=%x(—1—1) - 1.

1
<ﬁ (1 =11 4

02(1)02(2)‘ %(u ~11) l>
(L _ 1.
_<ﬁ(u lT)l‘ﬁ( u+u)¢>
1
=ox(-1-1)= -1

And then, the final result of j = 1is shown below,
(n 11 ,(1) 4,(23(1) - 6Q2)In 1)
= ~(his| 4 (D) 2 DNBfis)xfisl D) - (2D xfis)
+ 2 (bhis] 21 (D) 2 DI xkis| 3 (1) - 3(Dxa)
+ 2 (Dhal (D) A, ()1 his)xbial 61 - 32D i)
+ 2 (Phral 22 (1) 2 DNDFra) Ufial (D) - G xkia)
:

1/1 1 1 1 1 5
=2(3%x1)+30x0)+3(0x0) +3(-1x-3) =1(5+3) =2

Similarly, we can obtain the results of j = 2 and 3.
(n1122(1) 2,(2)6(1) - 3(2)In T)

= ~(dhis| 22(D) 1D fis)xdis|F (D) - 3l xfis)
+ 2 (s ] 22(1) 22| pRia)xfis16 (1) - 62D xiia)
+ 2 (Dhal A2(D) 2 DNBfis)xfral (1) - 3)lxlis)

+ 2 (Phial 22(D) L DIBJi) ial (1) - 3 xfra) -

(n1]25(1) 23(2)6(1) - ¢(DIn T)
= %(d)z’&sl A3(1) A3 pisXxiuslo (1) - 6(2) 1 xius)
+§(¢1’&s| A3(1) A3(2)1fia)xiis|d (1) - 3(2)|x7a)

+ 2 (Dhal A3(D) A3 DNbfis)xfral (1) - 3()lxfis)
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+2(Bhal A5 (D) A3 (1DRa) Ahial 6D - 3 xiia)
5

3
Similarly,
(nT4,(MA4B)FM)-6B3)InT)

= (sl A (D BN Bfis)xfisl 1) - G(3) xfis)
+ 2 (bhis] 21 (D) D Pfia)xbis |3 (1) - 33 xea)
+ 2 (Dhal 211 A3 bis)xbial 61 - G(3) i)

+ 2 (Bl (D) 2D Pha) (Kial6(1) - (3 xiza) -

(n 11 2,(1) 2,(3)6(1) - 3(3)n 1)

= ~(Blks| A2(1) 2,3 Blas)ixhis (1) - 3(3) ks
+ 2 (bhis| 22(1) 23| PRia)xfis16 (1) - G xfia)
+2(Dhal 22D 2, DNBfrs)xiral (1) - 3)lxiis)

5 (Phial 22(D) DB Uial G (1) - 33 xfia) -

(n 11 25(2) A5(3)3(2) - 3(3)In 1)

= ~(¢is| 22(2) 1D iis)xiis|G (2) - 3B xfis)
+ 2 (bhis] 22(2) 23| Pia)xfis16(2) - 63D i)
+ 2 (Dhal 13(2) 23D Bfis)Xf1alF(2) - 33)xfis)

+ 2 (Phial 23(2) A DBJia) ial 3(2) - () xfia) -

Then the total pion contribution of this diagram of the neutron is equal to
2x{(5+5+5)+<5+5+5)+<5+5+5)}—30
33 3 333 33 3/) 7
Next, we consider the kaon contribution, which isj = 4,5,6,7.

M T]2,(1D) 2,261 - ¢@DInT)+(nT]25(1) 25(2)6(1) - G(In T)
+(MT12:(1) 2(2)3 (D) - d@DIn T +(n T]2;,(1) 1;(2)6(1) - 6(2)In T)

Similarly, we can get the results,
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(nT124(1) 2,(2)g(1) -
(nT]25(1) 25(2)a(1) -
(nT126(1) 26(2)a(1) -
(n1124,(1)2;(2)g(1) -
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a(2)InT) =0,
d@nm =0,
d@nm =0,
d(2)nT)=0.

Also the results of calculation between the quark number 1 and number 3, and the quark

number 2 and number 3, we obtain,

(nT124(1) 2,(3)a(1)
(nT]25(1) 25(3)(1)
(nT]26(1) 26(3)a(1)
(n112,(1)2;,(3)¢(1)
(nT124(2) 2,(3)3(2)
(n1]25(2) 25(3)3(2)
(nT126(2) 26(3)3(2)
(n112;,(2) 2;,(3)6(2)

a(3)In1) =0,
a(3)In1) =0,
0(3)In1) =0,
G3)In 1) =0.
d3)n1 =0,
G@3)n1 =0,
-¢3)In1) =0,
-G3)In 1) =0.

From above results, we found that the kaon contribution for this diagram is equal to zero.

And for the last one, we consider the eta contribution, which is j = 8 in the same way.

(n1]2s(1) 25(2)6(1) -
(n1]2s(1) 25(3)d(1) -

(n1]25(2) 25(3)3(2) -

F@In M =—3,

F@)nty=—=,

3
1

i@nTy=-=2,

3

We sum the results of eta contribution as below,
=2(n 1| 25(1) 25(2)a(1) - 6(2)In T)

+2(n T 25(1) 2(3)a (1) -
+2(n 11 25(2) 28(3)5(2) -

3(3)In 1)
g3)In 1),

Next, we evaluate the matrix element of proton in the same way same neutron.

(P T12,(1) 2,(2)d(1) - 3(2)Ip T)
= %(¢1€1$| 2 (D) 44(2) |y Moms |7 (D) -
+%(¢1€1§| (D) 42| pyaxis|F ) -

+ 2D al 1 (D) @55 bl G

5(2)|X1€15>
5(2)|X1€1A>
5(2)|X1€15>

1 5
+E(¢I€IA| 4 (1) /11(2)|¢I€IA)<XI€IA|O-Z(1) ' 5(2)|X1€1A> =3

Acting on the quark number 1 and 2, in case of j = 2,



(pT12,(1)2,(2)d(1)-a2)p T
= 2{(#hs| 22(1) 1@l Nakis|3 D) - 32| xkys)
+ (55| 221 12| Bk 1) (x| G (1) - 6(2) )
+ (5] 22(1) 2,(2)|phs )b al 31D - 32| xlrs)
5
4304l 220 @8] N ald 1) 5DNte) = 2
Acting on the quark number 1 and 2, in case of j = 3,
(pT12;(1) 23(2)6(1)-6(2)|p 1)
= 2(#hs| (1) 2 @Dbhs Naks|3 ) - 32| xkys)
+ (55| 2D ()| dk 1) (|G (D) - ()| xbra)

+ (5] 23(D) 23|05 )b al Q) - 32| xlrs)

43 (04l 220 @8] Nal6 D) GDNitys) = 2
Acting on the quark number 1 and 3, and j =1,2,3
Incaseofj=1,

(p 1] 24 43)(1)-63)|p 1)

=5 {8051 1 (D L3 Dis)tias| oD - 5B i)

+3 (0] 1D 2 BN hs 5D - 53)a)

+{bhral 1 (D) 13| BLs) o al 3 - 33)|xbss)

N = N

5
(¢1€1A| A (1) /11(3)|¢I€1A)<XIZ\J/IA|5Z(1) ' 5(3)|X1€1A> =3

+

In case of j = 2,
P13 -@B)p 1)
= 2 (Bh1s] 22(1) 2,D|Bhs ) xbis|3 (D) - 33 xkss)
+2{bhs] 221 2230} (s |6 (1) - G by )

+(bhal 221 1,3)|dhsHxmalG(1) - 3(3)|xins)

2
1
+E(¢I€IA| A2(1) /12(3)|¢I€1A)<X1€1A|0-2(1) ' 5(3)|X1€1A>

In case of j = 3,
(p 1| 4D 43)6(1) - (3)|p 1)

= 2{dhs| 1) 1,B3)|bhs Nks |3 (1) - 33D |xkys)
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+ (55| (D) 13| Bh 1) (xhis|F (1) - G(3) )

+ (5] 23(1) 233)|bhrs)(xhral 31D - 3(3)| k)

1 - -
+§(¢1€1A| A3(1) /13(3)|¢I€1A)<X1€1A|0-(1) ' 0(3)|X1€1A> -3
Next, to evaluate the (p 1| 2;(2) 2;(3)6(2) -3(3)|p 1) , which the operators are acting on
the quark number 2 and the quark number 3, in case of j = 1,2,3

In case of j = 1,
(p 14,2 4332 -5B3)|p 1)
= 2{(#hs| 12 13|55 x| - 3(3) |xhs)
+2(Bhs| 112 LB Bh ) (Khis|3 () - 33| xira)
(D04l 1@ LBl (xbial 3@ - 63D xhis)
el )

+ (b4l 21.(2) L. B)| b x5alF(@) - 3B |xipa) = 7

+ (x
(m
In case of j = 2,

(pT4@ 4331 aB3)|p 1)
= 3 (sl 22(2) LB bhsNxkis|6@ - 6@ xhis)
+3(Birs 12(2) 2, (3)[ b5 (tius|6(2) - 3(3) i)

(¢MA| A2(2) /12(3)|¢MS)<XMA|O-(2) 0(3)|X1€15>

N|,_x NIH NIH N |

5
(¢MA| A2(2) /12(3)|¢MA)<XMA|O-(2) ' 0(3)|X1€1A> =3

In case of j = 3,
(p 1242 4(3)3(2) - 3(3)[p 1)
= 3 (Bhis] 22(2) 223 birs Nhis|52) - 53 )
+5{birs| 252 25| dha)tins | () - 53) xiva)
+5 (il 3@ A:3)|his)tinal52) - 33)]is)
42 (0] 2 BNl D FBitls) = =
We summarize the result of Pion contribution as below,
2(p 1| 4 24,(2)a(D) -e@|p 1)
+2(p 1| ;D) 43D -3(3)|p 1)
+2(p 1| 2;(2) (3)3(2) - 3(3)|p 1)

—2x(5+5+5)+2<5+5+5)+2<5+5+5)—30
- 3°3'3 33 3 3 3 3/
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Next, to evaluate the (p T | 2;(1) 4;(2)3(1) - 3(2)|p 1) , which the operators are acting on
the quark number 1 and the quark number 2, in case of Kaon contribution, which are j =
4,5,6,7. By using some algebra and calculate straight forwardly, we can get the below
results.

P T12,(D) 2 (2)d(1)-alp T =0,

P T125(1) A5(2)d(1)-aIp T =0,

P T126(1) 26(2)3(1)-d(Ip T =0,

P11, A;,(2)d(1)-alp T =0.
And to evaluate the (p T |Aj(1) A(3)a (1) - 5(3)|p T) , Which the operators are acting on
the quark number 1 and the quark number 3, in case of Kaon contribution,

P T12,(1) 2,3)3(1)-d3lp T =0,

P T125(1) As3)d(1)-a3)Ip T =0,

P T126(1) 2(3)3(1)-a3)Ip T =0,

P T124,(1)2,3)3(1)-a3)Ip T =0.
And to evaluate the (p T | 2;(2) 2;(3)3(2) - ¢(3)|p 1), in case of Kaon contribution,

(P T124(2) 2,3)6(2)-63)Ip 1) =0,

P 1125(2) 1s(3)6(2) - a3)Ip T =0,

(P T126(2) 2(3)3(2) - 33)Ip 1) =0,

P 112,(2) 2,(3)3(2)-d3)Ip T =0,
We summarize the result of Kaon contribution as below,

=2(p 1| 4D 4,23 -3)|p 1) +2(p 1 | ;1) B3)3(1) - ¢B)|p 1)

+2(p 1| 4@ 4(3)3(2) - d(3)|p 1),

=0+0+0+0=0.
Next, to evaluate the (p T | 2;(1) 4;(K)a(I) - ¢(K)|p 1), in case of Eta contribution, which

are j = 8. By using some algebra we can get,
(P11 2(1) 25(2)a(1)-6(2)Ip 1) = _é ,
(P11 2(1) 25(3)a(1)-6B)|p 1) = _é ,

(p 11 25(2) 1332 -3)Ip 1) = =3



We summarize the result of Eta contribution as below,
=2(p 1| 2(1) 2(2)a(1) - G(2)[p 1) + 2{p T | 25(1) 2(3)3(1) - G(3)[p 1)
+2(p T125(2) 25(3)3(2) - 33)Ip 1),
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Chiral invariance in SU (3)

o Aidi
We consider the transformation of the wave function by a chiral rotation, e'"szr

. Then, the quark wave functions become,
- Aidi _
P = eME Y, ) = ple iy
We consider the interaction term '(x)S(r)y'(x), when is a quark field, ¢; is a
meson field, and then we obtain,
- iy P iy 1%
PSP () = PpTe™ 15 2r yOS(r)e™s2r
o Aidi o APy
— l/)f]/OQWSFS(T)eWSFIIJ
= ty® (1+ iy )S(r)(1+ly 2y
= (P17 + ity Oy 22 (SaP + iysS() ty)
= PTyOSOIP + Ty 0iysS(r) L2 + ity Oy L2 S (r)y
Aig;
ity Oy Loty S(r) Aty
— Di Lidi 1)?
= pS(Y + PiysSE) Ly +0(3) .
2
In our approach, the terms O (%) can be neglected. And we restrict our calculation to
the linear strong interaction term only. And from the properties of bilinear, the
transformation of &iyss(r)%l/) is pseudoscalar transformation. It implies that ¢; must

be pseudoscalar quantity.
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The calculations of the nucleon form factors and some integrations
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The calculations of the nucleon form factors and some integrations

1) The evaluation of [ d®x P, (x) 7 Pp(x)e'd™*.
We define the quark space part wave functions of a-state and g-state as below,

e (0) = Ga(De'at | and Ppx) = ug(¥)e " .

J @ x P () ¥ Pp(0)e'T* = [d®x 1,(x) 7 ug(x)e'de!EaEplt

Where u, (¥) and ug (%) are Dirac spinors which are given by,

a 9a (1) o gp() .
te(®) = Ne <i& ! ffa(r))’ up(®) = Ny <i5 - ffﬁ(r)>’ =7

We progress step by step, at the first step we will neglect the spin part of the quark

wave function, but we will include them at the last calculation.
. o Y 1 0
(i) Uy = uj; Yo = (ga(r) ,—i0 - rfa(r)) (0 _1) ,
= (ga(r) ,i0 - 7A'fot (7‘))
(i) Uy (X) ¥ ug (%)

=Nelge().i6-10) (5 g)Nﬁ( T )

iG - 7f5(r)
= —id - Pfo(r) 6 gg(r) + go(r) @ i6 - Pf(r) ,

i9a(r)fp(r) 6 (0 7) =i(d - 7) G fo(r)gp(r)

(iii) by using the identities of g;

[cri,aj] = 2i€;j 0 — 0,0; — 0j0; = 2€j; 0%
{ai,aj} = 26;j — 0,0; + gj0; = 26y,
and then,
0;0; = 8;j + i€;ji 0%
and multiply this equation by A; we get,
00;A; = [c'r’ (c'r’-/f)]i = (Sij + ieijkak)Aj

We re-arrange the index of ¢ to be € in order to get a vector cross product.

O'lO']A] = Ai — lfiijkAj
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We can rewrite the above relation in term of vector dot product and cross product as,
G (6-A)=A-i(axA)

Similarly, we can get the below relation,
(G-4)¢ =A+i(GxA4)

Here, we replace the vector A by a vector 7, and then we get the relations,

=>

GG F—G 76 =—2i@GxF)

(i) We can get ,(x)7ug(X)in terms of two components, 7
component and (¢ x #) components which are perpendicular to each other,
Uy (X) Y up(X) = igo()fp(r) o ¢ -
=10 70 fu(Mgp(r),
= 17 (9a ) fp ()= fu()gp (™))
+(3 X 1)(ga (M fg )+ fo () gp(r) )
(ii) After some calculations and select an appropriate direction of the
external photon, we find that the # component vanishes and only the (¢ x #) component

survives.
ﬁa(f) ?uﬁ(f)el(ff = (53 X f)(ga(r)fﬁ(r)+ fa(r)g'g(r) )eiﬁ-f_

From the relation between # and § acting on e'@*, we get,

. —i aeiqrcose )
feldX — ___— __ — q cos etarcost
r dq
(iii) Plug the above relation into the equation, and then we obtain,

Uy (%) 7 ug(®)e' T = (@ X (9o (M fe(M+ fu (M gp(r) )

X cos@ eldrcost

If we fix the direction of ¢ in the direction§, or ¢ = (0, g, 0) then,

(0 x Q) = 2(=0,) + 2(0y).

And in this study, we restrict ourselves to the proton and neutron with spin up, then the

second term vanishes, so we obtain,
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(@xq) =2(-0,).

(iv) And plug this result into the equation we can get,
Uy () 7 ug(D)e' % = ~0,2(ga () fg () + fo(r)gp () )

X cosf) el7cost
(v) Finally, we obtain,
Jd3x () 7 Pp(®) eT*
* T 2

=Nty [ dr [ sino | " (~0)2(0.0f0I+ FurIgp)

X Cosgefqrcoseei(sa—sﬁ)t

2)  The evaluation of the radial part of [ dx 1, (%) y°s (%) €%
We precede our calculation similarly as above methods. And then we obtain,

fd3x Y (x) ¥ 1/)B(x)ei‘7"? F fd3x U, (x) ¥ uB(x)e‘ﬁ"?e"(Ea‘EB)t.
Where u, (¥) and ug (%) are Dirac spinors which are given by,

o ga) A I
e (%) = No (i&-ffa(r)) g = N (i&-ffﬂr)) =T

We progress step by step, at the first step we will neglect the spin part of the quark

wave function, but we will include them at the last calculation.

. B s> gl 1 0

(') Ug = u;)rz yo =5 (ga(r) , Lo Tfa(T)) (0 _1)

= (ga(r) ,i0 f'fa (7'))
Tey® = ul y°r° = (9o, () , —iG - £,(r))
(il (@) 70 4y (D) = No(gu (1) ,—i6 - £,) x Ny I
« b arJadi s « FAid - #f5(r)
= NaNB{ga(r)gB(r) —id - tfa(r)io - f'fﬁ(r)}

By the use of the identity (¢ - #)(G-#) = - +ic-(F X F)=1.

= NgNp{g9a(Mgp() + f (") fz(r)}

And then [ d®x 1, (%) (Q y° )ug(%) e'9* becomes,

= NeNg [ dr [7 6 [77do (£ ()fp(r) + () gp ()

X eiqrcoseei(sa—sﬁ)t

Evaluation of the product of spin part wave function I,



I = jd3 xy (%) iy®S(xy) ug (;)eP*
x [[@x 1,7 ugret*
X f d® x; Tip(%,) iy5S(z) wo(iz)e™ P
We express the spin part of u,(¥,) and i, (¥,) as,

uy(X,) = C0Y00|T> (%) = (T |C0Y00

And we can also express u, g (X) with total angular momentum j = i%as below,

forj=+=, lug, Ty = A,Y2|T) + A, Y2[L) .
andj = - lug, L) = AY 11T+ A, Y0 .
Similarly, for the ug (%) ,

forj=+4=.  |ugp®) = BRI+ B3I

andj= -, |ugl)= BsYUN+BY2I)

1

Where the Clebsch-Gordan coefficients are A; = (IQO%% |ja %) A, = (lal— —=

2
11]. 1 1 1]. 1
(16053 i 3) and B2 = (1515 =5 |ig )
We can split the integral of the spin part product Iinto 4 parts as below,
Part 1 u,, j=+% and wug, j=+%
(T1GYy 0+ p (A Y211 + A Yg [1) X ((T AL YR + (L |4, Ye")
X (—a,%) x (B,Y|1) + B,Y7 1))
X ((T[B1Yg" + (L |ByY")d - BCoYS 1)
Part2u,, j= +% and ug, j= —%
(T1GYy 0+ p (A YR IT) + AV [1) X ((T AL YR + (L |4 Ye™)
x (—0,%) x (BsY5 1) + B,YQ L))
X ((V[B3Y; ™ + (L |ByYS")d - BCoYS 1)
Part 3u, , jz—% and ug, j= +%
(TICYy 0+ P (AsYG M) + AL Y2 11) X (T 1A Y7 + (L [A4Y9")
x (=0,%) X (B1Yg 1) + B,Y4 1))
X ((T[BLYS" + (L |B,Y3*)G - pCoYSIT)

Part4ua,j=—% and u,;,j=—%

1
2

., 1

]az
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(TICoYs - B (AsYg HT) + AL Y2 1) X ((T1AsY ™ + (LA, YR")
X (=0,8) X (BsY5 ' 1) + B,Y2|L))
X ((T|BsYg ™" + (L [ByYQ)d - BCoYRIT)
We sum all the parts together, and after using below properties of spherical harmonic
function Y,
(i) ;" Yipdo = [ Vihdp=0,
(il) A,Y3"BoYE = A, Y4 B,Y4",
(i Im=(N=o0.
Part 1:
= (T|CoYY 0+ (A Y2T) + A, VALY X ((T A Y2 + (LA, Y1)
(=0,%) X (BLY2I1) + BoYF 1)) x ({1 [B1Yg" + (L |B,Y3")d -
PCoYsIT)
= 2V |CoYs 0 - B (A YL X (A Y™ B Y] + A,V *BYS )
X ((T|B1Yg")a - BCYRIT) .

10

=21 CY0 G- P A YO X (0 0

) (ZAL Y BLYS + A, Y3 B,Y})

Part2u,, j= +% and wug, j= —%
(TICoYy G- B (A YR 1T + AxYa ) x ((T ALY + (LAY ")
x (—a,%) x (BsY5 1) + B,YJ L))
X ((TIB3Y ™ + (U [ByYg*)a - BCoYS (1) = 0
Part 3 u, , jz—% and ug, j= +%
(TICoYs 0+ B (AsYa HIT) + A Y2 ) X ((T1A3Y ™ + (LA, Y7
x (—0,%) x (B;Y{ 1) + B, Yz (1))
X ((T[BYR" + (L |B,Y3*)G - pCoYSIT) = 0

Part4ua,j=—% and uﬁ,j=—%



(T1GYy 0+ p (AsYg M) + ALYQ 1) X ((T1AsYy Y + (L [A,Y9")
X (=0,%) x (B3Y5 1) + B, Y 1))
X ((T|BsYg ™ + (U |BY))d

“PCYy 1)

_A3Ya_1*B3YB_1)

=x(T|C, Y2 o -p A, Y0
(T1CoYy p Ay a< +A4Y£*B4Yr,30

x (8 ) (BYg)G - BCYSIN.

And then,

1
0

+ Z(T|C YL &
B AL (=AY B Yy + ALY BLYY)

A =3 g 0 * *
I = 2(T|CY0 G- A Y2 % ( 0) (=AY B YS + A Y2 ByYR)

0 0 S o
x (o 1) (Ba¥f)3 BCYSID.
From the Clebsch-Gordon coefficients relation, we get,

_AIY(S*BIY[? + AZY(}*BZYBI = ABYa_l*BBYﬁ_l e A4Y£*B4_Y'B0

Finally,
L =21 |CYy G- P AYQ(—A Y "B Y +

ALY BYR) ((1) _01) (BY$)G - BCoY2IN).

Evaluation of the product of spin part wave function I,

L = f & x, Go(%) iy SCDNREDETH
xfd3x Uy (X) Yo uﬁ(a'c’)e‘ﬁ"?
x f 02 x, wp(%) 1Y5S(x) uo(Fy)e P

We can split the integral of the spin part product I, into 4 parts similar to I;as below,
Part 1 u,, j=+% and ug, j=+%
(TICoYs 0+ B (ArYR 1T + ApYa 1) x ((T1A Y2 + (LA, Y )
X (ByYZ 1) + BoYFU)) x ({1 By Y9 + (LB, Y5")d - PG YR
=1 |CoYo 5'23 (A1Yo?|T>) X (A1Y¢;?*B1Yﬁo +A2Y0}*Bzyﬁ1)(<T |B1Yﬁ0*)5 ’ ﬁCoYo"IT)

1 0

= (e & 5ae(,

) (ALY BLY + AV ByY} ) (ByYS" )G - BCoYSIN)

82
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Part2u,, j=+> and ug, j=—=
(TG G- B (A Y2 1T + A Yz ) X ((T1AYe" + (LA, Y5™)
x (BsY5 1) + B,Y L))
X ((T[BsYg " + (L [ByY")G - pCoYQIT) = 0.
Part 3u,, jz—% and wug, j= +%
(TG G- B (As¥a T + AgYR 1) X ((T AV + (LA, Y2
x (B1Yg 1) + B,Y4 L))
X ((T|ByYg" + (L |B,Y3")G - BCoYg|1) = 0.

Part4 u,, j=—and ug, j=—=

(T1CoYy G+ (AsY M T+ ALY 1) X ((TAzYg 1 + (LA YY)
X (BsY3 1) + ByYS 1)) x ({1 [B3Y ™ + (L |B,YS)G - BCoYS|T)

= (TCoYs - B ALY A3Y " BaYg  + AYR By YR )(LIBYLG - CoYS |1
= (1 ICYY &+ B AV (As Y VBV + A2 BY) (§ ) (Ba¥R - BCoYSIM)
From the Clebsch-Gordon coefficients relation, we get,
ALY BYR + A Y0 By Yy = AY VB Yt + A Y BY)
Finally,
I = (T CoYs 6 PAYS (AL YY" B Y) + A, Y7 "B, Y3 )
x (5 9) (B3 Feordm

3)  The evaluation of [ d3x; iy (%,)iy®S () u, (%;)e?*:

oy _ 9o (1)

uo(¥1) = Ny (ic?-(;“”fo(r)) CoYo,lT),
oy _ 9a(r)

ua’(xl) - Na (lo—.’ . i;.fa(r)) Alya,0|T> )

and |¥,| = .

We progress step by step,

() I = vy = (o), —i3 #6,) (1 °)
= (9o, i - £, 1(CoYoo)”
(i) Tip (X1)iy*S(x1)ue (X;)
= iNy(go() ,ic - #f(r)) ((1) 3) N, (i&gj‘ﬁg)@) CoY0,041Ya0S(r),

= iNgN, i -7 fo(r) go(r) + G- go(r) f(1)] CoYo,041Ya0
R =, iprcosf i
(III)(}-’ el X — —i?aeT =- p cost giprcosd



And then, the result [ d3x; fiy(%;)iy>S (x;)ug (%;)eP*
co T 21
= —NONa& . ﬁj dT‘J dQJ d¢ (COYo,o)(A1Ya,o)5in9COSQeiprcose
0 0 0

X 128 (r) (fo(1) 9o () + (fe () go (1))
4)  The evaluation of [ d3x, tig(¥,)iy5S (x,)uo (¥;)e P %2

U (%) = Ny (igg(;%)(r)) CoYo,lT),

" 9p(r)
uB(xZ) = NB <l& ifﬁ@‘)) Blyﬁ’,o |T>J

and |¥%,] = 7.
We progress step by step,
() g =u}v° = (95 =16 1,@) (5 ) T 1(BYpo)’
= (950,16 - 7)) (T 1(B1¥po)

(i) ﬂﬁ(fz)iyss(xz)uo(fz)
= iNg (g5(r) i -

1150) (5 )M (1575 1) STICoYoo(BiTo)

84

= iNgNg[iG - 7 fo () gp(r) +iG - # go(r) f5(r)] S(r)Co¥o,0(B1Ys0)

= —NoNgé - Ffo(r) gp(™) + go() fz(1)]

T ap

=g- p cosf g —iprcost
5)  The evaluation of [ d3x, iz (%,)iy5S (x,)ue(X;)e P %
© s 2T
= —NONﬁo'"-ﬁf drf dﬁf do (Coyo,o)(B1Yg,o)5in960896iprc"59
0 0 0

X 128(r) (fo(r)gﬁ(r) + (f5(r)go (T))

The evaluation of GJ (Q*)|amc:



85

GE (@)amc

1 . - A
= 4ol = E_f §(t)d*xd*x;d*x et <_¢(x1)i)/5 Fk‘pk (x1)5(x1)|¢a(x1)>
|

| P
_ 21 l
X <—¢a(xZ)iV5 qubl(xz)S(xz)wj)(xz)) % <f3ij ]:8/_J>q§ ) ](X) o)
|

2 . . .
“F2 (¢o _f S()d*xd*x;d*x,e 7% T (X;) e Cot1iy® 1, S (x1 g (X ) e~ Eats

X 0(t; — t,) Uy (%, e atziy5 2,8 (x,)ug (Z,)e ot x <f3ij n %)
d4p1 e—ipl(xl—x) d d4p2 e~ tp2(x—x2)
< ) |bo)

X Oki X
Oi (2m)*i M2 — p? — 5”6t (2m)*i M2 — p2 —

Because we restrict the calculation to nucleons with spin up, then we obtain,

y
T T Qn)PF? ez N Tlfd4x1d4x2d4p1d4p d3x @ % iEaElipiEa=o)ls

X 0(t; — t;) X f 5(t)dte_ipg(tl_t)e‘ipg(t—tz)e—i%t
X [T (X)) iy > A:S (1) g (£1)] X [ﬁa(fz)iysﬂjs(xz)uo(fz)]

f8l] e~ P1t=%) e~ iP2(¥=%2)
<f3l] \/§ X pz i |NT>

Mg —pt —ie " Mg —p3 -
When we calculate the terms concerning with t only, we can get the below result,

fé‘(t)dt e—iP?(trt)e—ipg(t—tz)e—iqot — e—ip?tle—ipgtz

Plug the result back into the equation, and then we get,
Gy (Qz)laMC
———(N 1| [ d3x,d*x,d*p,d*p, x [ d3x e! (@ P1+P2)%

(2 )8F2
x [dt, e P+t G(¢, — t,) X elPeFAERL:
X [T (%) iy > A:S (1) (%1)] X [ﬂa(fz)iysljs(xz)uo(fz)]
f8 eiﬁl'fl e_iﬁz'fz
x| foij + 22 | X —————p) ———— IN 1).
V3) Mg —pi—ie " Mg—p;—ie

Where AE, = &€, — €,. And make use of the definition of 8(t; — t,), we get

—i

- pri(pHag)ts
-0 (pl +AE,) —in

fdt1 e~ i(P+AEtig (¢, —t,) = lz

And the terms concerning with t, become,
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jdtz e~ i(PR+AEL)t: ¢ i(P2+AEL)L, =_[dt2 ei(P2-p)t,

= 28 (p3 — p?)

This makes p? = p? . And the terms concerning with t become
| @xel@rima? = @nysG - b + 5.

This makes p; = G + p,.

We define the new g = p, and p, = p2 = p?.And then,
GE Q@D amc
- (N1 [d®p x [d3x Uy (%1)iy 5 S (x; g (%, e D%

=7 (2m)*F?
— - . - _' Q.-} f i

X [ a3y, (3)iy5S (eduo (Fo) e~ % x (foyy +52) 0

y J’ d 1 Do 1

POMZ ¥ (5 + )2 — pZ—ie (po + AE,) —in MZ +p2 —pg —ie

[N T).

We evaluate the below term by using the Residue theorem,

(o8]

1 Do 1
d — = : - = -
f pOM£+(p+q)2—p§—ze(p0+A£a)—Lanz>+p2—p§—Ls

— 00

= —2mi Z Res(f[z]).

We expand the left hand side of the above equation, then we get,
f dpg } =% T 3 ~—
(o — wo (P + q) +ie) (po+ wo(P + q) — ie)
y Do 1 1
(Do + AEy) — in (po — wo () + ig) (pg + We(P) — ig)

Where we,(B+ §) = /M3 + (B + §)? , and we (p) = ME + p? .

There are 5 poles, three poles in the upper plane and two poles in the lower plane. In

our calculation, we select the lower plane for simplicity.

Forzy = we (P + q) — ic,

Res(f [z,])

_ 1 we @+ q) 1 1

" 20e 0+ @) (o 0+ D+ DEL) (o '+ §) — wo ) (wo 0+ §) — e (1)
1 1 1 1

T 2o+ D T A8 (0o + §) — 0o ) (o + ) — we ()

Forzy = we (p) — ic,
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Res(f [z0])

- 1 1 we () 1

B (wcb ®) — we P+ q_))) (a)d, ®)+ we (0 + q_))) (e (0) + AEL) (20% (p-)))
1 1 1 1

" 2(00() — 00 B + D)) (o B) + o (B + ) Wo(B) + AE,)’
And then we obtain,

—2mi Z Res(flzo])

i
" (06 + 0o B + D)) (@o(B) + A ) (wo (B + §) + AE,)

We expand the term (p + g)?and relate them with the four-momentum transfer in the
Breit frame Q% and the 8 , angle between p and ¢,
B+ @? = 5%+ ¢+ 25 G = B> + Q* + 2Iply/Q?cos6
=p? + Q% + 2p\/Q%x
Where p? = p?, |p| = p and x = cosé .

From the above results, the GY (Q?)|4 mc becomes,
G (@ amc

2 ) J
=~ f dp X f 35, 1o (7 )iy 5S ()t (B e F+D s

X f d3x, 0 ()i S ()0 (2,) e "7 %2 x <f3ij + %) Aid;

i
(00 + e + D)) (o @) + 2E2) (00 + ) + AEL)

[N T).

Where we (p + ) , and we (p) are as below,

we(P+q) = /Mg, +(@+q)?= \/Mg, +p? + Q% + 2p/Q2x

we(P) = \/Mg, +p2 = \/Mé + p2.

The evaluation of G (Q»lapvc

X]T]S,XNSGII;‘V(QZ)laﬁ,VC

S2gir [ 8O A xd X, . d*xne IXTILET (1) . L5 ()]0 ()]

= (0

#o).
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= 2g0l - 5 [ SO xdx,d e (—&(xl)iys AF—"qz-l (xl)S(r)zpa(xl))
|

| 2, |
x (QWa (Y s () ( ~p ()i Fl@(xz)s*(rw(xz)): o)

1 i L .
= —ﬁ(ﬁbol j S(t)d*xd*x,d*x, et [ﬂo(f1)€l£°t1i)/5/1i5(x1)ua (fl)e_l‘gatl]
x [0t — )T (R)e'at (Qy° Jug(X)e 6" | x O(t — t,)ui5(X,)e *r"
d4p e~ p(x1—x2)

i(2m)* M2 — p? — ic [®o)

X iy®2;S(xy) ug(¥,)e %otz x §;;

Consider the terms concerning with t , we obtain,

f dt 6(t) e~ oteiéate=Eptg(t, — ) B(t — t,) = O(ty)0(—t,).
We use the above result, then we get,

G (@ apyc

—i -> . - "40
= Gy ol [ dtdod's [| @B @ aSEw e
X [fd3x 1, (X) (Qy° Jug (%) ei‘_f'f] X e~iEa=Et19(t,)

X [f d®x; ﬂB(522)1‘)/5}1.5(3(2)110(fz)e_iﬁ'fz] x e!Ep=ttz20(—t,)

e ipo(ti—t2)

X :
M v —pi—ie

We make use of the definition of 8(t) and then we obtain,
. d —
dt, e~ Héat1 g(¢ “Wolts = [im —8 ——
f 1€ (&) e 120 po + A8, — I
. . —i
dt, etz (—t,) etPolz = [im ———————
f 2 € (-ta)e 120 po + AEs — 7]

Then the GZ (Q*)|ypvc becomes,
GE (@apyc

=(27I)+P'2(¢0|fd3p [f d®x, ﬂo(55)1)1']/5/11'5(951)”0;(551)91'73"21]
x| [ 2 5 @ s || [ @, Gy iv® A (e e

1 1 1
X | d - T ~
f PO oo + AE,) — i (po + A&p) — in (Po — wo (P) + i€) (po + we (P) — ie)

|$0)

We evaluate the term [ dp, by using the Residues Theorem, and then,
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1 1 1
.f 4Po (Po +AE,) —in(py + AE/;) — in (po — we (P) + ie) (po + we(P) — ie)
= —2n ) Res(flz))

There are four poles, three poles are in the upper plain, and one pole stay in the lower
plane. In our calculation, we use the lower plane pole for simplicity.
Forzy = we (P) ,
—2mi Z Res(flzo])
Z,
1 1 1
2mi = = S
(@0 () + AL4) (0o (B) + A8;) (2006 ()

—1Tl
T (0o + A (wo (B) + A&p)we (B)

We restrict our calculation to nucleons with spin up. Finally, the Gf'(Q*)|qpyc becomes,
GE (@apvc

(NI &[] dx )iy *S (e Juq (1) e 1]

(27r)4F2
X[ [d®x 1, (%) (Qv° ug(®) e@¥|[f d3x, U (Z,)iv°S (xz)ue (%) e~ P%2]

Aid;
((Uq> (P) + Aga)(wq:(P) + Agﬁ)w¢ (P)

6) Evaluation of [ d3p p (ﬁ 1 P+Q)(5 ,1‘)

[N T).

[p+4] D]
21 v -~ g
., btq 2
d fsm@d@f d (a = q)<o’-—q>
f < o7 Ip + 4l Ipl
21
fdpf sm@d@f d(l)l lp(a @+§)@ - p).

We use the identity of
(¢ -A)(@-B)=4-B+id -(AxB).
And then, we get,
f dpf sm@d@fzndd)l |p[p @+q +ic
(B +D xp)]

We proceed by evaluating the below term first,
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2T
[ s 515G+ +id - (G+DxP))
0
The unit momentum vector p and the spin operator ¢ with their components in space

can be shown as below,
p =sinfcosp X+ sinfsingpy+ cosbZ
g

=0y X+0,y+0,2
And by defining the G to be ¢ = (0,0,q) = g2 , we obtain,
BB+ ) = +pJQ* cos .
and

(@B+Pxp)=37 - (G@xP),
= (0x3?+ ay§1+azi)-(—qpsinBsin¢J?+qpsin9c05¢>)7),

Qu

= —0,qpsin 0 sin ¢ + o, qp sin 6 cos ¢.

[T p[p -G +@ +i6 (G +dD xP)]

= Xio, qp sin® 0 fozn d¢ cos?® ¢ — Pioqp sin® 6 fozn d¢ sin® ¢ .

+2 (pz + py/Q? cos 9) cos 6 fozn de ,

=imqpsin®0 (0,2 —0,9) +22m (pz +pQ2 cos 0) cos 6.
From above, we have assigned g = g2 , so we can conclude that,

oyX — 0,y =G Xq.

And re-write the right hand side of the equation to be as below,

=imqpsin®?0 (& X §) + {271 (pz + pJ0Q% cos 9) cos 9} q.
which has two terms, the term in § direction and & x § direction.

fooo dpp? fon sin6do fozn de p (5 . IZ:ZI) (5 'I%I)

oo 2 1
=f0 dp Iﬁz-)l- fﬂf_ldx{m qp(1 —x2) (6 X §) +27Tx(p2 +pﬁx) q}

= fmdppg (pz + Q%+ ZPWx)_l/Z fldx {in q(1 —x?) (¢ X §)
0 -1

+2ﬂx(p+ﬁx) Q}.
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The notation and the upper and lower components of the quark wave
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The notation and the upper and lower components of the quark wave functions in the

3" the 4" and the 5" excited states

TABLE 9 quark wave functions in the 3" the 4" and the 5" excited states

State a Label ga(r) and fa(r)
(ug)
With R and pa
u 2 r?
° Pz e ZRGZT(Z R6z)
goér =
R6
& — 2R62 15 r* 1572
for=-e 2 "R6* 2R67)P
u 2 r?
7 P32 e 2R727"(2 R72)
g7r =
R7
2 2
e 212727”2 (?- — T—Z) p7
Frr = 2 R7
R72
2
Ug 1fs/2 e‘zrﬁfﬁ
g8r = R
_r 12
e 2R8%r? (7 - W) p8
f8r =—

R82




Table 9 (Continued)
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State o Label

(uq)

ga(r) and fa(r)

With R and pa

Ug 117 /2

TZ

e 2R9Zy3

99" = —pgs

TZ

e 2R9Zr*p9
for = N

Ujo 197/,

2
e 2R10Z7%

g10m = R0

d 7% r2
e 2R10213 (9 — _R102) p10
R103

f10r = —

Ugq 199/,

7"2
e 2R1127%

gllr=——R114

2
-
e 2R12r3rholl

fllr = RILS

r2

.7 r?
e 2RZT (5 — piga)
R122

gl2r =

r? 4 2
- _ (35 r 21r

2 - - =
fl2r = e r( 2 " RIz° 21!2122)"12

R12

Ug3 2d5/2

r2 2
——— | r

2200 1

e 2R132%2r (2 R132)

R13?

gl3r =

r? 2
e 2R132r (% — #) p13

fl13r = R13




Table 9 (Continued)
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State o Label

(uq)

ga(r) and fa(r)

With Ra and pa

TZ
e 2R14% (4r% — 20r2R14% + 15R14%)
8R14%

glar =

r2 4 2
- _ (35 r 7r
2 e —
e zRi4 r( 8 T 2R14* 21%142)/’14

R14

flar =

Us 1hg;

T‘Z

e 2R152p5

gl5r = “Riss

r2

2
e 2R15%7r* (11 — #) p15

f15r = — R15E

Use 1h11/2

T'Z
e 2R16215

glér = “Ries

2
-
e 2R16%r%p16

fléer = R166

Uy7 2f5/2

o T (E_L)
2 R17?
R173

gl7r =

r? 4 2
__r 63 r 27r
e ZRI7'T (7 tRI7A T 2R172>p17

f17r = — R172Z

Ug 2f7/2

r? 2
S — 9 r
e T (7~ 7o)

R183

gl8r =

r2 2

R18*

f18r =
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Table 9 (Continued)

State a Label ga(r) and fa(r)
(uq)
With R and pa
u 3 __r
v P12 Lop € 2R1977 (4r* — 28r2R192 + 35R19%)
gLor= 8R195
r? (105 re 7r*  175r?
= —¢ 2R19%2 | — — _
g < 8  2R195 ' R19% 8R192)p
u 3 i I
20 P3/2 Jop & ZFET(4r" — 28r°R20° + 35R20°)
gart= 8R205
r? 4 2
8 63 r 9r
2.2 [ 22 N R W
= S (8 + 2R20° 2R202)p20

R207
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