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The electromagnetic form factors of the nucleon, the common name for the 

proton and the neutron, are fundamental properties that play an essential role in the 
study of the internal structure of the nucleon. In this work, the electromagnetic properties 
of the nucleon were calculated using the Perturbative Chiral Quark Model (PCQM). In 
the PCQM, the nucleon is considered to be the bound state of the three valence quarks 
surrounded by the cloud of the Goldstone bosons: the pions, kaons and eta meson. 
Previously, the electromagnetic properties were studied based on this model and using 
the truncated quark propagator, restricted only to the quark in the ground state. An 
attempt to include the excited states quark propagators in the study of the nucleon 
electromagnetic form factors was performed with this model; however, it did apply to the 
case of the neutron, but not the proton. Therefore, to bring the consistency to the 
nucleonic level, the study was extended by including the second excited state quark 
propagators to calculate the electromagnetic form factors and applied to both the 
proton and the neutron. The results were in good agreement with the experimental data 
and showed the significance of the contributions of the quark excited state propagators 
to the electromagnetic properties of the nucleon. 
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CHAPTER 1 
INTRODUCTION  

Nucleon, a collective name for proton and neutron, is an important particle in 
Particle Physics. Understanding the internal structure of the nucleons and their 
properties are fundamental importance. However, the ultimate understanding of the 
nucleon has not been achieved yet. Both theoretical and advanced experimental works 
at ELSA, JLab, MAMI, MIT, NIKHEF and other laboratories are still ongoing in order to 
reach that goal. Up to date, there is no theoretical framework that can thoroughly 
describe the nucleon electromagnetic properties. 

One of the difficulties comes from the fact that studying the internal structure of 
nucleon by directly using the fundamental theory–the Quantum Chromodynamics (QCD) 
is extremely difficult and needs many complicated diagrams. Meanwhile, the other 
approaches, such as phenomenological models, or formulation of QCD on the lattice 
(lattice QCD) are options for studying nucleon properties but still needs higher 
performance computation. The complicated calculations of QCD in the non-perturbative 
region, or at low four-momentum transfer,  raised a necessary on development of other 
models, such as the effective field theory (EFT). It was around the early of eighties a new 
model has been introduced, the so-called chiral quark model (1). Originally, this idea 
was formulated in the context of the cloudy bag model in which the nucleon is treated as 
a bound system of valence quarks with a surrounding meson cloud. So far, this chiral 
quark model has been researching and developing continually, and up to now, this 
model plays an important role in low-energy physics. 

In 2001, Lyubovitskij et al. (1) proposed an extended relativistic quark model, 
which not only improved the calculation results when comparing with experimental data 
but also be able to fulfill many chiral constraints. The Goldstone bosons are introduced 
as a consequence of chiral symmetry breaking. In the study, the core improvements of 
the proposed model were mainly i) starting the SU(3), i.e., the meson cloud composes of 
the 𝜋,𝐾 and 𝜂 mesons which are treated perturbatively; ii) consistency of perturbation 
theory for both on the quark and nucleonic level by use of renormalization methods; iii) 
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allowing to account for excited quark states in the meson loop diagrams; iv) fulfillment of 
the constraints imposed by chiral symmetry, including the current quark mass in the 
nucleon. Furthermore, the sea-quark contributions were already included in the 
Goldstone mesons cloud effect of this model, so-called the Perturbative Chiral Quark 
Model (PCQM). 

In this study, we use the PCQM in order to calculate the electromagnetic 
properties of the nucleon, i.e., the magnetic moments, charge radii, magnetization radii 
of both proton and neutron. Besides those properties, we also investigate the four-
momentum transfer 𝑄2-dependent electric form factors 𝐺𝐸𝑁(𝑄2) and magnetic form factor 
𝐺𝑀
𝑁(𝑄2) of the nucleon. The slope of the electric form factor 𝐺𝐸𝑁(𝑄2)and magnetic form 

factors 𝐺𝑀𝑁(𝑄2) at zero momentum (𝑄2 = 0) provides the electric and magnetic root 
mean square radius value, while the values of the electric and magnetic form factors at 
zero momentum give the electric charge and magnetic moments of the nucleon. The 
effective Lagrangian of the PCQM is formulated to describe quarks moving in a radially 
quadratic effective potential 𝑉𝑒𝑓𝑓 = 𝑆(𝑟) + 𝛾0𝑉(𝑟) with 𝑟 = |�⃗�|. We determined the scalar 
potential 𝑆(𝑟) as a potential which is responsible for the confinement of quarks and the 
vector potential 𝑉(𝑟) as a potential which is responsible for short-range effects of the 
gluon field. From the results of previous works (1, 2), we may consider the mesons fields 
as small fluctuations to the system, makes us be able to restrict our calculations only to 
the linear form of the strong meson-quark interaction, is given by  
 

ℒ𝑖𝑛𝑡
𝑠𝑡𝑟 = −�̅�(𝑥)𝑆(𝑟)𝑖𝛾5

�̂�(𝑥)

𝐹
 𝜓(𝑥) 

(1.1) 

For our perturbative scheme, we calculate the meson loop diagram restricted to 
only one loop, or up to the order of 𝒪 ( 1

𝐹2
). We also treat the mass term of the valence 

quarks as a small perturbation to the system. 
There were calculations reported in Ref. (1, 3-6) on the Electromagnetic form 

factors of the nucleon. In Ref. (2) the quark propagator with the excited quark states is 
included in the calculational technique of the PCQM. However, only applied the charge 
form factor of the neutron. It is well known that the three valence quarks give zero 
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contribution to the charge form factor of the neutron, and the main contribution comes 
from the meson contributions.  

The valence quarks inside nucleons are structureless and spin-1/2 particle. 
Therefore in our model, they are described by Dirac wave function 𝜓𝛼(𝑥) of any state of 
𝛼 including ground state 𝛼 = 0 and excited state 𝛼 = 1,2, .., where 𝑥 ≡ 𝑥𝜇 = (𝑡, 𝑥, 𝑦, 𝑧),  
 𝜓𝛼(𝑥) = 𝑏0𝑢𝛼(�⃗�) 𝑒𝑥𝑝(−𝑖ℰ𝛼𝑡). 

(1.2) 

The wave function 𝑢𝛼(�⃗�) is the solution of the Dirac equation with a general quadratic 
form of confinement potential, 
 [−𝑖�⃗� ∙ �⃗⃗� + 𝛽𝑆(𝑟) + 𝑉(𝑟) − ℰ𝛼]𝑢𝛼(�⃗�) = 0. (1.3) 

For the quadratic-like potential 𝑆(𝑟) and 𝑉(𝑟), the explicit form of 𝑢𝛼(�⃗�) is  
 𝑢𝛼(�⃗�) = 𝑁𝛼 𝑒𝑥𝑝 (−

𝑥2

2𝑅2
) (

𝑔𝛼(𝑟)

𝑖�⃗� ⋅ �̂�𝑓𝛼(𝑟)
)𝒴𝛼(�̂�)𝜒𝑓𝜒𝑐. (1.4) 

The 𝑔𝛼(𝑟) and 𝑓𝛼(𝑟) are the upper and lower components of the quark spinor, 
respectively.  It means that we have two free parameters in our quark wave function. We 
know that these two parameters are important factors in shaping the quark wave 
function, which can affect our results. Further, because they are related to energy ℰ𝛼 of 
the quark propagator, so values of the parameter should vary with respect to the 
number of excited states we consider in the model. Here we define ∆ℰ𝛼 = ℰ𝛼 − ℰ0 to be 
the difference between the energy of excited state 𝛼, denoted by ℰ𝛼 and the ground 
state energy, denoted by ℰ0. The important relation for ∆ℰ𝛼, in terms of the quantum 
numbers 𝑛 and 𝑙, is 
 (∆ℰ𝛼 +

3𝜌

𝑅
)
2

(∆ℰ𝛼 +
1

𝜌𝑅
) =

𝜌

𝑅3
(4𝑛 + 2𝑙 − 1)2. (1.5) 

In phenomenological methods, using an appropriate set of parameters can 
provide good calculation results when comparing with experimental data and also 
reveal some hidden information. 

In this work, we will base on the PCQM in order to calculate electromagnetic 
form factors and properties of the nucleon by using the modified quark propagator.  
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Research objectives 
1. To modify the model by using the quark propagator in the first and 

second excited states and use this quark propagator to calculate the electromagnetic 
form factors of the nucleon. 

2. To fit the static properties such as the magnetic moments, charged 
radius and magnetic radius of nucleon by using the appropriate values of the model 
parameters ρ and R extracted from the experimental data..  

Significance of research 
For consistency, in this work, the excited state of quarks will be included to 

both proton and neutron to study the electromagnetic form factors of nucleon.  
Therefore, the contributions to the electromagnetic properties of nucleon by the quark 
excited state in the propagator will be clarified. 

Scope of research 
1. In this work, the order of accuracy of the PCQM up to the order of 

𝒪 (
1

𝐹2
, �̂�,𝑚𝑠)  will be considered. 

2. We will restrict ourselves to the case where the low-lying quark excited 
states are included in the quark propagator. 

3. Only the small four-momentum squared region up to 0.4 GeV2 will be 
considered (𝑄2 ≤ 0.4 GeV2).). 
 
 
 
 
 
 
 
 



 

CHAPTER 2 
LITERATURE REVIEW 

Recently, there has been a lot of theoretical researches and experiments in the 
field of the nucleon and other baryon octet focused on electromagnetic properties, in 
order to understand the internal structures of those particles. In decades, the theoretical 
description of electromagnetic form factors was performed in detail by approaches of 
hadron physics, such as QCD Sum Rules, Chiral Perturbation Theory, Lattice QCD, and 
AdS/QCD technique. In this chapter, we raise some essential works which are 
concerning our model of study and some of the works which are recently in the area of 
interest from hadronic particle physicists.  

In 2001, Kubis et at. used the chiral expansion method in order to analyze the 
electromagnetic form factors of the baryon in (3). The effective Lagrangian of the system 
consists of a string of terms of increasing chiral dimension. In the study, they analyzed 
internal structures of the baryon by probing with four-momentum transfer 𝑄2 ≈ 0.4 GeV2. 
The effective Lagrangian of the model is given below. 
 ℒ𝑒𝑓𝑓 = ℒ𝜋𝜋

(2)
+ ℒ𝜋𝑁

(1)
+ℒ𝜋𝑁

(2)
+ℒ𝜋𝑁

(3)
+ℒ𝜋𝑁

(4)
+⋯. (2.1) 

Where the ellipsis denotes terms of higher-order not needed. The chiral effective pion-
pion Lagrangian is given by 
 ℒ𝜋𝜋

(2)
=

𝐹2

4
〈𝑢𝜇𝑢

𝜇 + 𝜒+〉, 
(2.2) 

The pion–nucleon Lagrangian at leading order is 
 ℒ𝜋𝑁

(1) = �̅� (𝑖𝛾𝜇𝐷 −𝑚 +
𝑔𝐴

2
𝛾𝜇𝑢𝜇𝛾5)𝛹, (2.3) 

They evaluated the electromagnetic form factors in term of matrix element which is 
described in terms of both the Dirac form factor 𝐹1𝑁(𝑄2)and Pauli form factor 𝐹2𝑁(𝑄2) as, 
 ⟨𝑁(𝑝𝑓)|𝐽

𝜇(0)|𝑁(𝑝𝑖)⟩ = �̅�(𝑝𝑓) [𝛾𝜇𝐹1
𝑁(𝑄2) +

𝑖𝜎𝜇𝜈𝑞
𝜈

2𝑚𝑁
𝐹2
𝑁(𝑄2)] 𝑢(𝑝𝑖). 

(2.5) 

and also in terms of the electric and magnetic Sachs form factors 𝐺𝐸𝑁(𝑄2) and  𝐺𝑀𝑁(𝑄2) 
which defined by 
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         𝐺𝐸
𝑁(𝑄2) = 𝐹1

𝑁(𝑄2) −
𝑄2

4𝑚𝑁
2 𝐹2

𝑁(𝑄2), 

𝐺𝑀
𝑁(𝑄2) = 𝐹1

𝑁(𝑄2) + 𝐹2
𝑁(𝑄2). 

(2.6) 

As a result, they could perform the calculations, which gave a good description of the 
nucleon charge form factor. Even though the results still needed some improvement, but 
the results had shown the consistency of the effective chiral perturbation method with 
the experimental data.  

Furthermore, they extended the study to investigate the octet baryons form 
factors in (4). They changed the SU(2) calculation to be the SU(3) case. In the 
theoretical calculation, they spelled out the effective chiral Lagrangian into two parts, the 
meson–baryon Lagrangian and the chiral effective Lagrangian from Goldstone bosons. 
The meson–baryon Lagrangian at leading order was 
 ℒ𝜙𝐵

(1)
= 〈�̅�(𝑖𝛾𝜇𝐷 −𝑚)𝐵〉 +

𝐷

2𝐹
〈�̅�𝛾𝜇𝛾5(𝑢𝜇 , 𝐵)±〉. (2.7) 

And the chiral effective Goldstone boson Lagrangian was given by 
 ℒ𝜙𝜙

(2)
=

𝐹2

4
〈𝑢𝜇𝑢

𝜇 + 𝜒+〉. 
(2.8) 

They evaluated the electromagnetic properties of the nucleon and also predicted the 
charge and magnetic radii of the octet baryons, together with their magnetic moments 
which still had no experiment data yet, for example, Λ and Σ+ . In the results, they found 
those properties, including magnetic moments and electric radii, show the same 
tendency to the experimental data. Nevertheless, the magnetic radii still needed some 
improvement.  

In 2004, Fuchs et al. calculated the electromagnetic form factor of nucleon at 𝑞4 
and made use of the extended on-mass-shell renormalization method (5). They 
evaluated the electromagnetic form factors in term of matrix element which is described 
in terms of both the Dirac form factor 𝐹1𝑁(𝑄2) and the Pauli form factor 𝐹2𝑁(𝑄2) and in 
terms of the electric and magnetic Sachs form actors 𝐺𝐸𝑁(𝑄2) and  𝐺𝑀𝑁(𝑄2). The Fourier 
transforms of the Sachs form factors can be related to the distribution of charge and 
magnetization inside the nucleon. They compared the results with those obtained in the 
heavy-baryon approach and in the infrared regularization and found the results were 
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almost similar. However, there were small differences between the two methods, due to 
the way how the regular higher-order terms of loop integrals were treated. 

For further improvement, in 2005, Matthias R. Schindler included the vector 
mesons as explicit degrees of freedom into the model of study (6). The coupling of the 
vector mesons to pions and external fields is given by 
 ℒ𝜋𝑉

(3)
= −𝑓𝜌Tr.(𝜌

𝜇𝜈𝑓𝜇𝜈
+ ) − 𝑓𝜔𝜔

𝜇𝜈𝑓𝜇𝜈
(𝑠)
− 𝑓𝜙𝜙

𝜇𝜈𝑓𝜇𝜈
(𝑠)
+⋯. (2.9) 

They found the results for the Sachs form factors in the low momentum transfer region 
0 GeV2  ≤  Q2  ≤ 0.4GeV2 with vector mesons were considerably improved. Moreover, the 
most dominant contributions to electromagnetic form factors came from tree-level 
diagrams, while loop corrections with internal vector meson contributions were small. 

In 2018, Thomas Gutsche, Valery E. Lyubovitskij, and Ivan Schmidt reported 
calculation results of electromagnetic properties of the nucleon and the Roper 
resonance based on the AdS/QCD (7). In the study, they described the system by 
conformal Poincar´e metric, 
 𝑔𝑀𝑁𝑥

𝑀𝑥𝑁 = 𝜖𝑀
𝑎 𝜖𝑁

𝑎𝜂𝑎𝑏𝑥
𝑀𝑥𝑁) 

                     =
1

𝑧2
(𝑑𝑥𝜇𝑑𝑥

𝜇 − 𝑑𝑧2 

(2.10) 

The action 𝑆 which is a temperature-dependent (𝑇), contains a free part 𝑆0, describing 
the confined dynamics of AdS fields, and an interaction part 𝑆𝑖𝑛𝑡, describing the 
interactions of fermions with the vector field. 
 𝑆 = 𝑆0 + 𝑆𝑖𝑛𝑡 , 

𝑆0 = ∫𝑑
4𝑥𝑑𝑧 √𝑔𝑒−𝜑(𝑧,𝑇){ℒ𝑁(𝑥, 𝑧, 𝑇) + ℒ𝑅(𝑥, 𝑧, 𝑇) + ℒ𝑉(𝑥, 𝑧, 𝑇)}, 

𝑆𝑖𝑛𝑡 = ∫𝑑
4𝑥𝑑𝑧 √𝑔𝑒−𝜑(𝑧,𝑇){ℒ𝑉𝑁𝑁(𝑥, 𝑧) + ℒ𝑉𝑅𝑅(𝑥, 𝑧, 𝑇)

+ ℒ𝑉𝑅𝑁(𝑥, 𝑧, 𝑇)}. 

(2.11) 

The definitions of the temperature-dependent nucleon Sachs form factors  𝐺𝐸,𝑀𝑁 (𝑄2, 𝑇) 
the temperature-dependent electromagnetic radii 〈𝑟𝐸,𝑀2 (𝑇)〉𝑁 in terms of the Dirac form 
factor 𝐹1𝑁(𝑄2, 𝑇) and Pauli form factor 𝐹2𝑁(𝑄2, 𝑇) are shown below 
 𝐺𝐸

𝑁(𝑄2, 𝑇) = 𝐹1
𝑁(𝑄2, 𝑇) −

𝑄2

4𝑀𝑁
2 (𝑇)

𝐹2
𝑁(𝑄2, 𝑇), 

𝐺𝑀
𝑁(𝑄2, 𝑇) = 𝐹1

𝑁(𝑄2, 𝑇) + 𝐹2
𝑁(𝑄2, 𝑇) 

(2.12) 
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〈𝑟𝐸
2(𝑇)〉𝑁 = −6

𝑑𝐺𝐸
𝑁(𝑄2, 𝑇)

𝑑𝑄2
|
𝑄2=0

 

〈𝑟𝑀
2(𝑇)〉𝑁 = −

6

𝐺𝑀
𝑁(0)

𝑑𝐺𝑀
𝑁(𝑄2,𝑇)

𝑑𝑄2
|
𝑄2=0

. 

Recently, lattice QCD is becoming one of the powerful approaches to 
investigate the properties of nucleons. However, it still needs some higher performance 
in a computer simulation. In 2017, C. Alexandrou et al., performed the calculations by 
using the lattice QCD method [6]. In their work, they used three methods to extract 
information on nucleon electromagnetic properties from the lattice data. The three 
methods were 1) Plateau method, 2) the Two-state fit method and 3) Summation 
method. The simulation parameters and results of calculations such as isovector and 
isoscalar contribution at physical pion mass of around 130 MeV were evaluated. Also, 
the Sachs nucleon form factors, including the disconnected contributions, were 
presented directly at the physical point. In the study, the Isovector and isoscalar form 
factors data were compared with the dipole fits as below.  
 𝐺𝑖(𝑄

2) =
𝐺𝑖(0)

(1+
𝑄2

𝑀𝑖
2)
2
. (2.13) 

The PCQM is another approach to investigate the internal structures of 
nucleons for more than two decades. Application of the PCQM to study various baryons 
properties are reported, e.g., the 𝜋𝑁 𝜎-terms (8, 9). The the 𝜋𝑁 𝜎-terms are known as 
the fundamental parameters of low-energy hadron physics since they provide a direct 
measure of the scalar quark condensates in nucleons. In particular, the sigma-terms are 
mostly determined by the quark-antiquark sea and not by the valence quark 
contribution. The PCQM will be mentioned in more detail in chapter 3. In this model, the 
cloud of virtual Goldstone mesons that surrounds any baryon contributes to the mass 
and other properties of that particle. As a result, the sigma-term  𝜎𝜋𝑁 with the quark 
propagator restricted to the ground state was calculated in (9). 

In 2001, V. E. Lyubovitskij et al. applied the PCQM to evaluate analytical results 
for the nucleon charge and magnetic form factors (1). The model was based on an 
effective Lagrangian, where nucleons were described by relativistic valence quarks 
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surrounded by a perturbative cloud of Goldstone bosons. The Lagrangian of the system 
was given by 
 ℒ𝑒𝑓𝑓 = ℒ𝑖𝑛𝑣

𝑙𝑖𝑛 + ℒ𝜒𝑆𝐵. (2.14) 

Where, 
 ℒ𝑖𝑛𝑣

𝑙𝑖𝑛 (𝑥) = �̅�(𝑥)[𝑖𝛾𝜇𝜕𝜇 − 𝑆(𝑟) − 𝛾
0𝑉(𝑟)]𝜓(𝑥) +

1

2
(𝜕𝜇�̂�(𝑥))

2

−  �̅�(𝑥)𝑆(𝑟)𝑖𝛾5
�̂�(𝑥)

𝐹
𝜓(𝑥), 

 ℒ𝜒𝑆𝐵 = −�̅�(𝑥)ℳ𝜓(𝑥) −
𝐵

2
𝑇𝑟[�̂�2(𝑥)ℳ]. 

(2.15) 

The quark wave function restricted to the ground state was given below. 
 𝜓(𝑥) = 𝑏0𝑢0(�⃗�)𝑒𝑥𝑝 (−𝑖𝜀0𝑡), 

(2.16) 

The wave function 𝑢0(�⃗�) belongs to the basis of potential eigenstates. 𝑆(𝑟)is the scalar 
confinement potential and 𝑉(𝑟) is the vector potential of the model. Both of them are 
quadratic radial dependence. 
 𝑆(𝑟) = 𝑀1 + 𝑐1𝑟

2, 

𝑉(𝑟) = 𝑀2 + 𝑐2𝑟
2. 

(2.17) 

Furthermore, for the sake of simplicity and be consistent with the potential model, they 
introduced a Gaussian ansatz as the quark wave function with the explicit form as 
 𝑢0(�⃗�) = 𝑁0 𝑒𝑥𝑝 (−

𝑥2

2𝑅2
) (

1

𝑖𝜌
�⃗⃗⃗�⋅𝑥

𝑅

)𝜒𝑠𝜒𝑓𝜒𝑐. 
(2.18) 

Besides, they introduced a nucleon charge and quark mass renormalization into the 
calculation, in order to: i) to maintain the proper definition of physical parameters, such 
as nucleon mass and, in particular, the nucleon charge and ii) to effectively reduce the 
number of Feynman diagrams to be evaluated. Then the renormalized quark field 
becomes as below. 
 𝜓𝑖

𝑟(𝑥;𝑚𝑖
𝑟) = 𝑏0𝑢0

𝑟(�⃗�;𝑚𝑖
𝑟)𝑒𝑥𝑝 (−𝑖𝜀0

𝑟(𝑚𝑖
𝑟)𝑡), 

𝑢0
𝑟(�⃗�;𝑚𝑖

𝑟) = 𝑁0 (𝑚𝑖
𝑟)𝑒𝑥𝑝 (−𝑐(𝑚𝑖

𝑟)
𝑥2

2𝑅2
)(

1

𝑖𝜌(𝑚𝑖
𝑟)

�⃗⃗⃗�⋅𝑥

𝑅

)𝜒𝑠𝜒𝑓𝜒𝑐. 

(2.19) 

In the results, they found the most of the electromagnetic properties, such as magnetic 
moments, proton charge radius and magnetic radii, except the neutron charge radius, 
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were in the same tendency of experimental data. Even though the magnitude value of 
the neutron charge radius was too small, but the sign was correct. 

In 2004, in order to investigate the internal structure of other baryon octets 
besides nucleon, S. Cheedket et al. applied the PCQM to evaluate the electromagnetic 
properties of the baryon octet (2). They evaluated the electromagnetic form factors of 
the baryon in the Breit frame, where gauge invariance is fulfilled. The Sachs charge form 
factor 𝐺𝐸𝐵 and magnetic form factors 𝐺𝑀𝐵  of the baryon in term of momentum transfer 
𝑄2as below. 
 ⟨𝐵�́� (

�⃗�
2) |𝐽

0(0)|𝐵𝑠 (−
�⃗�
2)⟩ = 𝜒𝐵�́�

† 𝜒𝐵𝑠𝐺𝐸
𝐵(𝑄2), 

⟨𝐵�́� (
�⃗⃗�

2
) |𝐽(0)|𝐵𝑠 (−

�⃗⃗�

2
)⟩ = 𝜒𝐵�́�

† 𝑖
�⃗⃗⃗�𝑁×�⃗⃗�

2𝑚𝐵
𝜒𝐵𝑠𝐺𝑀

𝐵(𝑄2). 
(2.20) 

Expressions for the Sachs form factors in the PCQM are 
 𝜒�́�

†𝜒𝑠𝐺𝐸
𝐵(𝑄2) =

⟨𝜙0| ∑
𝑖𝑛

𝑛!
2
𝑛=0 ∫𝛿(𝑡) 𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞∙𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)… ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝐽𝑟

0(𝑥)]|𝜙0⟩, 

(2.21) 

and 
 𝜒�́�

† 𝑖
�⃗⃗⃗�𝐵×�⃗⃗�

𝑚𝐵+𝑚�́�

𝜒𝐵𝑠𝐺𝑀
𝐵(𝑄2) =

⟨𝜙0| ∑
𝑖𝑛

𝑛!
2
𝑛=0 ∫𝛿(𝑡) 𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞∙𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)… ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝑗𝑟(𝑥)]|𝜙0⟩. 

(2.22) 

Note that, in this study, the modification of the quark propagator is investigated only to 
the charge neutron form factor. Nevertheless, it was shown that the excited states quark 
propagator, together with effect from the meson cloud, help to improve the values of the 
low-𝑄2 region of the charge neutron form factors. 

Furthermore, in (10) Pumsa-ard et al. applied PCQM to investigate the 
electromagnetic transitions of the nucleon to baryon excitations properties, which 
provide important information about hadron physics and the structure of the nucleon. In 
the study, they considered the determination of the momentum dependence of the 
helicity amplitudes 𝐴1/2 and 𝐴3/2 of the N − ∆ transition at one-loop, and also 
investigated the role of excited quark states in meson loop diagrams. In the PCQM the 
helicity amplitudes 𝐴1/2  and 𝐴3/2, are defined as below.  
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 𝐴1
2

(𝑄2) = −
𝑒

√2𝜔𝛾
< ∆+, 1/2 |−

1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞𝑥 

× 𝑇[ℒ𝑠𝑡𝑟
𝑟 (𝑥1)ℒ𝑠𝑡𝑟

𝑟 (𝑥2)𝑗𝑟⃗⃗ ⃗(𝑥) ∙ 𝜖]|𝑝,−1/2 >𝑐, 

𝐴3
2

(𝑄2) = −
𝑒

√2𝜔𝛾
< ∆+, 3/2 |−

1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞𝑥 

× 𝑇[ℒ𝑠𝑡𝑟
𝑟 (𝑥1)ℒ𝑠𝑡𝑟

𝑟 (𝑥2)𝑗𝑟⃗⃗ ⃗(𝑥) ∙ 𝜖]|𝑝, 1/2 >𝑐 

(2.23) 

As a result, they accomplished in calculations numerically of the transverse helicity 
amplitudes for the N − ∆ transition by the PCQM approach. Besides, they could also 
showed the importance of meson cloud corrections related to the magnitude of the 
helicity amplitudes. They found that the excited quark states could contribute 
significantly at the level of 15% to fully account for the measurements. 

The strange quark contributions to the properties of the nucleon also have been 
studied and reported in (11). They evaluated both of the strange vector and axial-vector 
nucleon form factors and seemed to be consistent with the SAMPLE and HAPPEX 
experimental data. The definitions of nucleon form factors were shown below 
 𝐺𝐸

𝑠(𝑄2) = 𝐹1
𝑠(𝑄2) −

𝑄2

4𝑚𝑁
2 𝐹2

𝑠(𝑄2), 

𝐺𝑀
𝑠 (𝑄2) = 𝐹1

𝑠(𝑄2) + 𝐹2
𝑠(𝑄2). 

(2.24) 

Besides, in 2006 the PCQM was used to study the nucleon spin-independent 
polarizabilities(𝛼𝐸 and 𝛽𝑀) by Y. Dong et al. (12). The results of including excited quarks 
states were calculated and compared with the excluded ones. 

So far, most previous calculations have been truncated to the use of the ground 
state quark propagator. Recently, the progress of improving the charge form factor of 
the charge neutron in the PCQM has been performed with the modified quark 
propagator but with different potentials (13). X. Y. Liu used the PCQM to investigate the 
charge form factor and charge radius of the neutron with considering both the ground 
and excited states in the quark propagator.  In their work, they introduced the Cornell-
like potential and solved the Dirac equation to get the ground state quark wave function, 
and the excited quark states. Due to the scope of the study, in the calculation, they 
restricted the energy of excited quark states to Eα  =  1 GeV, which 
are 1𝑝1

2⁄
, 1𝑝3

2⁄
, 1𝑑3

2⁄
, 1𝑑5

2⁄
, 1𝑓5

2⁄
, 1𝑓7

2⁄
, 2𝑠1

2⁄
, 2𝑝1

2⁄
, 2𝑝3

2⁄
 and 3𝑠1

2⁄
, while meson cloud 
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contributions were from 𝜋-meson cloud only. The interaction Lagrangian of the model is 
given below, 
 ℒ𝐼

𝑊(𝑥) =
1

2𝐹
𝜕𝜇𝛷𝑖(𝑥)�̅�(𝑥)𝛾

𝜇𝛾5𝜆𝑖𝜓(𝑥). (2.25) 

where 𝐹 = 88𝑀𝑒𝑉 is the so-called the 𝜋-decay constant. Four types of diagrams 
contribute to the charge form factor of the neutron, which are (i) meson cloud diagram, 
(ii) vertex correction diagram, (iii) self-energy I diagram, and (iv) self-energy II diagram. 
Furthermore, the charge current of the system can be divided into three pieces, which 
are the quark charge current, meson charge current, and the interacting term between 
quark and meson. The total charge current 𝑗0 is given by, 
 𝑗0 = �̅�𝛾

0𝑄𝜓 + [𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
]𝛷𝑖(𝑥)𝜕𝑡𝛷𝑗(𝑥) 

                          +[𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
]
𝛷𝑗

2𝐹
�̅�𝛾0𝛾5𝜆𝑖𝜓. 

(2.26) 

In the results, for the low four-momentum transfer 𝑄2range, they found that the excited 
quark states were considerably influential in the charge form factor and charge radius of 
the neutron. The total result of the neutron charge radius 〈𝑟𝐸2〉𝑛 increases from -0.014 to 
be -0.072 when the excited states are included.  

Besides the study of nucleon properties through the Sachs form factor, there 
are also many kinds of research through the axial form factor approach. Those systems 
are described by the Weinberg-type form, containing the axial-vector coupling. In 2004, 
K Khosonthongkee et al. applied the PCQM to study the axial form factor of the nucleon 
(14). The axial form factor is one of the fundamental weak interaction properties. In the 
study, they have used the axial-vector coupling Lagrangian ℒ𝑊(𝑥) of the Weinberg-type, 
 ℒ𝑊(𝑥) = ℒ0(𝑥) + ℒ𝐼

𝑊 +𝒪(𝜋2), 

ℒ0(𝑥) = �̅�(𝑥){(𝑖𝛾
𝜇 − 𝑆(𝑟) − 𝛾0𝑉(𝑟)}𝜓(𝑥) −

1

2
𝜋(𝑥)(□ +𝑀𝜋

2)𝜋(𝑥). 

(2.27) 

Where, the strong interaction Lagrangian, ℒ𝐼,𝑠𝑡𝑟𝑊   is given by 
 ℒ𝐼,𝑠𝑡𝑟

𝑊 (𝑥) =
1

2𝐹
𝜕𝜇𝜋(𝑥)�̅�(𝑥)𝛾

𝜇𝛾5𝜏𝜓(𝑥) 

                        −
𝜀𝑖𝑗𝑘

4𝐹2
𝜋𝑖(𝑥)𝜕𝜇𝜋𝑗(𝑥)�̅�(𝑥)𝛾

𝜇𝜏𝑘𝜓(𝑥). 

(2.28) 

And the interaction between pions and quarks by the electromagnetic field ℒ𝐼,𝑒𝑚𝑊 (𝑥) is 
given by,  
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 ℒ𝐼,𝑒𝑚
𝑊 (𝑥) = −𝑒𝐴𝜇

𝑒𝑚�̅�𝑟(𝑥)𝑄𝛾𝜇𝜓𝑟(𝑥) 

                      +
𝑒

4𝐹2
𝐴𝜇
𝑒𝑚�̅�𝑟(𝑥)𝛾𝜇[𝜋2(𝑥)𝜏3 − 𝜋(𝑥)𝜏𝜋

0(𝑥)]𝜓𝑟(𝑥) 

                     −𝑒𝐴𝜇
𝑒𝑚𝜀𝑖𝑗𝑘 [𝜋.𝑖 (𝑥)𝜕𝜇𝜋𝑗(𝑥) −

𝜋𝑗(𝑥)

2𝐹
�̅�𝑟(𝑥)𝛾𝜇𝛾5𝜏𝑖𝜓

𝑟(𝑥)]. 

(2.29) 

The renormalized electromagnetic current is given by, 
 𝑗𝑟

𝜇
= 𝑗𝜓𝑟

𝜇
+ 𝑗𝜋

𝜇
+ 𝑗𝜓𝑟𝜋

𝜇
+ 𝛿𝑗𝜓𝑟

𝜇 . (2.30) 

where, 𝑗𝜓𝑟𝜇  is the quark current, 𝑗𝜋𝜇 is the charged pion current, 𝑗𝜓𝑟𝜋𝜇
  is the quark-pion 

current and 𝛿𝑗𝜓𝑟𝜇  is the contribution from the counterterm. 
The partially conserved axial vector current 𝐴𝑖  𝜇  is given by, 

 𝐴𝑖  
𝜇
= 𝐹𝜕𝜇𝜋𝑖 + �̅�

𝑟𝛾𝜇𝛾5
𝜏𝑖
2
𝜓𝑟 −

𝜀𝑖𝑗𝑘
2𝐹

�̅�𝑟𝛾𝜇𝜏𝑗𝜓
𝑟𝜏𝑘 

                             +
1

4𝐹2
�̅�𝑟𝛾𝜇𝛾5(𝜋 𝜏 𝜋𝑖 − 𝜋

2𝜏𝑖)𝜓
𝑟 

                        +�̅�𝑟(�̂� − 1)𝛾𝜇𝛾5 𝜏𝑖
2
𝜓𝑟 + 𝜊(𝜋2) 

(2.31) 

The axial form factor 𝐺𝐴(𝑄2)  of the nucleon is given below, 
 ⟨𝑁�́� (

�⃗⃗�

2
) | ∫ 𝑑3𝒙 𝑒𝑖𝒒𝒙𝐴3(𝑥)|𝑁𝑠 (−

�⃗⃗�

2
)⟩ = 𝜒𝑁�́�

† 𝜎𝑁
𝜏3𝑁

2
𝜒𝑁𝑠𝐺𝐴(𝑄

2). (2.32) 

They could predict the value of the axial charge, 𝑔𝐴 = 1.19. Furthermore, they could 
prove that the contributions of excited quark states in the one-loop diagrams are 
essential, in order to adjust a small correction to the tree-level diagrams and lead to the 
search for an appropriate value of parameter 𝜌 . 

In 2014, X.Y. Liu et al., used the PCQM to study the electromagnetic properties 
of baryon octets (15). They have used a predetermined relativistic quark wave function, 
the Sturmian functions, instead of the typical Gaussian ansatz. The radial quark wave 
functions have two components. In the ground state, the wave functions were expanded 
in the set of Sturmian functions,  𝑆𝑛𝑙(𝑟) . The upper  𝑔(𝑟)  and the lower 𝑓(𝑟) are defined 
as 
 𝑔(𝑟) = ∑ 𝐴𝑛

𝑆𝑛0(𝑟)

𝑟𝑛 , 

  𝑓(𝑟) = 𝑓∑ 𝐵𝑛
𝑆𝑛0(𝑟)

𝑟𝑛 , 

(2.33) 

, with 
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𝑆𝑛𝑙(𝑟) = [

𝑛!

(𝑛+2𝑙+1)!
]

1

2 (2𝑏𝑟)𝑙+1𝑒−𝑏𝑟𝐿𝑛
2𝑙+1(2𝑏𝑟). 

(2.34) 

where, 𝐿𝑛2𝑙+1(𝑥) are the Laguerre polynomials.  
They show that the first five Sturmian functions with n = 0, 1, 2, 3, 4 could give a 

good value of the proton charge form factor when compared to the experimental data. 
Furthermore, after obtaining the proton charge radius, they extended to predict the 
charge radii of other baryon octets. The theoretical calculations showed that 𝑝, Σ− 
charge radii were reasonably agreed with the experimental data. Besides, for the 
charge radii of the charged baryons, they claimed that the 3q-core diagram dominantly 
contributes around 90% and less than 10% comes from the meson cloud effect. 
However, the theoretical results of the charge radii of neutral baryons ( 𝑛, Σ0, Λ, Ξ0 ) were 
small. 

In 2015, X. Y. Liu et al. used the PCQM to study the meson cloud contributions 
to the baryon axial form factors, with the quark wave functions, expanded in the set of 
Sturmian functions (16). In the study, they used the quark-meson interaction Lagrangian 
below, 
 ℒ𝐼

𝑊(𝑥) =
1

2𝐹
𝜕𝜇𝛷𝑖(𝑥)�̅�(𝑥)𝛾

𝜇𝛾5𝜆𝑖𝜓(𝑥) 

              +
𝑓𝑖𝑗𝑘

4𝐹2
𝛷𝑖(𝑥)𝜕𝜇𝛷𝑗(𝑥)�̅�(𝑥)𝛾

𝜇𝜆𝑘𝜓(𝑥). 

(2.35) 

The axial-vector current 𝐴𝑖  𝜇  can be determined by, 
 𝐴𝑖  

𝜇 = 𝐹𝜕𝜇𝛷𝑖 + �̅�𝛾
𝜇𝛾5

𝜆𝑖
2
𝜓 −

𝑓𝑖𝑗𝑘

2𝐹
�̅�𝛾𝜇𝜆𝑗𝜓𝛷𝑘  

                         +�̅�(�̂� − 1)𝛾𝜇𝛾5
𝜆𝑖

2
𝜓 + 𝜊(𝛷𝑖

2) 

                         +�̅�𝑟(�̂� − 1)𝛾𝜇𝛾5
𝜏𝑖

2
𝜓𝑟 + 𝜊(𝜋2). 

(2.37) 

The diagrams that contribute to the axial form factor are (i) 3q- core leading order (ii) 3q-
core counterterm, (iii) self-energy I, (iv) self-energy II, (v) meson exchange and (vi) 
vertex correction. 

The axial radii of octet baryons were defined by  
 〈𝑟𝐴

2〉𝐵 = −6
1

𝑔𝐴
𝐵

𝑑𝐺𝐴
𝐵(𝑄2)

𝑑𝑄2
|
𝑄2=0

 (2.38) 
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The nucleon axial radius 〈𝑟𝐴2〉𝑁 was a little bit larger than the experimental data. Besides, 
they also predicted the axial radius of  〈𝑟𝐴2〉Σ  and 〈𝑟𝐴2〉Ξ in the same order as of the 
nucleon. Furthermore, they studied the contribution from pion, kaon and eta meson to 
the axial charges separately. They found that the contribution from pion was the most 
significant. 
 
 
 
 
 
 



 

CHAPTER 3 
METHODOLOGY: THE PERTURBATIVE CHIRAL QUARK MODEL  

In this study, we use the PCQM to investigate the nucleon properties and 
electromagnetic form factors. The main objectives are i) to search for suitable 
parameters (𝜌 , R) of the Gaussian ansatz quark wave function when includes the 
excited states, ii) to study the static properties and the nucleon form factors and iii) to 
study the contributions of excited quark propagators to the electromagnetic properties. 
The methodology used in this work is presented in detail below.  

1. Construction of an effective Lagrangian of the PCQM 
The PCQM is based on an effective chiral Lagrangian. In this model, we 

consider the quarks within a nucleon as relativistic quarks, surrounded by a cloud of 
pseudoscalar mesons (𝜋 , K, 𝜂) as required by spontaneous chiral symmetry breaking. 
The model Lagrangian of the PCQM is given by 
 ℒ𝑒𝑓𝑓 = ℒ0 + ℒ𝑖𝑛𝑡

𝑠𝑡𝑟 + ℒ𝜒𝑆𝐵 , 
(3.1) 

where 
 

ℒ0 = �̅�(𝑥)[𝑖𝛾
𝜇𝜕𝜇 − 𝛾

0𝑉(𝑟) − 𝑆(𝑟)]𝜓(𝑥) +
1

2
∑[𝜕𝜇𝛷𝑖(𝑥)]

2
8

𝑖=1

, (3.2) 

is the Lagrangian for the massless current quark field 𝜓(𝑥) moving in the potential 
𝑆(𝑟) + 𝛾0𝑉(𝑟) and the massless mesons field Φ𝑖(𝑥). Here, we defined  𝑟 = |�⃗�|. The 
interaction Lagrangian term ℒ𝑖𝑛𝑡𝑠𝑡𝑟 is the strong interaction Lagrangian between the 
valence quark and the meson field, which can be written as 
 ℒ𝑖𝑛𝑡

𝑠𝑡𝑟 = −�̅�(𝑥)𝑆(𝑟)𝑖𝛾5
�̂�(𝑥)

𝐹
 𝜓(𝑥), (3.3) 

where 𝐹 = 88 MeV is the 𝜋-decay constant (1), and Φ̂(𝑥) is the pseudoscalar mesons in 
the matrix form, defined as below.  

 𝛷

√2

̂
= ∑

𝛷𝑖𝜆𝑖

2

8
𝑖=1 =

(

 
 

𝜋0

√2
+ 𝜂/√6 𝜋+ 𝐾+

𝜋− −
𝜋0

√2
+ 𝜂/√6 𝐾0

𝐾− 𝐾0 −2𝜂/√6)

 
 

, (3.4) 
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Finally, due to the masses of the current quarks which results in the explicit chiral 
symmetry breaking, we obtain the Lagrangian ℒ𝜒𝑆𝐵 for the mass terms as 

 ℒ𝜒𝑆𝐵 = −�̅�(𝑥)ℳ𝜓(𝑥) −
𝐵

2
𝑇𝑟[�̂�2(𝑥)ℳ], (3.5) 

where  ℳ = diag{�̂�, �̂�,𝑚𝑠} represents the quark masses. Note that we considered in the 
isospin symmetry limit and define �̂� ≡ 𝑚𝑢 = 𝑚𝑑,  with the chosen values of �̂� = 7 MeV 
and  𝑚𝑠 = 25�̂�. In addition, 𝐵 = 1.4 𝐺𝑒𝑉 is the quark condensate parameter (1). The 
meson masses satisfied the following relations 

 𝑀𝜋
2 = 2�̂�𝐵,     𝑀𝐾

2 = (�̂� + 𝑚𝑠)𝐵,     𝑀𝜂
2 =

2

3
(�̂� + 2𝑚𝑠)𝐵, (3.6) 

The renormalization of the PCQM was done by using the counter-term technique. See 
Ref. (1) for a detailed procedure for renormalizing the PCQM.  

In the calculation, we use the variational Gaussian ansatz in the ground state 
which is given by 

 𝑢0(�⃗�) = 𝑁0 𝑒𝑥𝑝 (−
�⃗�2

2𝑅2
)(

1

𝑖𝜌
�⃗� ⋅ �⃗�

𝑅

)𝜒𝑠𝜒𝑓𝜒𝑐 , 
(3.7) 

The normalization condition ∫𝑑3𝑥𝑢0†(�⃗�)𝑢0(�⃗�) = 1 is used for fixing the normalization 
constant, 𝑁0 = [𝜋3/2𝑅3(1 + 3𝜌2/2)]−1/2. Other parts of the wave function are the spin 
part 𝜒𝑠, flavor part 𝜒𝑓, and color part 𝜒𝑐. In this model,  𝜌 and  𝑅 are the free-parameters. 
The quark wave function 𝑢0(�⃗�) is the solution of the Dirac equation 

 [−𝑖�⃗� ⋅ �⃗⃗� + 𝛽𝑆(𝑟) + 𝑉(𝑟) − ℰ0]𝑢0(�⃗�) = 0. 
(3.8) 

the space-time quark wave function can be written in the form of, 

 𝜓0(�⃗�, 𝑡) = 𝑢0(�⃗�)𝑒
−𝑖ℰ0𝑡 , (3.9) 

where  ℰ0 refers to the ground state quark energy. By inserting 𝑢0(�⃗�) into the Dirac 
equation, we have the explicit form of the potential 𝑆(𝑟) and 𝑉(𝑟) for the Gaussian 
ansatz and both of them are in the forms of  

                       𝑆(𝑟) =
1 − 3𝜌2

2𝜌𝑅
+

𝜌

2𝑅3
𝑟2 = 𝑀1 + 𝑐1𝑟

2, (3.10) 

 𝑉(𝑟) = ℇ0 −
1 + 3𝜌2

2𝜌𝑅
+

𝜌

2𝑅3
𝑟2 = 𝑀2 + 𝑐2𝑟

2. (3.11) 
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To fix the parameters 𝜌 and 𝑅 of the PCQM, the parameter 𝜌 links to the axial 
coupling constant 𝑔𝐴 by 

 𝑔𝐴 =
5

3
(1 −

2𝜌2

1 +
3
2
𝜌2
). (3.12) 

With the value of  𝑔𝐴 approximated to be 1.25 and restricted to the zero-order diagram, 
the value of 𝜌 becomes 𝜌 = √2/13 ≈ 0.39. Together with the proton charge radius in the 
leading-order (LO) term, we obtain 

 〈𝑟𝐸
2〉𝐿𝑂 =

3𝑅2

2
(
1 +

5
2 𝜌

2

1 +
3
2
𝜌2
). (3.13) 

By using the value of 𝜌 = √2/13 and assume that the values of 〈𝑟𝐸2〉𝐿𝑂 lies between 
0.5 fm2 and 0.7 fm2, the values of 𝑅 is found to be 0.55 fm to 0.65 fm. We, therefore, took 
set 𝜌 = √2/13 and 𝑅 = 0.60 fm as the fixed model parameters. In our study, both values 
of 𝜌, 𝑅 needed to be reconsidered when we modify the quark propagator by taking the 
excited states into account.  

Starting from the specific forms of the potentials 𝑆(𝑟) and 𝑉(𝑟), the quark wave 
function in the excited states 𝛼, 𝑢𝛼(�⃗�) can be obtained by solving the corresponding 
Dirac equation. The general form of the quark in the 𝛼 state is 

 𝑢𝛼(�⃗�) = 𝑁𝛼 𝑒𝑥𝑝 (−
�⃗�2

2𝑅2
)(

𝑔𝛼(𝑟)

𝑖�⃗� ⋅ �̂�𝑓𝛼(𝑟)
)𝒴𝛼(�̂�)𝜒𝑓𝜒𝑐 . 

(3.14) 

with the energy 𝜀𝛼. Therefore, the quark field of in the excited states 𝛼 becomes 

 𝜓𝛼(�⃗�, 𝑡) = 𝑢𝛼(�⃗�)𝑒
−𝑖ℰ𝛼𝑡  ,  �̅�𝛼(�⃗�, 𝑡) = �̅�𝛼(�⃗�)𝑒𝑖ℰ𝛼𝑡. (3.15) 

The normalization constant 𝑁𝛼 can be fixed by using the condition ∫ 𝑑3𝑥𝑢𝛼†(�⃗�)𝑢𝛼(�⃗�) = 1, 
as 

 𝑁𝛼 = [2
−2(𝑛+𝑙+

1
2
)𝜋

1
2𝑅𝛼

3
(2𝑛 + 2𝑙)!

(𝑛 + 𝑙)! (𝑛 − 1)!
{1 + 𝜌𝛼

2(2𝑛 + 𝑙 −
1

2
)}]

−1/2

. 
(3.16) 

The number 𝑛 is the principal quantum number of states, with 𝑛 = 1,2,… and 𝑙 is the 
angular momentum. Here, we define ∆ℰ𝛼 = ℰ𝛼 − ℰ0 to be the difference between the 
energy of excited state 𝛼, denoted byℰ𝛼 and the ground state energy, denoted by ℰ0. 

The ∆ℰ𝛼 are related to 𝜌 and 𝑅 by the relation 



  19 

 (∆ℰ𝛼 +
3𝜌

𝑅
)
2

(∆ℰ𝛼 +
1

𝜌𝑅
) =

𝜌

𝑅3
(4𝑛 + 2𝑙 − 1)2. 

(3.17) 

We summarize the ground state and excited states of quark propagators in Table 1. 

TABLE 1 The corresponding energies of the quark in the low-lying states of the PCQM 

Quark state Quantum state Label ∆ℰ𝛼(𝐺𝑒𝑉) 

Ground state 𝑛 = 1, 𝑙 = 0, 𝑠 = +
1

2
 1𝑠1/2 0.00 

1st excited state 
𝑛 = 1, 𝑙 = 1, 𝑠 = −

1

2
 1𝑝1/2 

0.227204 
𝑛 = 1, 𝑙 = 1, 𝑠 = +

1

2
 1𝑝3/2 

2nd excited state 

𝑛 = 1, 𝑙 = 1, 𝑠 = −
1

2
 1𝑑3/2 

0.425221 𝑛 = 1, 𝑙 = 1, 𝑠 = +
1

2
 1𝑑5/2 

𝑛 = 2, 𝑙 = 0, 𝑠 = +
1

2
 2𝑠1/2 

 
The angular dependent, resulting from the coupling of the spin and the orbital parts, of 
the wave function is  𝒴𝛼(�̂�). The component, 𝑔𝛼(𝑟) of the quark wave function is given 
by  

 𝑔𝛼(𝑟) = (
𝑟

𝑅𝛼
)
𝑙

𝐿𝑛−1
𝑙+1/2

(
𝑟2

𝑅𝛼
2)𝑒

−
𝑟2

2𝑅𝛼
2 . (3.18) 

whereas the lower components, 𝑓𝛼(𝑟), which depend on the value of the total angular 
momentum 𝑗, has the following form, 

(i) in case of the total angular momentum  𝑗 = 𝑙 + 1

2
 ,  

 𝑓𝛼(𝑟) = 𝜌𝛼 (
𝑟

𝑅𝛼
)
𝑙+1

[𝐿𝑛−1
𝑙+3/2

(
𝑟2

𝑅𝛼
2) + 𝐿𝑛−2

𝑙+3/2
(
𝑟2

𝑅𝛼
2)] 𝑒

−
𝑟2

2𝑅𝛼
2
, 

(3.19) 
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(ii) and  𝑗 = 𝑙 − 1

2
 ,  

 𝑓𝛼(𝑟) = −𝜌𝛼 (
𝑟

𝑅𝛼
)
𝑙−1

[(𝑛 + 𝑙 −
1

2
)𝐿𝑛−1
𝑙−1/2

(
𝑟2

𝑅𝛼
2) + 𝑛𝐿𝑛

𝑙−1/2
(
𝑟2

𝑅𝛼
2)] 𝑒

−
𝑟2

2𝑅𝛼
2
, 

(3.20) 

We summarize the 𝑓𝛼(𝑟) and 𝑔𝛼(𝑟) of each state in the Table 2. 

TABLE 2 The lower and the upper components of the quark wave function 

State 𝛼  

 ( 𝑢𝛼) 

Label 𝑔𝛼(𝑟) 𝑓𝛼(𝑟) 

𝑢0 

1𝑠1/2 

𝑛 = 1, 

𝑙 = 0, 

𝑠 = +1/2 

𝑔0(𝑟) = 𝑒
−
𝑟2

2𝑅2  𝑓0(𝑟) =
𝜌𝑟

𝑅
𝑒
−
𝑟2

2𝑅2 

𝑢1 

1𝑝1/2 

𝑛 = 1, 

𝑙 = 1, 

 

𝑠 = −1/2 

𝑔1(𝑟) =
𝑟

𝑅1
𝑒
−
𝑟2

2𝑅1
2 

𝑓1(𝑟)

= −𝜌1 (3 − (
𝑟

𝑅1
)
2

)𝑒
−
𝑟2

2𝑅1
2 
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TABLE 2 (Continued) 

State 𝛼  

 ( 𝑢𝛼) 

Label 𝑔𝛼(𝑟) 𝑓𝛼(𝑟) 

𝑢2 

1𝑝3/2 

𝑛 = 1, 

𝑙 = 1, 

𝑠 = +1/2 

𝑔2(𝑟) =
𝑟

𝑅2
𝑒
−
𝑟2

2𝑅2
2
 𝑓2(𝑟) = 𝜌2 (

𝑟

𝑅2
)
2

𝑒
−
𝑟2

2𝑅2
2
 

𝑢3 

1𝑑3/2 

𝑛 = 1, 

𝑙 = 2, 

𝑠 = −1/2 

𝑔3(𝑟) = (
𝑟

𝑅3
)
2

𝑒
−
𝑟2

2𝑅3
2  𝑓3(𝑟) =

−𝜌3𝑟

𝑅3
(5 − (

𝑟

𝑅3
)
2

)𝑒
−
𝑟2

2𝑅3
2
 

𝑢4 

1𝑑5/2 

𝑛 = 1, 

𝑙 = 2 

𝑠 = +1/2 

𝑔4(𝑟) = (
𝑟

𝑅4
)
2

𝑒
−
𝑟2

2𝑅4
2
 𝑓4(𝑟) = 𝜌4 (

𝑟

𝑅4
)
3

𝑒
−
𝑟2

2𝑅4
2
 

𝑢5 

2𝑠1/2 

𝑛 = 2, 

𝑙 = 0, 

𝑠 = +1/2 

𝑔5(𝑟)

= (
3

2
− (

𝑟

𝑅5
)
2

)𝑒
−
𝑟2

2𝑅5
2
 

𝑓5(𝑟) =  
𝜌5𝑟

𝑅5
 (
7

2
− (

𝑟

𝑅5
)
2

)𝑒
−
𝑟2

2𝑅5
2
 

 
In this study, we also investigate the effects of higher excited states on the 

magnetic moments of the nucleon. As we know that the higher excited states also 
contribute to the value of the magnetic moments of the nucleon but still be unclear how 
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much they could contribute. For higher excited states up to the 5th excited states and the 
notation are shown in Table 4 and the upper and lower spinors are shown in Appendix 
F.    

The parameters 𝜌 and 𝑅 for a quark in the ground state are related to the 
parameters 𝜌𝛼 and  𝑅𝛼 for the quark in the state 𝛼 by 

 𝜌𝛼 = 𝜌(
𝑅𝛼
𝑅
)
3

, 
(3.21) 

 𝑅𝛼 = 𝑅(1 + ∆ℰ𝛼𝜌𝑅)
−1/4 . (3.22) 

In this model, the free meson propagator as indicated by the Quantum Field 
Theory is 

 𝑖𝛥𝑖𝑗(𝑥 − 𝑦) = 𝛿𝑖𝑗∫
𝑑4𝑘

(2𝜋)4𝑖

𝑒𝑥𝑝[−𝑖𝑘(𝑥 − 𝑦)]

𝑀𝛷
2 − 𝑘2 − 𝑖𝜖

, (3.23) 

where 𝑀Φ denotes the meson mass.  (Φ = 𝜋,𝐾, 𝜂 ). In the case of the quark, we apply 
the bound states quark propagator, which is written in terms of the quark field. For 
simplicity, the ground state of the quark was assumed to dominate the quark 
propagator; therefore, only the quark propagator in the ground state is used i.e. 

 𝑖𝐺𝜓(𝑥, 𝑦) = 𝑢0(�⃗�)�̅�0(�⃗�)𝑒𝑥𝑝[−𝑖ℰ0(𝑥0 − 𝑦0)] 𝜃(𝑥0 − 𝑦0). 
(3.24) 

A straightforward modification to the quark propagator by summing up all the excited 
states of the quark results in 

 𝑖𝐺𝜓(𝑥, 𝑦) = 𝜃(𝑥0 − 𝑦0)∑𝑢𝛼(�⃗�)�̅�𝛼(�⃗�)𝑒𝑥𝑝[−𝑖ℰ𝛼(𝑥0 − 𝑦0)]

𝛼

. (3.25) 

To test the validity of the model, the first two excited states (1𝑝1/2, 1𝑝3/2, 1𝑑3/2, 1𝑑5/2 and 
2𝑠1/2 states), together with the 1𝑠1/2 state have been included in the calculation of the 
octet baryons electromagnetic form factors, as mentioned in (2). Nevertheless, such 
modification of the quark propagator in the calculational technique was shown the 
significance of the modification to the charge form factor of the neutron only.  

Obviously, for consistency on the nucleonic level, such modification must be 
done to the study of the electromagnetic form factors of both the proton and the neutron. 
We expect that the previous values of the parameters of the model must be changed. 
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We intend to fix the parameters 𝜌 and 𝑅 by using the nucleon magnetic moments 
reported from the experiments. For simplicity, however, we set the value of 𝑅 to be 
0.60 fm as same as in the previous works and attempt to find the value of the 
parameter 𝜌 that reproduces the nucleon magnetic moments. 

2. The Electromagnetic Form Factors of the Nucleon 
The standard minimal substitution procedure is used for introduction of the 

electromagnetic interaction by the modifications of 

 𝜕𝜇𝜓
𝑟 → 𝐷𝜇𝜓

𝑟 = 𝜕𝜇𝜓
𝑟 + 𝑖𝑒𝑄𝐴𝜇𝜓

𝑟, (3.26) 

 𝜕𝜇𝛷𝑖 → 𝐷𝜇𝛷𝑖 = 𝜕𝜇𝛷𝑖 + 𝑒 (𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
)𝐴𝜇𝛷𝑗 

(3.27) 

Here, 𝐴𝜇 is the field of the photon and 𝜓𝑟 is the renormalized quark field. The matrix, 𝑄, 
indicates the quark’s charges as 𝑄 = diag{2/3,−1/3,−1/3} and 𝑓𝑖𝑗𝑘 are the structure 
constants in the SU(3) formalism. Note that 

 𝑗𝑟
𝜇 = 𝑗𝜓𝑟

𝜇 + 𝑗𝛷
𝜇 + 𝛿𝑗𝜓𝑟

𝜇 , (3.28) 

represents the electromagnetic current, where 𝑗𝜓𝑟𝜇  is the current of the quark, 𝑗Φ𝜇  is the 
current of the (charge) meson and 𝛿𝑗𝜓𝑟𝜇  is the current due to the counter-term, see [9] for 
detailed discussion. Theses currents can be written explicitly as 

 𝑗𝜓𝑟
𝜇 = �̅�𝑟𝛾𝜇𝑄𝜓𝑟, (3.29) 

 𝑗𝛷
𝜇 = (𝑓3𝑖𝑗 +

𝑓8𝑖𝑗

√3
)𝛷𝑖𝜕

𝜇𝛷𝑗 , (3.30) 

and 
 𝛿𝑗𝜓𝑟

𝜇 = �̅�𝑟(𝑍 − 1)𝛾𝜇𝑄𝜓𝑟, (3.31) 

where 𝑍 is the renormalization constant matrix, 𝑍 = diag{�̂�, �̂�, 𝑍𝑠}, and with the isospin 
symmetry, �̂� = 𝑍𝑢 = 𝑍𝑑. We obtain such constants by considering the charge 
renormalization of the corresponding baryons. Only   �̂�  is relevant in the nucleonic 
sector, since there is no 𝑠-quark in the nucleon. 
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The nucleon electromagnetic form factors are calculated within the Breit frame 
and the so-called Sachs form factors, 𝐺𝐸𝑁(𝑄2) and 𝐺𝑀𝑁(𝑄2), of the nucleon are defined by  
 𝜒𝑁𝑠′

† 𝜒𝑁𝑠𝐺𝐸
𝑁(𝑄2) = ⟨𝑁𝑠′ (

�⃗�
2) |𝐽

0(0)|𝑁𝑠 (−
�⃗�
2)⟩, 

(3.32) 

and 
 𝜒𝑁𝑠′

† 𝑖�⃗�𝑁 × �⃗�

2𝑀𝑁
𝜒𝑁𝑠𝐺𝑀

𝑁(𝑄2) = ⟨𝑁𝑠′ (
�⃗�
2) |𝐽

(0)|𝑁𝑠 (−
�⃗�
2)⟩, 

(3.33) 

where 𝐺𝐸𝑁(𝑄2) and 𝐺𝑀𝑁(𝑄2) denote the charge and the magnetic Sachs form factors, 
respectively. Here, on the left-hand side, the calculation must be performed on the 
nucleonic level. For the elastic scattering and in the Breit frame, 𝑄2 = −�⃗�2 > 0. The 
charge Sachs form factors of the nucleon are normalized at the zero recoil (𝑄2 = 0) as 

 𝐺𝐸
𝑝(0) = 1,        𝐺𝐸

𝑛(0) = 0. (3.34) 

are the charge of the proton and the neutron, respectively. On the other hand, we have  
 𝐺𝑀

𝑝(0) = 𝜇𝑝 = 2.793,        𝐺𝑀
𝑛 (0) = 𝜇𝑛 = −1.913, (3.35) 

where 𝜇𝑝 and 𝜇𝑛 represent proton and neutron magnetic moments, respectively. 
In the PCQM formalism, the Sachs form factors can be calculated from the 

relations 
 

 𝜒𝑁𝑠′
† 𝜒𝑁𝑠𝐺𝐸

𝑁(𝑄2)

= ⟨𝜙0| ∑
𝑖𝑛

𝑛! ∫ 𝛿
(𝑡)𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞⋅𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)…ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝑗𝑟

0(𝑥)]2
𝑛=0 |𝜙0⟩

𝑐

𝑁

 

  (3.36) 

and  
 𝜒𝑁𝑠′

† 𝑖�⃗�𝑁 × �⃗�

2𝑀𝑁
𝜒𝑁𝑠𝐺𝑀

𝑁(𝑄2)

= ⟨𝜙0| ∑
𝑖𝑛

𝑛! ∫ 𝛿
(𝑡)𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞⋅𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)…ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝑗𝑟

 (𝑥)]2
𝑛=0 |𝜙0⟩

𝑐

𝑁

 

  (3.37) 
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Besides, the renormalized strong interaction Lagrangian ℒ𝑟𝑠𝑡𝑟(𝑥) in the PCQM is in the 
form 
 ℒ𝑟

𝑠𝑡𝑟(𝑥) = ℒ𝐼
𝑠𝑡𝑟(𝑥) + 𝛿ℒ𝑠𝑡𝑟, (3.38) 

where  
 

ℒ𝐼
𝑠𝑡𝑟(𝑥) = −�̅�𝑟(𝑥)𝑆(𝑟)𝑖𝛾5

�̂�(𝑥)

𝐹
𝜓𝑟(𝑥), 

(3.39) 

and 𝛿ℒ𝑠𝑡𝑟 is the strong interaction Lagrangian corresponding to the counter-terms, see 
Ref. (1) for details. 

The charge radii and magnetic radii of nucleons are given by, 
 〈𝑟𝐸,𝑀

2 〉𝑁 =
−6

𝐺𝐸,𝑀
𝑁 (0)

𝑑𝐺𝐸,𝑀
𝑁 (0)

𝑑𝑄2
|
𝑄2=0

, (3.40) 

Since the charge of the neutron is zero, the charge radius of the neutron is defined by, 
 〈𝑟𝐸

2〉𝑛 = −6
𝑑𝐺𝐸

𝑛(0)

𝑑𝑄2
|
𝑄2=0

. (3.41) 

The relevant Feynman diagrams for the nucleon Sachs form factors are 
presented in Fig. 1.  

The 𝛼 and 𝛽 in the diagrams shown in Fig.1 indicate the insertions of the quark 
in the 𝛼 and 𝛽 states to the quark propagator. The diagrams that involve in the dressing 
of the quark propagator are the meson-cloud diagram and the vertex-correction 
diagram. We present the analytical results in detail as follows. 

1. The three-quark (3q) core diagram: 
The analytical expressions for the leading-order (LO) terms and the next-to-

leading (NLO) terms of the Sachs form factors for the 3q core diagram are indicated by 
 𝐺𝐸,𝑀

𝑁 (𝑄2) = 𝐺𝐸,𝑀
𝑁 (𝑄2)|

3𝑞

𝐿𝑂
+ 𝐺𝐸,𝑀

𝑁 (𝑄2)|
3𝑞

𝑁𝐿𝑂
, (3.42) 

where, for proton (𝑁 = 𝑝) 
 

𝐺𝐸
𝑝(𝑄2)|

3𝑞

𝐿𝑂
= 𝑒𝑥𝑝 (−

𝑄2𝑅2

4
)(1 −

𝑄2𝑅2𝜌2

4 (1 +
3
2 𝜌

2)
), (3.43) 

 𝐺𝐸
𝑝(𝑄2)|

3𝑞

𝑁𝐿𝑂
= 𝑒𝑥𝑝(−

𝑄2𝑅2

4
) �̂�𝑟

𝑄2𝑅3𝜌

4(1 +
3
2 𝜌

2)
2 (3.44) 
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                         × (
1+7𝜌2+

15

4
𝜌4

1+
3

2
𝜌2

−
𝑄2𝑅2𝜌2

4
), 

 𝐺𝑀
𝑝(𝑄2)|

3𝑞

𝐿𝑂
= 𝑒𝑥𝑝 (−

𝑄2𝑅2

4
)
2𝑚𝑁𝜌𝑅

1 +
3
2 𝜌

2
, (3.45) 

 
𝐺𝑀
𝑝(𝑄2)|

3𝑞

𝑁𝐿𝑂
= 𝐺𝑀

𝑝(𝑄2)|
3𝑞

𝐿𝑂 �̂�𝑟𝜌𝑅

1 +
3
2
𝜌2
(
𝑄2𝑅2

4
−
2 −

3
2
𝜌2

1 +
3
2
𝜌2
) (3.46) 

and for neutron (𝑁 = 𝑛) 
 𝐺𝐸

𝑛(𝑄2)|3𝑞
𝐿𝑂 = 𝐺𝐸

𝑛(𝑄2)|3𝑞
𝑁𝐿𝑂 = 0, (3.47) 

 𝐺𝑀
𝑛 (𝑄2)|3𝑞

𝐿𝑂 = −
2

3
𝐺𝑀
𝑝(𝑄2)|

3𝑞

𝐿𝑂
,, (3.48) 

 𝐺𝑀
𝑛 (𝑄2)|3𝑞

𝑁𝐿𝑂 = −
2

3
𝐺𝑀
𝑝(𝑄2)|

3𝑞

𝑁𝐿𝑂
. (3.49) 

Besides, the quark mass renormalization is  
 

�̂�𝑟 = �̂� −
1

(2𝜋)2𝐹2
∑∫ 𝑑𝑝𝑝2𝐹𝛼

†(𝑝2) 𝐹𝛼(𝑝
2)

∞

0𝛼

 

                ×

{
 
 

 
 

9

𝜔𝜋(𝑝
2)[𝜔𝜋(𝑝

2)+𝛥ℰ𝛼]

+
6

𝜔𝐾(𝑝
2)[𝜔𝐾(𝑝

2)+𝛥ℰ𝛼]

+
1

𝜔𝜂(𝑝
2)[𝜔𝜂(𝑝

2)+𝛥ℰ𝛼]}
 
 

 
 

, 

(3.50) 

where 
 𝜔𝛷(𝑝

2) = √𝑝2 +𝑀𝛷
2   ,  𝑥 = 𝑐𝑜𝑠 𝜃 and 𝛥ℰ𝛼 ≡ ℰ𝛼 − ℰ0. (3.51) 

and   

 𝐹𝛼(𝑝
2) = −𝑁0𝑁𝛼 ∫ 𝑑𝑟 𝑟2𝑆(𝑟)[𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟)]

∞

0

 

                         × ∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0
∫ 𝑑𝜙
2𝜋

0
(𝐶0𝑌0,0)(𝐴1𝑌𝛼,0)𝑒

−𝑖𝑝𝑟𝑐𝑜𝑠𝜃 

(3.52) 

Note that the subscript 𝛼 = 0 refers to quark in the ground state  (1𝑠1/2 ). The 
corresponding Clebsch-Gordan coefficients, 𝐶0 and 𝐴1, defined by 𝐶0 = (00 12

1

2
 |
1

2

1

2
) 

and 𝐴1 = (𝑙𝛼0 12
1

2
 |𝑗𝛼

1

2
) respectively, where (𝑙𝛼  𝑚𝑙𝛼

 𝑠 𝑚𝑠  |𝑗𝛼𝑚𝑗𝛼) represents explicitly the 
coupling that leads to the Clebsch-Gordan coefficients. The 𝑌𝑙𝛼,𝑚𝛼

 are the spherical 
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harmonics function and 𝑚𝑁 is the mass of the nucleon. In this work, the nucleon mass 
has the value of 𝑚𝑁 = 0.938 GeV.  

2. The three-quark counter-term (CT) diagram: 
 𝐺𝐸,𝑀

𝑝 (𝑄2)|
𝐶𝑇
= (�̂� − 1)𝐺𝐸,𝑀

𝑝 (𝑄2)|
3𝑞

𝐿𝑂
, (3.53) 

 𝐺𝐸
𝑛(𝑄2)|𝐶𝑇 = 0 , 

(3.54) 

 𝐺𝑀
𝑛 (𝑄2)|𝐶𝑇 = (�̂� − 1)𝐺𝑀

𝑛 (𝑄2)|3𝑞
𝐿𝑂 . (3.55) 

The renormalization constant �̂� is 
 

�̂� = 1 −
1

(2𝜋)2𝐹2
∑∫ 𝑑𝑝𝑝2𝐹𝛼

†(𝑝2) 𝐹𝛼(𝑝
2)

∞

0𝛼

 

× {
1

𝜔𝜋(𝑝
2)[𝜔𝜋(𝑝

2) + 𝛥ℰ𝛼]
2
−

2

𝜔𝐾(𝑝
2)[𝜔𝐾(𝑝

2) + 𝛥ℰ𝛼]
2

+
1/3

𝜔𝜂(𝑝
2)[𝜔𝜂(𝑝

2) + 𝛥ℰ𝛼]
2} 

(3.56) 

3. The meson-cloud (MC) diagram: 
 𝐺𝐸

𝑁(𝑄2)|𝛼,𝑀𝐶

= ⟨𝜙0| ∑
𝑖𝑛

𝑛! ∫ 𝛿
(𝑡)𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞⋅𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)…ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝑗𝛷

0(𝑥)]2
𝑛=0 |𝜙0⟩

𝑐

𝑁

 

4⟨𝜙0| −
1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞⋅𝑥 : (−�̅�(𝑥1)𝑖𝛾

5 𝜆𝑘

𝐹
𝛷𝑘(𝑥1)𝑆(𝑟)𝜓𝛼(𝑥1))  

× (−�̅�𝛼(𝑥2)𝑖𝛾
5
𝜆𝑙
𝐹
𝛷𝑙(𝑥2)𝑆(𝑟)𝜓(𝑥2)) × (𝑓3𝑖𝑗 +

𝑓8𝑖𝑗

√3
)𝛷𝑖(𝑥)

𝜕𝛷𝑗(𝑥)

𝜕𝑡
: |𝜙0⟩ 

 (3.57) 

For proton  𝑁 = 𝑝 ; 
 𝐺𝐸

𝑝(𝑄2)|
𝛼,𝑀𝐶

 

=
1

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝2∫ 𝑑𝑥

𝑝 + √𝑄2𝑥

√𝑝2+𝑄2 + 2𝑝√𝑄2𝑥

1

−1

∗
∞

0

 𝐹1 ∗  𝐹2

×

[
 
 
 

2

(𝜔𝜋(𝑝) + 𝛥𝜀𝛼)(𝜔𝜋(𝑝 + �⃑�) + 𝛥𝜀𝛼)(𝜔𝜋(𝑝) + (𝜔𝜋(𝑝 + �⃑�))

+
4

(𝜔𝐾(𝑝)+ 𝛥𝜀𝛼)(𝜔𝐾(𝑝 + �⃑�) + 𝛥𝜀𝛼)(𝜔𝐾(𝑝) + (𝜔𝐾(𝑝 + �⃑�))]
 
 
 

 

(3.58) 
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Where  𝐹1 and 𝐹2 are defined as below,  
 𝐹1 ≡ (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟

∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

 

           × ∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟)(𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟)) 

           × (𝐶0𝑌0
0)(𝐴1𝑌𝛼

0)𝑒𝑖|𝑝+�⃗⃑�|𝑟𝑐𝑜𝑠𝜃 

(3.59) 

 𝐹2 ≡ (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

 

           × ∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟)(𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟)) 

           × (𝐶0𝑌0
0)(𝐴1𝑌𝛼

0)𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

(3.60) 

For neutron 𝑁 = 𝑛 ; 
 

𝐺𝐸
𝑛(𝑄2)|𝛼,𝑀𝐶  =

1

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝2∫ 𝑑𝑥

𝑝 + √𝑄2𝑥

√𝑝2+𝑄2 + 2𝑝√𝑄2𝑥

1

−1

∞

0

∗ 𝐹1 

                               × 𝐹2 [

−2

(𝜔𝜋(�⃑�)+𝛥𝜀𝛼)(𝜔𝜋(�⃑�+�⃑⃗�)+𝛥𝜀𝛼)(𝜔𝜋(�⃑�)+(𝜔𝜋(�⃑�+�⃗⃑�))

+
2

(𝜔𝐾(𝑝)+𝛥𝜀𝛼)(𝜔𝐾(𝑝+�⃗⃑�)+𝛥𝜀𝛼)(𝜔𝐾(�⃑�)+(𝜔𝐾(𝑝+�⃗⃑�))

]  

(3.61) 

By definition, 𝐺𝑀𝑁(𝑄2)|𝛼,𝑀𝐶   is given by,  
 𝜒𝑁𝑠′

† 𝑖�⃗�𝑁 × �⃗�

2𝑀𝑁
𝜒𝑁𝑠𝐺𝑀

𝑁(𝑄2)|𝛼,𝑀𝐶  

= ⟨𝜙0| ∑
𝑖𝑛

𝑛! ∫ 𝛿
(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞⋅𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)ℒ𝑟
𝑠𝑡𝑟(𝑥2)𝑗𝛷

 (𝑥)]2
𝑛=0 |𝜙0⟩

𝑐

𝑁

 

= 4⟨𝜙0| −
1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞⋅𝑥 : (−�̅�(𝑥1)𝑖𝛾

5
𝜆𝑘
𝐹
𝛷𝑘(𝑥1)𝑆(𝑟)𝜓𝛼(𝑥1)) 

× (−�̅�𝛼(𝑥2)𝑖𝛾
5
𝜆𝑙
𝐹
𝛷𝑙(𝑥2)𝑆(𝑟)𝜓(𝑥2)) × (𝑓3𝑖𝑗 +

𝑓8𝑖𝑗

√3
)𝛷𝑖(𝑥)𝛻𝛷𝑗(𝑥): |𝜙0⟩ 

=
−2

(2𝜋)4𝐹2
⟨𝜙0| 𝑏0

†
∫𝑑3𝑝𝑝  ×

(�⃗⃗⃗�∙(𝑝+�⃗⃗�))

|𝑝+�⃗⃗�|
∙
(�⃗⃗⃗�∙�⃗�)

|𝑝|
  

×∫𝑑3𝑥1 (�̅�0(�⃗�1)𝑖𝛾
5𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒

𝑖(𝑝+�⃗⃗�)∙�⃗�1)∫𝑑3𝑥2 �̅�𝛼(�⃗⃗⃗�2)𝑖𝛾5𝑆(𝑥2)𝑢0(�⃗⃗⃗�2)𝑒−𝑖�⃗⃗⃗�∙�⃗⃗⃗�2 

× (𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
) 

𝜆𝑖𝜆𝑗

𝜔𝜙
2 (�⃗� + �⃗�)𝜔𝜙

2 (𝑝)
𝑏0|𝜙0⟩    

 (3.62) 
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In order to calculate the matrix elements, we can restrict ourselves to the nucleon spin 
up only. Finally, we can get the 𝐺𝑀𝑁(𝑄2)|𝛼,𝑀𝐶  as below, 
For proton (𝑁 = 𝑝); 
  𝐺𝑀

𝑝(𝑄2)|
𝑀𝐶
 =

2𝑚𝑁

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝3∫ 𝑑𝑥

1 − 𝑥2

√𝑝2+𝑄2 + 2𝑝√𝑄2𝑥

1

−1

∞

0

 (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

 

×∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

(𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟))𝑆(𝑟)(𝐶0𝑌0
0)(𝐴1𝑌𝛼

0)𝑒𝑖|𝑝+�⃗⃑�|𝑟𝑐𝑜𝑠𝜃  

× (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟)(𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟)) 

× (𝐶0𝑌0
0)(𝐴1𝑌𝛼

0)𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

× (
(
5
3
) (𝜔𝜋(𝑝 + �⃑�) + 𝜔𝜋(𝑝) + 𝛥𝜀𝛼)

(𝜔𝜋(𝑝) + 𝛥𝜀𝛼)𝜔𝜋(𝑝)(𝜔𝜋(𝑝 + �⃑�) + 𝛥𝜀𝛼)𝜔𝜋(𝑝 + �⃑�)(𝜔𝜋(𝑝) + (𝜔𝜋(𝑝 + �⃑�))

+
(
4
3)
(𝜔𝐾(𝑝 + �⃑�) + 𝜔𝐾(𝑝) + 𝛥𝜀𝛼)

(𝜔𝐾(𝑝) + 𝛥𝜀𝛼)𝜔𝐾(𝑝)(𝜔𝐾(�⃑� + �⃑�) + 𝛥𝜀𝛼)𝜔𝐾(𝑝 + �⃑�)(𝜔𝐾(𝑝) + (𝜔𝐾(𝑝 + �⃑�))
) 

 (3.63) 

For neutron (𝑁 = 𝑛) ; 
 𝐺𝑀

𝑛 (𝑄2)|𝑀𝐶   

=
2𝑚𝑁

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝3∫ 𝑑𝑥

1 − 𝑥2

√𝑝2+𝑄2 + 2𝑝√𝑄2𝑥

1

−1

∞

0

 (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

 

×∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

(𝑓0(𝑟)𝑔𝛼(𝑟) + (𝑓𝛼(𝑟)𝑔0(𝑟))𝑆(𝑟)(𝐶0𝑌0
0)(𝐴1𝑌𝛼

0)𝑒𝑖|𝑝+�⃗⃑�|𝑟𝑐𝑜𝑠𝜃  

× (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟)(𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟)) 

× (𝐶0𝑌0
0)(𝐴1𝑌𝛼

0)𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

× (
−(

5
3)
(𝜔𝜋(𝑝 + �⃑�) + 𝜔𝜋(𝑝) + 𝛥𝜀𝛼)

(𝜔𝜋(𝑝) + 𝛥𝜀𝛼)𝜔𝜋(𝑝)(𝜔𝜋(𝑝 + �⃑�) + 𝛥𝜀𝛼)𝜔𝜋(𝑝 + �⃑�)(𝜔𝜋(𝑝) + (𝜔𝜋(𝑝 + �⃑�))

+
−(

1
3)
(𝜔𝐾(𝑝 + �⃑�) + 𝜔𝐾(𝑝) + 𝛥𝜀𝛼)

(𝜔𝐾(𝑝) + 𝛥𝜀𝛼)𝜔𝐾(𝑝)(𝜔𝐾(�⃑� + �⃑�) + 𝛥𝜀𝛼)𝜔𝐾(𝑝 + �⃑�)(𝜔𝐾(𝑝) + (𝜔𝐾(𝑝 + �⃑�))
). 

 (3.64) 
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4. The vertex-correction (VC) diagram: 
From the definition of  𝐺𝐸𝑁(𝑄2) 

 𝜒𝑁𝑠′
† 𝜒𝑁𝑠𝐺𝐸

𝑁(𝑄2)|𝛼𝛽,𝑉𝐶  

= ⟨𝜙0| ∑
𝑖𝑛

𝑛! ∫ 𝛿
(𝑡)𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞⋅𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)…ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝑗𝑟

0(𝑥)]2
𝑛=0 |𝜙0⟩

𝑐

𝑁

 

= 2⟨𝜙0| −
1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞⋅𝑥 : (−�̅�(𝑥1)𝑖𝛾

5
𝜆𝑘
𝐹
𝛷𝑖(𝑥1)𝑆(𝑟)𝜓𝛼(𝑥1)) 

× (𝑄�̅�𝛼(𝑥)𝛾
0𝜓𝛽(𝑥)) (−�̅�𝛽(𝑥2)𝑖𝛾

5
𝜆𝑙
𝐹
𝛷𝑗(𝑥2)𝑆(𝑟)𝜓(𝑥2)): |𝜙0⟩. 

 (3.65) 

For proton, 
 𝐺𝐸

𝑝(𝑄2)|
𝛼𝛽,𝑉𝐶

 =
1

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝2𝐹1 ∗
∞

0

𝐹2 ∗  𝐹3 

                                 ×

[
 
 
 
 
 

1

𝜔𝜋(𝑝)(𝜔𝜋(𝑝)+𝛥𝜀𝛼)(𝜔𝜋(𝑝)+𝛥𝜀𝛽)

−
2

𝜔𝐾(𝑝)(𝜔𝐾(𝑝)+𝛥𝜀𝛼)(𝜔𝐾(𝑝)+𝛥𝜀𝛽)

+
1 3⁄

𝜔𝜂(𝑝)(𝜔𝜂(𝑝)+𝛥𝜀𝛼)(𝜔𝜂(�⃑�) +𝛥𝜀𝛽)]
 
 
 
 
 

 

(3.66) 

Where, 𝐹1 , 𝐹1 and  𝐹3  are defined as below 
 𝐹1 ≡ (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟

∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

           × (𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟))(𝐶0𝑌0,0)(𝐴1𝑌𝛼,0)𝑒𝑖𝑝𝑟𝑐𝑜𝑠𝜃 

(3.67) 

 𝐹2 ≡ (𝑁𝛽𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

           × (𝑓𝛼(𝑟)𝑓𝛽(𝑟) + 𝑔𝛼(𝑟)𝑔𝛽(𝑟)) 

           × (𝐴1𝑌𝛼,0
∗ 𝐵1𝑌𝛽,0 + 𝐴2𝑌𝛼,1

∗ 𝐵2𝑌𝛽,1)𝑒
𝑖√𝑄2𝑟𝑐𝑜𝑠𝜃 

(3.68) 

 𝐹3 ≡ (−𝑁0𝑁𝛽)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

           × (𝑓0(𝑟)𝑔𝛽(𝑟) + 𝑓𝛽(𝑟)𝑔0(𝑟)) (𝐶0𝑌0,0)(𝐵1𝑌𝛽,0
∗ )𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

(3.69) 

For neutron, 
 𝐺𝐸

𝑛(𝑄2)|𝛼𝛽,𝑉𝐶  =
1

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝2
∞

0

𝐹4 ∗  𝐹5 ∗ 𝐹6 (3.70) 
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                                   × [

2

𝜔𝜋(𝑝)(𝜔𝜋(𝑝)+𝛥𝜀𝛼)(𝜔𝜋(𝑝)+𝛥𝜀𝛽)

−
2

𝜔𝐾(𝑝)(𝜔𝐾(𝑝)+𝛥𝜀𝛼)(𝜔𝐾(𝑝) +𝛥𝜀𝛽)

] 

where  𝐹4,𝐹5 and 𝐹6  are defined as below, 
 𝐹4 ≡ (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟

∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

           × (𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟))(𝐶0𝑌0,0)(𝐴1𝑌𝛼,0)𝑒𝑖𝑝𝑟𝑐𝑜𝑠𝜃 

(3.71) 

 𝐹5 ≡ (𝑁𝛽𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

           × (𝑓𝛼(𝑟)𝑓𝛽(𝑟) + 𝑔𝛼(𝑟)𝑔𝛽(𝑟)) 

           × (𝐴1𝑌𝛼,0
∗ 𝐵1𝑌𝛽,0 + 𝐴2𝑌𝛼,1

∗ 𝐵2𝑌𝛽,1)𝑒
𝑖√𝑄2𝑟𝑐𝑜𝑠𝜃  

(3.72) 

 𝐹6 ≡ (−𝑁0𝑁𝛽)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

            × (𝑓0(𝑟)𝑔𝛽(𝑟) + 𝑓𝛽(𝑟)𝑔0(𝑟)) 

            × (𝐶0𝑌0,0)(𝐵1𝑌𝛽,0
∗ )𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃 

(3.73) 

 The express for the 𝐺𝑀𝑁(𝑄2) are, 

 𝜒𝑁𝑠′
† 𝑖�⃗�𝑁 × �⃗�

2𝑀𝑁
𝜒𝑁𝑠𝐺𝑀

𝑁(𝑄2)|𝛼𝛽,𝑉𝐶

= ⟨𝜙0| ∑
𝑖𝑛

𝑛! ∫ 𝛿
(𝑡)𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞⋅𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)…ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝑗𝑟

 (𝑥)]2
𝑛=0 |𝜙0⟩

𝑐

𝑁

 

= 2⟨𝜙0| −
1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞⋅𝑥 : (−�̅�(𝑥1)𝑖𝛾

5
𝜆𝑘
𝐹
𝛷𝑖(𝑥1)𝑆(𝑟)𝜓𝛼(𝑥1)) 

× (𝑄�̅�𝛼(𝑥)𝛾𝜓𝛽(𝑥)) (−�̅�𝛽(𝑥2)𝑖𝛾
5
𝜆𝑙
𝐹
𝛷𝑗(𝑥2)𝑆(𝑟)𝜓(𝑥2)): |𝜙0⟩ 

 (3.74) 
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For proton; 
 𝐺𝑀

𝑝(𝑄2)|
𝛼𝛽,𝑉𝐶

 =
2𝑚𝑁𝑖

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝2
∞

0

 𝐹7 ∗  𝐹8

× 𝐹9 

[
 
 
 
 
 
 
 

1 9⁄

𝜔𝜋(𝑝)(𝜔𝜋(𝑝) + 𝛥𝜀𝛼)(𝜔𝜋(𝑝)+ 𝛥𝜀𝛽)

+
2 9⁄

𝜔𝐾(𝑝)(𝜔𝐾(𝑝) + 𝛥𝜀𝛼)(𝜔𝐾(𝑝) + 𝛥𝜀𝛽)

−
1 9⁄

𝜔𝜂(𝑝)(𝜔𝜂(𝑝) + 𝛥𝜀𝛼)(𝜔𝜂(�⃑�) + 𝛥𝜀𝛽)]
 
 
 
 
 
 
 

 

(3.75) 

Where 𝐹7, 𝐹8, and 𝐹9  are defined as below, 
 𝐹7 ≡ (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟

∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

           × (𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟))(𝐶0𝑌0,0)(𝐴1𝑌𝛼,0)𝑒
𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

(3.76) 

 𝐹8 ≡ (𝑁𝛽𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

           × (𝑓𝛼(𝑟)𝑔𝛽(𝑟) + 𝑔𝛼(𝑟)𝑓𝛽(𝑟))
1

√𝑄2
(𝐴1𝑌𝛼,0

∗ 𝐵1𝑌𝛽,0 −

𝐴2𝑌𝛼,1
∗ 𝐵2𝑌𝛽,1)𝑒

𝑖√𝑄2𝑟𝑐𝑜𝑠𝜃  

(3.77) 

 𝐹9 ≡ (−𝑁0𝑁𝛽)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

           × (𝑓0(𝑟)𝑔𝛽(𝑟) + 𝑓𝛽(𝑟)𝑔0(𝑟)) (𝐶0𝑌0,0)(𝐵1𝑌𝛽,0
∗ )𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

(3.78) 

 𝐺𝑀
𝑛 (𝑄2)|𝛼𝛽,𝑉𝐶  =

2𝑚𝑁𝑖

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝2𝐹10 ∗ 𝐹11 ∗ 𝐹12
∞

0

 

                              ×

[
 
 
 
 
 

−4 9⁄

𝜔𝜋(𝑝)(𝜔𝜋(𝑝)+𝛥𝜀𝛼)(𝜔𝜋(𝑝)+𝛥𝜀𝛽)

+
2 9⁄

𝜔𝐾(𝑝)(𝜔𝐾(𝑝)+𝛥𝜀𝛼)(𝜔𝐾(𝑝)+𝛥𝜀𝛽)

+
2 27⁄

𝜔𝜂(𝑝)(𝜔𝜂(𝑝)+𝛥𝜀𝛼)(𝜔𝜂(𝑝) +𝛥𝜀𝛽)]
 
 
 
 
 

 

(3.79) 

where  𝐹10, 𝐹11, and 𝐹12  are defined as below, 
 𝐹10 ≡ (−𝑁0𝑁𝛼)∫ 𝑟2𝑑𝑟

∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

             × (𝑓0(𝑟)𝑔𝛼(𝑟) + 𝑓𝛼(𝑟)𝑔0(𝑟))(𝐶0𝑌0,0)(𝐴1𝑌𝛼,0)𝑒
𝑖𝑝𝑟𝑐𝑜𝑠𝜃 

(3.80) 

 𝐹11 ≡ (𝑁𝛽𝑁𝛼)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

             × (𝑓𝛼(𝑟)𝑔𝛽(𝑟) + 𝑔𝛼(𝑟)𝑓𝛽(𝑟))
1

√𝑄2
(𝐴1𝑌𝛼,0

∗ 𝐵1𝑌𝛽,0 −

𝐴2𝑌𝛼,1
∗ 𝐵2𝑌𝛽,1)𝑒

𝑖√𝑄2𝑟𝑐𝑜𝑠𝜃   

 

(3.81) 
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 𝐹12 ≡ (−𝑁0𝑁𝛽)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟) 

            × (𝑓0(𝑟)𝑔𝛽(𝑟) + 𝑓𝛽(𝑟)𝑔0(𝑟)) (𝐶0𝑌0,0)(𝐵1𝑌𝛽,0
∗ )𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

(3.82) 

Finally, the Clebsch-Gordan coefficients are 𝐴1 = (𝑙𝛼0 12
1

2
 |𝑗𝛼

1

2
), 𝐴2 = (𝑙𝛼1 12 −

1

2
 |𝑗𝛼

1

2
), 

𝐵1 = (𝑙𝛽0
1

2

1

2
 |𝑗𝛽

1

2
), and 𝐵2 = (𝑙𝛽1 12 −

1

2
 |𝑗𝛽

1

2
). 

5. The meson-in-flight (MF) diagram: 
 𝜒𝑁𝑠′

† 𝜒𝑁𝑠𝐺𝐸
𝑁(𝑄2)|𝑀𝐹

= ⟨𝜙0| ∑
𝑖𝑛

𝑛! ∫ 𝛿
(𝑡)𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞⋅𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)…ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝑗𝛷

0(𝑥)]2
𝑛=0 |𝜙0⟩

𝑐

𝑁

 

= 2⟨𝜙0| −
1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞⋅𝑥 : (−�̅�(𝑥1)𝑖𝛾

5
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For this diagram, we cannot apply excited states quark propagators, and there is no 
contraction between the quarks in this case. After using some algebras, we found that 
the integral corresponding to the energy part is zero, makes the value of 𝐺𝐸𝑁(𝑄2)|𝑀𝐹 
becomes zero identically for proton and neutron.  
 𝐺𝐸

𝑁(𝑄2)|𝑀𝐹 = 0, 
(3.84) 

Finally, the analytical expressions for the magnetic form factor of the MF diagram are 
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 𝐺𝑀

𝑛 (𝑄2)|𝑀𝐹  =
𝑚𝑁

(2𝜋)2𝐹2
∫ 𝑑𝑝𝑝3
∞

0

∫ 𝑑𝑥
1 − 𝑥2

√𝑝2+𝑄2 + 2𝑝√𝑄2𝑥

  
1

−1

∗ [
−4

𝜔𝜋2(𝑝)𝜔𝜋2(𝑝 + �⃑�)
] 

× (−𝑁0𝑁0)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟)(2𝑓0(𝑟)𝑔0(𝑟))(𝐶0𝑌0,0)
2
𝑒𝑖|𝑝+�⃗⃑�|𝑟𝑐𝑜𝑠𝜃  

× (−𝑁0𝑁0)∫ 𝑟2𝑑𝑟
∞

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

𝑆(𝑟)(2𝑓0(𝑟)𝑔0(𝑟))(𝐶0𝑌0,0)
2
𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

            (3.87) 
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FIGURE 1 The Feynman diagrams for the Sachs form factors in the PCQM: (a) 
3q-core, (b) counter-term, (c) meson-cloud, (d) vertex-correction, and (e) 

meson-in-flight. 

 



 

CHAPTER 4 
RESULTS AND DISCUSSION 

We study the electromagnetic form factors of the nucleon in the framework of 
the PCQM. We emphasize our analysis in the region of low 𝑄2, from 0.0 up to 0.4 GeV2, 
where the meson cloud contributions are expected to play an essential role in the 
electromagnetic form factors. In our approach, we study the effect of the inclusion of the 
excited quark states on the quark propagator. We include two low-lying excited states 
which are 1𝑝1/2, 1𝑝3/2, 1𝑑3/2, 1𝑑5/2 and 2𝑠1/2 states. For simplicity, we start by setting the 
value of the parameter 𝑅 = 0.60 fm, as previously done before in the PCQM. The 
appropriate parameter 𝜌 is fixed by considering the experimental data of the magnetic 
moments of the nucleon, 𝜇𝑝 and 𝜇𝑛. We found that the value of 𝜌 between 0.51 and 0.59 
can reproduce the experimental values of  𝜇𝑝 and 𝜇𝑛. Table 3 shows our results for 
some properties of the nucleon, see also (17). 

The 𝜇𝑝 is best described with 𝜌 = 0.51, whereas the best result for 𝜇𝑛 refers to 
the value of 𝜌 = 0.59. Therefore, in Table 3, we also report the numerical calculations at 
the central value of 𝜌 = 0.55. 

TABLE 3 The results for the nucleon magnetic moments (in units of the nuclear 
magneton), the charge and the magnetic radii for the nucleon. The experimental data 
are taken from the PDG (18). Note that we fixed R = 0.6 fm. 

 𝜌 = 0.51 𝜌 = 0.55 𝜌 = 0.59 Exp (18) 

𝜇𝑝 2.7913 2.728 2.6716 2.793 

𝜇𝑛 -2.0278 -1.958 -1.898 -1.913 
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Table 3 (Continued) 

 𝜌 = 0.51 𝜌 = 0.55 𝜌 = 0.59 Exp (18) 

< 𝑟𝐸 >𝑝 0.8915 0.8956 0.900 
0.8751, 

0.84087 

< 𝑟𝐸
2 >𝑛 -0.1425 -0.1129 -0.0537 -0.1161 

< 𝑟𝑀 >𝑝 1.010 0.965 0.8779 0.851 

< 𝑟𝑀 >𝑛 0.8447 0.9028 0.8335 0.864 

 
Obviously, the modification of the quark propagator significantly improved the 

results. Consult (17) for an additional discussion. 
Detail analysis of our results for the parameters 𝜌 = 0.55 and 𝑅 = 0.60 fm are 

shown in Table 4. Their values with quark excited states are improved significantly and 
become closer to the experimental data in the range error of ±2 %. Furthermore, the 
excited states contribute the most in the neutron charge radius, which is about 31 %. 
The neutron charge radius value is very close and does not exceed the experimental 
data, whereas the proton charge radius with the quark excited state is also nearly equal 
to the experiment, but a bit exceeds the experimental data (0.8751) around +2 %. The 
ground state contribution is only 67 % compared with the experimental data (-0.1161). 
For magnetic radii, the ground state contribution to the nucleon is at the level of 80 %  
comparing to the experimental data. Their values become much more prominent when 
we include the excited states, but it seems to be a bit excessive. The neutron magnetic 
radius is 4% bigger, while the proton magnetic radius is about 13%  bigger than the 
experimental data. 
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TABLE 4 The separation of contributions from the ground state and the excited states to 
the nucleon properties for R = 0.6 fm and rho = 0.55. 

 

The ground 

state 

contribution 

The excited 

states 

contribution 

Total 

contribution 

Percentage 

contribution 

of the 

excited 

states 

Experiment 

(18) 

𝜇𝑝 2.5105 0.2175 2.728 9% 2.793 

𝜇𝑛 -1.778 -0.18 -1.958 10% -1.913 

< 𝑟𝐸 >𝑝 0.8537 0.0419 0.8956 5% 
0.8751, 

0.84087 

< 𝑟𝐸
2 >𝑛 -0.07785 -0.03505 -0.1129 31% -0.1161 

< 𝑟𝑀 >𝑝 0.6835 0.2819 0.965 29% 0.851 

< 𝑟𝑀 >𝑛 0.6732 0.2296 0.9028 25% 0.864 

 
Table 5 shows our calculation results of each diagram for the set parameters 

𝜌 = 0.55 and 𝑅 = 0.60 fm, along with its contribution in detail. We found that the three-
quark diagram (3q core) contributes the most in proton charge radius (87.4%), the 
magnetic moment of the proton (87.3%) and neutron (81.1%). However, the values 
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decrease in proton magnetic radius (50.1%) and neutron magnetic radius (43.8%), 
which becomes the same level of contribution as from the meson-cloud diagram. 
However, it contributes nothing to the charge neutron radius. The counter-term (CT) 
diagram always contributes the opposite sign to the three-quark diagram (except the 
neutron charge radius, which its value is equal to zero). The percentage of meson cloud 
diagram contribution is also reported in the table. It contributes mostly to the neutron 
charge radius (113%) and shows a crucial effect on that value. However, its contribution 
decreases significantly in the proton magnetic radius (50.1%) and neutron magnetic 
radius (40.0%), and becomes only 10-20% in the proton charge radius, magnetic 
moments of proton and neutron. The meson-in-flight (MF) diagram comes in a third of 
the ranking of contributions. It contributes 29.2% in neutron magnetic radius, 26.6% in 
proton magnetic radius and roughly 10% for nucleon magnetic moments. From our 
calculations, it contributes 0% in proton and neutron charge radii. The Vertex correction 
diagram has only a few percentage contributions but plays an important role, especially 
in the neutron charge radius (because all the contributions come from the vertex-
correction diagram and the meson-cloud diagrams). It contributes less to both magnetic 
moments of proton and neutron.  

TABLE 5 Contribution of each diagram to the nucleon electromagnetic properties for R 
= 0.6 fm and rho = 0.55. 

Diagram 

 

Properties 

Meson 

Cloud 

Vertex 

Correction 

Meson in 

flight 

3quark 

core 

Counter 

term 
Total 

𝜇𝑝 

0.3426 -0.0072 0.1987 2.3816 -0.1882 
2.728 

12.6% -0.3% 7.3% 87.3% -6.9% 
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TABLE 5 (Continued) 

Diagram 

 

Properties 

Meson 

Cloud 

Vertex 

Correction 

Meson in 

flight 

3quark 

core 

Counter 

term 
Total 

𝜇𝑛 -0.3141 0.0165 -0.1987 -1.5877 0.1255 -1.958 

 

 

16.0% -0.8% 10.1% 81.1% -6.4% 

< 𝑟𝐸
2 >𝑝 0.1401 0.0079 0.000 0.7007 -0.0467 0.8021 

17.5% 1.0% 0.0% 87.4% -5.8% 

< 𝑟𝐸
2 >𝑛 -0.1285 0.0156 0.000 0.000 0.000 -

0.1129 

 

113.8% -13.8% 0.0% 0.0% 0.0% 

< 𝑟𝑀
2 >𝑝 0.467 -0.1331 0.248 0.46712 -0.1168 0.932 

50.1% -14.3% 26.6% 50.1% -12.5% 

< 𝑟𝑀
2 >𝑛 0.334 -0.066 0.238 0.357 -0.048 0.815 

41.0% -8.1% 29.2% 43.8% -5.9% 
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In addition, the nucleon electromagnetic form factors up to 𝑄2 = 0.4 GeV2 are 
presented in Fig.2 to Fig. 5. In Fig.2, we compare our result for 𝐺𝐸𝑝(𝑄2) to the dipole fit 
𝐺𝐷(𝑄

2),  
 𝐺𝐷(𝑄

2) =
1

(1 +
𝑄2

0.71)
2 (4.1) 

Similarly, our results for 𝐺𝑀𝑝(𝑄2) and 𝐺𝑀𝑛 (𝑄2) are shown in Fig.4 and Fig.5 in comparison 
to the 𝜇𝑝𝐺𝐷(𝑄2) and 𝜇𝑛𝐺𝐷(𝑄2), respectively. Finally, Fig.3 shows our result for 𝐺𝐸𝑛(𝑄2) in 
comparison to the lattice QCD calculation and the experimental data.  

 

 

FIGURE 2 Proton charge form factor for R = 0.6 fm and rho = 0.55. 
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FIGURE 3 Neutron charge form factor for R = 0.60 fm and rho = 0.55. The 
experimental data are taken from (19) and the lattice data are taken from Ref. 

(20-24). 

 

FIGURE 4 Proton magnetic form factor for R = 0.6 fm and rho = 0.55. 
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FIGURE 5 Neutron magnetic form factor for R = 0.6 fm and rho = 0.55. 

 

Our calculation results for 𝐺𝐸𝑝(𝑄2), 𝐺𝑀𝑝(𝑄2) and 𝐺𝑀𝑝(𝑄2) are consistent with the 
data from dipole fit quite well, especially at the low 𝑄2. However, the value of 𝐺𝐸𝑛(𝑄2) is 
still smaller when compared with the experimental. There is one point that can reach the 
lattice QCD calculation at 𝑄2 = 0.15 GeV2. Our calculation results of 𝐺𝐸𝑝(𝑄2) and  𝐺𝐸𝑛(𝑄2) 
at 𝑄2 = 0 are equal to one (the proton charge) and zero (the neutron charge), 
respectively, as expected. And the shape of 𝐺𝐸𝑝(𝑄2) , 𝐺𝑀𝑝(𝑄2) and 𝐺𝑀𝑝(𝑄2) when 𝑄2 >
0 are in the same tendency with theoretical calculation results from 𝐺𝐷(𝑄2).  

Furthermore, we investigate the energy level of the quark in the excited states, 
up to the fifth excited states. We try to modify the parameters of the model a bit and 
calculate the energy eigenstate with a new value of 𝜌 = 0.65 , and 𝑅 = 0.60 fm. The 
energy of the quark in the ground state and in the other states up to the fifth states are 
shown in Table 6.  
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TABLE 6 The energy levels and notations of the quark states for R = 0.6 fm and rho = 
0.55. 

States Notation ∆ℰ𝛼   (GeV) 

Ground state 1𝑠1/2 0 

1st excited states 1𝑝1/2, 1𝑝3/2 0.239317 

2nd excited states 1𝑑3/2, 1𝑑5/2, 2𝑠1/2 0.448240 

3rd excited states 1𝑓5/2, 1𝑓7/2, 2𝑝1/2, 2𝑝3/2 0.638042 

4th excited states 1𝑔7/2, 1𝑔9/2, 2𝑑3/2, 2𝑑5/2, 3𝑠1/2 0.814244 

5th excited states 1ℎ9/2, 1ℎ11/2, 2𝑓5/2, 2𝑓7/2, 3𝑝1/2, 3𝑝3/2 0.980063 

 
In Table 7, the results of the nucleon magnetic moments after the inclusion up 

to the fifth excited states to the quark propagators with a new value of 𝜌 = 0.65 and the 
value of 𝑅 = 0.60 fm give a better agreement to the experimental data, which is 2.7514 
for the proton magnetic moment and -1.934 for the neutron magnetic moment. This 
value of 𝜌 is quite different from the previous work, which is 𝜌 = 0.39 in Ref. (2). We 
found that the suitable value of 𝜌 depends on the number of excited states that included 
in the calculation. The ground state contributes at the same level to both proton and 
neutron, which is about 90%, while the excited states contribute about 10%. Moreover, 
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each excited state from the first excited states to the fifth excited states contributes 
nearly the same percentage on the nucleon magnetic moments, about 2% each. From 
these results, we can express the importance of those higher excited states of quark 
propagators.  

TABLE 7 Results for the magnetic moments of the nucleon with the modified quark 
propagator (up to the fifth states) for R = 0.6 fm and rho = 0.55. 

 𝜇𝑝 𝜇𝑛 

States of quark 
propagator 

Value % Value % 

Ground state only 2.4592 89% -1.7021 88% 

1st excited state 0.0698 3% -0.06104 3% 

2nd excited state 0.0536 2% -0.04306 2% 

3rd excited state 0.0542 2% -0.0412 2% 

4th excited state 0.0592 2% -0.0446 2% 

5th excited state 0.0554 2% -0.042 2% 

Total (GS+ up to 5th 
excited states) 

2.7514 -1.934 

Experiment (18) 2.793 -1.913 
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Finally, in Table 8, we present the contributions, up to the fifth states, of each 
diagram to the values of the nucleon magnetic moments. The 3q core diagram plays a 
crucial role in the magnetic moments of nucleons. It contributes 82.5% for proton and 
78.2% for neutron, respectively. The mesons also provide significantly high 
contributions, which is 17.5% for proton and 21.8% for neutron in magnitude. This 
implies that we cannot neglect the effects from the surrounding mesons and the mesons 
those involved in the strong interaction between the valence quarks inside the nucleon. 
In the mesonic effect, we found that the meson- cloud diagram gives the most 
significant contribution, whereas the vertex correction gives the smallest contribution. 
The contribution from the meson-in-flight diagram is nearly equal to the contribution from 
the counter-term diagram. Moreover, the sign of the counter-terms is always the 
opposite of the 3q core diagram. These results are in the same tendency of the previous 
results, with the truncation to the ground state quark. It shows the consistency between 
the including and not including the quark excited states into the quark propagator. 
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TABLE 8 Contribution of each diagram to the magnetic moments of the nucleon with the 
modified quark propagator (up to the fifth states) for R = 0.6 fm and rho = 0.55. 

 
Type 

3q  

(LO) 

Meson effects  

 

3q 

Next 

to LO 

Counter 

term 

Meson 

cloud 

Vertex 

correcti

on 

Meson 

in flight 
Total 

Proton 
Value 2.2698 

0.248

9 
-0.1621 0.282 -0.0052 0.1181 2.751 

% 82.5% 17.5% 100% 

Neutron 
Value -1.5132 

-

0.165

9 

0.1081 

-

0.256

2 

0.0112 -0.1181 -1.934 

% 78.2% 21.8% 100% 

 

 

 



 

CHAPTER 5 
SUMMARY AND CONCLUSION 

We have investigated the electromagnetic properties of the nucleon and the 
Sachs form factors in the low 𝑄2 domain, up to 0.4 GeV2. The first two quark excited 
states have been added to the quark propagator for the studying of the nucleon 
properties. We summarise our main results as follows.  

At 𝑄2 = 0 the excited states contribute significantly to the nucleon magnetic 
moments, which made the calculation results better and closer to the experimental data. 
Furthermore, for 𝑄2 > 0 the excited states contribute around 30-40% on average. 
Especially in the neutron charge radius, they contribute 45%, which made the 
calculation tightly fit the experimental data. These results can prove the necessity of 
excited states quark propagators for nucleonic sector electromagnetic properties. 

The new appropriate set of parameters for the Gaussian ansatz quark wave 
function are 𝜌 = 0.55, 𝑅 = 0.60 . These parameters are variable with respect to the 
energy of the valence quark and directly affect the quark wave function. 

At 𝑄2 = 0, the most contribution to the nucleon magnetic moments coms from 
the 3q-core diagram. However, at 𝑄2 > 0  the 3q-core diagram contribution drops 
drastically to around 50%, while the contribution from the meson-cloud diagram 
significantly arises to the same level of contribution coming from the three-quark 
diagram.    

From Fig.2 to Fig.5, our results of the 𝐺𝐸𝑝(𝑄2), 𝐺𝑀𝑝(𝑄2) and 𝐺𝑀𝑝(𝑄2) at low-𝑄2 are 
less than the dipole fit, because the Gaussian Ansatz form of the wave function has 
been used in our calculation. Besides, the value of 𝐺𝐸𝑛(𝑄2) is still small when compared 
to the experimental data. 

Furthermore, in order to consider the effects of the higher excited states of 
quark propagators on the value of magnetic moments of the nucleon, we also include 
the third, the fourth and the fifth excited states to the quark propagator. The new value 
of 𝜌 = 0.65 seems to improve our results. Our results of the nucleon magnetic moments 
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with a new value of ρ = 0.65 give a better agreement to the experimental data, which is 
2.7514 for the proton magnetic moment and -1.934 for the neutron magnetic moment. 

As indicated before in previous works of this model, the 3q-core diagram plays 
a crucial role in the case of the nucleon magnetic moments, and they contribute about 
70%. The rest 30% comes from the interplays between the meson cloud effect and the 
quark propagator in the excited states. 
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The Pauli matrices and Dirac Gamma matrices and some properties 

The Dirac equation is given below,  
 ℒ(𝑥) = �̅�(𝑥)[𝑖𝛾𝜇𝜕𝜇 −𝑚]𝜓(𝑥)  

We can obtain the equation of motion from the Lagrangian, the so-call Dirac equation.  
 

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓(�⃗�, 𝑡) = 𝑖𝛾
0
𝜕𝜓(�⃗�, 𝑡)

𝜕𝑡
+ 𝑖𝛾 ∙ �⃗⃗�𝜓(�⃗�, 𝑡) = 0  

The Dirac gamma matrices are four unitary and traceless 4 × 4 matrices: 
 𝛾0 = (

1 0
0 −1

)  , 𝛾𝑖 = ( 0  𝜎𝑖

−𝜎𝑖 0
).  

The Pauli matrices are Hermitian, unitary and traceless 2 × 2 matrices: 
 𝜎1 ≡ 𝜎𝑥 = (

0  1
−1 0

) ,  𝜎2 ≡ 𝜎𝑦 = (
0 −𝑖
𝑖 0

),  

And  
 𝜎3 = 𝜎𝑧 = (

1 0
0 −1

)  

We can expand the above equation to obtain the Dirac equation in terms of �⃗� matrices 
and 𝛽 matrix. 
 

(−𝑖�⃗� ∙ �⃗⃗� + 𝛽𝑚)𝜓(𝑥, 𝑡) = 𝑖
𝜕𝜓(�⃗�, 𝑡)

𝜕𝑡
 

 

or in terms of momentum, 
 (�⃗� ∙ 𝑝 + 𝛽𝑚)𝜓(𝑥, 𝑡) = 𝑖

𝜕𝜓(�⃗�, 𝑡)

𝜕𝑡
 

 

By definition, the �⃗� matrices and 𝛽 matrix are 4 × 4 matrices, given by 
 𝛼𝑖 = ( 0  𝜎𝑖

𝜎𝑖 0
)   ,    𝛽 = (

1  0
0 −1

)  

Some important properties of Dirac gamma matrices are given below, 
(i) 𝛾0 = 𝛽 , 
(ii) 𝛾𝑖 = 𝛽𝛼𝑖 , 

(iii) {𝛾𝜇 , 𝛾𝜈} = 2𝑔𝜇𝜈 , 
(iv) {𝛾𝜇 , 𝛾

𝜈} = 2𝛿𝜇
𝜈 , 

(v) (𝛾𝑖)
2
= −1 ,  (𝛾0)2 = 1 , 
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(vi) (𝛾𝑖)
†
= −𝛾𝑖  , (𝛾0)† = 𝛾0 . 

Besides, there are frequently two combinations of gamma matrices in particle physics. 
The so-called sigma-matrices are defined as below, 
 𝜎𝜇𝜈 =

𝑖

2
[𝛾𝜇 , 𝛾𝜈] 

 

Another important matrix is 𝛾5  defined as 
 𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 = 𝛾5  

and we can get  
 𝛾5 = (

0  1
1 0

)   

which is also a Hermitian matrix and have some important properties, 
(i) (𝛾5)† = 𝛾5 , 

(ii) (𝛾5)2 = 1 , 
(iii) {𝛾5, 𝛾𝜇} = 0 . 

Further, we introduce important properties of the Pauli matrices are given below, 
(i) they satisfy the commutation relation   

 [𝜎𝑖 , 𝜎𝑗] = 2𝑖𝜖𝑖𝑗𝑘𝜎
𝑘,  

(ii) and the anti-commutation relation 
 {𝜎 𝑖 , 𝜎𝑗} = 2𝛿𝑖𝑗 , 

 

(iii) satisfy the product rule 
 𝜎𝑖𝜎𝑗 = 𝛿𝑖𝑗 + 𝑖2𝜖

𝑖𝑗𝑘𝜎𝑘  

(iv) For any two vectors 𝐴 ⃗⃗⃗⃗ and 𝐵 ⃗⃗⃗⃗ , we can write in the form of 
 (�⃗� ∙ 𝐴 ⃗⃗⃗⃗ )(�⃗� ∙ 𝐵 ⃗⃗⃗⃗ ) = 𝐴 ⃗⃗⃗⃗ ∙ 𝐵 ⃗⃗⃗⃗ + 𝑖𝜎 ⃗⃗⃗⃗ ∙ (𝐴 ⃗⃗⃗⃗ × �⃗⃗�) 

(�⃗� ∙ (𝑝 + �⃗�))(�⃗� ∙ 𝑝) = (𝑝 + �⃗�) ∙ 𝑝 + 𝑖𝜎 ⃗⃗⃗⃗ ∙ ((𝑝 + �⃗�) × 𝑝) 

 

(v) operation in an intrinsic spin space of a two-body system 
 �⃗�(1) ∙ �⃗�(2) = 𝜎1(1)𝜎1(2) + 𝜎2(1)𝜎2(2) + 𝜎3(1)𝜎3(2) 

                    = 𝜎𝑥(1)𝜎𝑥(2) + 𝜎𝑦(1)𝜎𝑦(2) + 𝜎𝑧(1)𝜎𝑧(2) 
 

For example,  
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 �⃗�(1) ∙ �⃗�(2) |−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩  

=𝜎𝑥(1)𝜎𝑥(2) + 𝜎𝑦(1)𝜎𝑦(2) 

+𝜎𝑧(1)𝜎𝑧(2) |−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

=𝜎𝑥(1)𝜎𝑥(2) |−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

+ 𝜎𝑦(1)𝜎𝑦(2) |−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

+𝜎𝑧(1)𝜎𝑧(2) |−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩  . 

= −
1

√6
[(↓↑ +↑↓) ↓ −2 ↑↑↑] + −

1

√6
[(↓↑ +↑↓) ↓ +2 ↑↑↑]  

−
1

√6
[(−↑↓ −↓↑) ↓ −2 ↓↓↑] .  
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Properties of SU (3) Groups 

In general, we usually use Gell-Mann matrices as the generators of 3 × 3 
matrices (or 𝑁 = 3). The Gell-Mann matrices are given below. 
 

𝜆1 = (
0 1 0
1 0 0
0 0 0

),  𝜆2 = (
0 −𝑖 0
𝑖 0 0
0 0 0

), 𝜆3 = (
1 0 0
0 −1 0
0 0 0

) , 

𝜆4 = (
0 0 1
0 0 0
1 0 0

),  𝜆5 = (
0 0 −𝑖
0 0 0
𝑖 0 0

), 𝜆6 = (
0 0 0
0 0 1
0 1 0

) , 

𝜆7 = (
0 0 0
0 0 −𝑖
0 𝑖 0

), 𝜆8 =
1

√3
(
1 0 0
0 1 0
0 0 −2

) . 

 

The generators matrices 𝜆𝑗 obey the commutation relations and anti-commutation 
relation of the group. 
 [

𝜆𝑖

2
,
𝜆𝑗

2
] = 𝑖𝑓𝑖𝑗𝑘

𝜆𝑘

2
  ,    𝑖, 𝑗, 𝑘 = 1,2, . .8       , 

{𝜆𝑖 , 𝜆𝑗} =
4

3
𝛿𝑖𝑗 + 2𝑑𝑖𝑗𝑘𝜆𝑘  ,    𝑖, 𝑗, 𝑘 = 1,2, . .8  . 

 

Where 𝑓𝑖𝑗𝑘 are the structure constants of the 𝑆𝑈(3) group. They are anti-symmetric 
tensors, which values are given below. 
 𝑓123 = 1, 𝑓458 = 𝑓678 =

√3

2
, 

𝑓147 = 𝑓516 = 𝑓246 = 𝑓257 = 𝑓345 = 𝑓637 =
1

2
 . 

 

In our model, in the strong interaction Lagrangian term the Gell-Mann matrices will 
operate on the flavor part of the quark wave function, in which including the u-quark, d-
quark and s-quark vectors. We can represent the u-quark, d-quark and s-quark in terms 
of basis vectors as below,  
 

𝑢 = (
1
0
0
)   ,   𝑑 = (

0
1
0
)  , 𝑠 =  (

0
0
1
).  

Here we show the results of the operations acted by Gell-Mann matrices on each flavor. 
 

𝜆1𝑢 = (
0 1 0
1 0 0
0 0 0

)(
1
0
0
) = (

0
1
0
) = 𝑑,  

𝜆1𝑑 = (
0 1 0
1 0 0
0 0 0

)(
0
1
0
) = (

1
0
0
) = 𝑢 , 

𝜆2𝑢 = (
0 −𝑖 0
𝑖 0 0
0 0 0

)(
1
0
0
) = 𝑖 (

0
1
0
) = 𝑖𝑑,  
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𝜆2𝑑 = (
0 −𝑖 0
𝑖 0 0
0 0 0

)(
0
1
0
) = −𝑖 (

1
0
0
) = −𝑖𝑢,  

𝜆3𝑢 = (
1 0 0
0 −1 0
0 0 0

)(
1
0
0
) = (

1
0
0
) = 𝑢, 

𝜆3𝑑 = (
1 0 0
0 −1 0
0 0 0

)(
0
1
0
) = −(

0
1
0
) = −𝑑 , 

𝜆4𝑢 = (
0 0 1
0 0 0
1 0 0

)(
1
0
0
) = (

0
0
1
) = 𝑠,       

𝜆4𝑑 = (
0 0 1
0 0 0
1 0 0

)(
0
1
0
) = (

0
0
0
) = 0 ,  

𝜆5𝑢 = (
0 0 −𝑖
0 0 0
𝑖 0 0

)(
1
0
0
) = 𝑖 (

0
0
1
) = 𝑖𝑠,  

𝜆5𝑑 = (
0 0 −𝑖
0 0 0
𝑖 0 0

)(
0
1
0
) = (

0
0
0
) = 0 ,  

𝜆6𝑢 = (
0 0 0
0 0 1
0 1 0

)(
1
0
0
) = (

0
0
0
) = 0 ,      

𝜆6𝑑 = (
0 0 0
0 0 1
0 1 0

)(
0
1
0
) = (

0
0
1
) = 𝑠 ,  

𝜆7𝑢 = (
0 0 0
0 0 −𝑖
0 𝑖 0

)(
1
0
0
) = (

0
0
0
) = 0 ,     

𝜆7𝑑 = (
0 0 0
0 0 −𝑖
0 𝑖 0

)(
0
1
0
) = 𝑖 (

0
0
1
) = 𝑖𝑠 ,  

𝜆8𝑢 =
1

√3
(
1 0 0
0 1 0
0 0 −2

)(
1
0
0
) =

1

√3
(
1
0
0
) =

1

√3
𝑢 ,       

𝜆8𝑑 =
1

√3
(
1 0 0
0 1 0
0 0 −2

)(
0
1
0
) =

1

√3
(
0
1
0
) =

1

√3
𝑑  . 

Wave function of a nucleon with spin-up, |𝑁 , ↑⟩  
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Calculation of matrix elements of the nucleons with spin up 
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Calculation of matrix elements of the nucleons with spin up 

Nucleon, which is a proton or a neutron, consists of 3 valence quarks. The 
valence quarks are fermions, so they make the nucleon become a fermion too. All 
fermions obey the Pauli exclusion principle, which makes the nucleon wave function 
must be an anti-symmetric wave function. The wave function of a nucleon consists of 
several parts, there is the spatial part, spin part, flavor part, color part. Each part 
describe its characteristic, the spatial part describes the locations of the quarks. The 
spin part represents the spin of each quark. The flavor part represents the flavor of each 
quark. And the color part specifies the color of each quark. 
 𝜓 =  𝜓(𝑠𝑝𝑎𝑐𝑒)𝜓(𝑠𝑝𝑖𝑛)𝜓(𝑓𝑙𝑎𝑣𝑜𝑟)𝜓(𝑐𝑜𝑙𝑜𝑟)  

When we evaluate the matrix element concerning with spin and flavor of quarks we can 
just pick up only spin part and flavor part of them in order to calculate the matrix 
element. The wave function of two parts become  𝑆𝑈(2) × 𝑆𝑈(3) and can be written as 
below, 
 𝜓 = 𝜓(𝑠𝑝𝑖𝑛)𝜓(𝑓𝑙𝑎𝑣𝑜𝑟), 

   |𝜓⟩ =
1

√2
|𝜙𝑀𝑆𝜒𝑀𝑆 + 𝜙𝑀𝐴𝜒𝑀𝐴⟩ , 

⟨𝜓 | =
1

√2
⟨𝜙𝑀𝑆𝜒𝑀𝑆 + 𝜙𝑀𝐴𝜒𝑀𝐴 | 

 

Where 𝜙𝑀𝑆  is the symmetric flavor wave function, 𝜙𝑀𝐴 is the anti-symmetric flavor wave 
function. 𝜒𝑀𝑆 is the spin-symmetric, and  𝜒𝑀𝐴 is the spin anti-symmetric function. We can 
write neutron with spin up and proton with spin up in terms of 𝜙𝑀𝑆 , 𝜙𝑀𝐴 and 𝜒𝑀𝑆 , 𝜒𝑀𝐴 as 
below, 
Neutron: 
 |𝜙𝑀𝑆

𝑛 ⟩ = −
1

√6
[(𝑢𝑑 + 𝑑𝑢)𝑑 − 2𝑑𝑑𝑢] ,    |𝜙𝑀𝐴

𝑛 ⟩ =
1

√2
(𝑢𝑑 − 𝑑𝑢)𝑑 , 

|𝜒𝑀𝑆
𝑛 ⟩ = −

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑] ,     |𝜒𝑀𝐴

𝑛 ⟩ =
1

√2
(↑↓ −↓↑) ↓ . 

 

Proton: 
 |𝜙𝑀𝑆

𝑝 ⟩ =
1

√6
[(𝑢𝑑 + 𝑑𝑢)𝑢 − 2𝑢𝑢𝑑] , |𝜙𝑀𝐴

𝑝 ⟩ =
1

√2
(𝑢𝑑 − 𝑑𝑢)𝑢 , 

|𝜒𝑀𝑆
𝑝 ⟩ =

1

√6
[(↑↓ +↓↑) ↑ −2 ↑↑↓] , |𝜒𝑀𝐴

𝑝 ⟩ =
1

√2
(↑↓ −↓↑) ↑. 
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We evaluate the matrix elements which appear in the strong interaction 
Lagrangian of our model. The matrix elements compose of 𝑆𝑈(2) × 𝑆𝑈(3) those the spin 
operators and flavor operators are in the between of the initial state and final state. In our 
approach, the Pauli matrices �⃗� are the spin operators which act on the spin part and 
Gell-Mann matrices 𝜆𝑖 , 𝑖 = 1,2. . ,8  are flavor operators which act on the flavor part of the 
quark wave function.  
The definition of the matrix element of the meson in flight diagram for mass shift inside 
the nucleon is defined by, 
 ⟨𝜙0|𝑏0,𝛼

† 𝑏0,𝛾
† �⃗�𝛼𝛽 ∙ �⃗�𝛾𝛿  𝜆𝑗

𝛼𝛽
𝜆𝑗
𝛾𝛿
𝑏0,𝛿𝜆𝑗

𝛾𝛿
𝑏0,𝛽|𝜙0⟩

𝑐

𝑁

 

= ⟨𝑁 ↑ | ∑ �⃗�𝛼𝛽(𝑖) ∙ �⃗�𝛾𝛿(𝑘) 𝜆𝑗
𝛼𝛽(𝑖)𝜆𝑗

𝛾𝛿(𝑘)𝑖≠𝑘 |𝑁 ↑⟩, 

= 2⟨𝑁 ↑ |�⃗�(1) ∙ �⃗�(2) 𝜆𝑗(1) 𝜆𝑗(2)|𝑁 ↑⟩ 

+2⟨𝑁 ↑ |�⃗�(1) ∙ �⃗�(3) 𝜆𝑗(1) 𝜆𝑗(3)|𝑁 ↑⟩ 

+2⟨𝑁 ↑ |�⃗�(2) ∙ �⃗�(3) 𝜆𝑗(2) 𝜆𝑗(3)|𝑁 ↑⟩  

 

From  𝑆𝑈(3) , when 𝑗 = 1,2,3 the above matrix elements are the contribution from pion 
mesons, while 𝑗 = 4,5,6,7 the matrix elements are the contribution from kaon mesons, 
and the last one,  𝑗 = 8 is the contribution from eta meson. 
Here, we show the evaluation method of the matrix element which is the contribution 
come from pions (𝑗 = 1,2,3). First we evaluate for a neutron with spin up |𝑛 ↑⟩ . 
 

∑⟨𝑛 ↑ | 𝜆𝑗(1) 𝜆𝑗(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩

3

𝑗=1

  

We show the method of calculation of matrix for 𝑗 = 1, in details as below. 
 ⟨𝑛 ↑ | 𝜆1(1) 𝜆1(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑛 ⟩ 

 

We are able to separate the terms into pieces and evaluate all the pieces, and after that 
we sums the results totally.  
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1) ⟨𝜙𝑀𝑆
𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝑆

𝑛 ⟩ 

= ⟨−
1

√6
[(𝑢𝑑 + 𝑑𝑢)𝑑 − 2𝑑𝑑𝑢]| 𝜆1(1) 𝜆1(2)|−

1

√6
[(𝑢𝑑 + 𝑑𝑢)𝑑 − 2𝑑𝑑𝑢]⟩ 

= ⟨−
1

√6
[(𝑢𝑑 + 𝑑𝑢)𝑑 − 2𝑑𝑑𝑢]|−

1

√6
[(𝑑𝑢 + 𝑢𝑑)𝑑 − 2𝑢𝑢𝑢]⟩ 

=
1

6
× 2 =  

1

3
 

2) ⟨𝜙𝑀𝐴
𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝑆

𝑛 ⟩ 

= ⟨
1

√2
(𝑢𝑑 − 𝑑𝑢)𝑑| 𝜆1(1) 𝜆1(2)|−

1

√6
[(𝑢𝑑 + 𝑑𝑢)𝑑 − 2𝑑𝑑𝑢]⟩ 

= ⟨
1

√2
(𝑢𝑑 − 𝑑𝑢)𝑑|−

1

√6
[(𝑑𝑢 + 𝑢𝑑)𝑑 − 2𝑢𝑢𝑢]⟩ 

= −
1

√12
(1 − 1) = 0 

3) ⟨𝜙𝑀𝐴
𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝐴

𝑛 ⟩ 

= ⟨
1

√2
(𝑢𝑑 − 𝑑𝑢)𝑑| 𝜆1(1) 𝜆1(2)|

1

√2
(𝑢𝑑 − 𝑑𝑢)𝑑⟩ 

= ⟨
1

√2
(𝑢𝑑 − 𝑑𝑢)𝑑|

1

√2
(𝑑𝑢 − 𝑢𝑑)𝑑⟩ 

=
1

2
(−1− 1) = −1 

The spin part of neutron are shown as below, 
 |𝜒𝑀𝑆

𝑛 ⟩ = −
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑] , |𝜒𝑀𝐴

𝑛 ⟩ =
1

√2
(↑↓ −↓↑) ↓  

And then the matrix elements can be calculated as below. 
1) ⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|�⃗�(1) ∙ �⃗�(2)|−

1

√6
[
(↑↓ +↓↑) ↓
−2 ↓↓↑

]⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|

𝜎𝑥(1)𝜎𝑥(2)

+𝜎𝑦(1)𝜎𝑦(2)

+𝜎𝑧(1)𝜎𝑧(2)

|−
1

√6
[
(↑↓ +↓↑) ↓
−2 ↓↓↑

]⟩ 

=
1

3
+
1

3
+
1

3
= 1 

While the detail calculation are shown as below,  
 ⟨−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|𝜎𝑥(1)𝜎𝑥(2)|−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|−

1

√6
[(↓↑ +↑↓) ↓ −2 ↑↑↑]⟩ 

=
1

6
× (2) =  

1

3
 .  
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 ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|𝜎𝑦(1)𝜎𝑦(2)|−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|−

1

√6
[(↓↑ +↑↓) ↓ +2 ↑↑↑]⟩ 

=
1

6
× (2) =  

1

3
   

 ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|𝜎𝑧(1)𝜎𝑧(2)|−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|−

1

√6
[(−↑↓ −↓↑) ↓ −2 ↓↓↑]⟩ 

= 
1

3
 

2) ⟨𝜒𝑀𝑆
𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴

𝑛 ⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|�⃗�(1) ∙ �⃗�(2)|

1

√2
(↑↓ −↓↑) ↓⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|

𝜎𝑥(1)𝜎𝑥(2)

+𝜎𝑦(1)𝜎𝑦(2)

+𝜎𝑧(1)𝜎𝑧(2)

|
1

√2
(↑↓ −↓↑) ↓⟩ 

= 0 + 0 + 0 = 0. 

While the detail calculation are shown as below,  
 ⟨−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|𝜎𝑥(1)𝜎𝑥(2)|

1

√2
(↑↓ −↓↑) ↓⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|

1
√2

[(↓↑ −↑↓) ↓]⟩ 

= −
1

√12
× (1 − 1) =  0 .  

 ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|𝜎𝑦(1)𝜎𝑦(2)|

1
√2

(↑↓ −↓↑) ↓⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|

1
√2

[(↓↑ −↑↓) ↓]⟩ 

= −
1

√12
× (1 − 1) =  0 . 

 ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|𝜎𝑧(1)𝜎𝑧(2)|

1
√2

(↑↓ −↓↑) ↓⟩ 

= ⟨−
1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]|

1
√2

(−↑↓ +↓↑) ↓⟩ = −
1

√12
× (1 − 1) 

=  0 . 

3) ⟨𝜒𝑀𝐴
𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆

𝑛 ⟩ 

= ⟨
1

√2
(↑↓ −↓↑) ↓ |�⃗�(1) ∙ �⃗�(2)|−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 
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= ⟨
1
√2

(↑↓ −↓↑) ↓ |
𝜎𝑥(1)𝜎𝑥(2)

+𝜎𝑦(1)𝜎𝑦(2)

+𝜎𝑧(1)𝜎𝑧(2)

|−
1
√6

[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

=  0 + 0 + 0 = 0 . 

While the detail calculation are shown as below,  
 ⟨

1

√2
(↑↓ −↓↑) ↓ |𝜎𝑥(1)𝜎𝑥(2)|−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

= ⟨
1

√2
(↑↓ −↓↑) ↓ |−

1

√6
[(↓↑ +↑↓) ↓ −2 ↑↑↑]⟩ 

= −
1

√12
× (1 − 1) =  0. 

 ⟨
1

√2
(↑↓ −↓↑) ↓ |𝜎𝑦(1)𝜎𝑦(2)|−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

= ⟨
1

√2
(↑↓ −↓↑) ↓ |−

1

√6
[(↓↑ +↑↓) ↓ +2 ↑↑↑]⟩ 

= −
1

√12
× (1 − 1) =  0 . 

 ⟨
1

√2
(↑↓ −↓↑) ↓ |𝜎𝑧(1)𝜎𝑧(2)|−

1

√6
[(↑↓ +↓↑) ↓ −2 ↓↓↑]⟩ 

= ⟨
1

√2
(↑↓ −↓↑) ↓ |−

1

√6
[(−↑↓ −↓↑) ↓ −2 ↓↓↑]⟩ 

= −
1

√12
× (1 − 1) =  0 . 

4) ⟨𝜒𝑀𝐴
𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴

𝑛 ⟩  

= ⟨
1

√2
(↑↓ −↓↑) ↓ |�⃗�(1) ∙ �⃗�(2)|

1

√2
(↑↓ −↓↑) ↓ ⟩ 

= ⟨
1

√2
(↑↓ −↓↑) ↓ |

𝜎𝑥(1)𝜎𝑥(2)

+𝜎𝑦(1)𝜎𝑦(2)

+𝜎𝑧(1)𝜎𝑧(2)

|
1

√2
(↑↓ −↓↑) ↓ ⟩ 

= −1− 1 − 1 = −3. 

While the detail calculation are shown as below,  
 ⟨

1

√2
(↑↓ −↓↑) ↓ |𝜎𝑥(1)𝜎𝑥(2)|

1

√2
(↑↓ −↓↑) ↓ ⟩ 

= ⟨
1

√2
(↑↓ −↓↑) ↓ |

1

√2
(↓↑ −↑↓) ↓⟩ 

=
1

2
× (−1 − 1) =  −1. 
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 ⟨
1

√2
(↑↓ −↓↑) ↓ |𝜎𝑦(1)𝜎𝑦(2)|

1

√2
(↑↓ −↓↑) ↓ ⟩ 

⟨
1

√2
(↑↓ −↓↑) ↓ |

1

√2
(𝑖 ↓ (−𝑖) ↑ −(−𝑖) ↑ 𝑖 ↓) ↓⟩ 

=
1

2
× (−1 − 1) =  −1. 

 ⟨
1

√2
(↑↓ −↓↑) ↓ |𝜎𝑧(1)𝜎𝑧(2)|

1

√2
(↑↓ −↓↑) ↓ ⟩ 

= ⟨
1

√2
(↑↓ −↓↑) ↓ |

1

√2
(−↑↓ +↓↑) ↓⟩ 

=
1

2
× (−1 − 1) =  −1. 

And then, the final result of 𝑗 = 1 is shown below, 
 ⟨𝑛 ↑ | 𝜆1(1) 𝜆1(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑛 ⟩ . 

=
1

2
(
1

3
× 1) +

1

2
(0 × 0) +

1

2
(0 × 0) +

1

2
(−1 × −3) =

1

2
(
1

3
+ 3) =

5

3
  

Similarly, we can obtain the results of 𝑗 = 2 and 3.  
 ⟨𝑛 ↑ | 𝜆2(1) 𝜆2(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆2(1) 𝜆2(2)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆2(1) 𝜆2(2)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆2(1) 𝜆2(2)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆2(1) 𝜆2(2)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑛 ⟩ . 

=
5

3
. 

 ⟨𝑛 ↑ | 𝜆3(1) 𝜆3(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆3(1) 𝜆3(2)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆3(1) 𝜆3(2)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆3(1) 𝜆3(2)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑛 ⟩  
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+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆3(1) 𝜆3(2)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑛 ⟩ . 

=
5

3
. 

Similarly, 
 ⟨𝑛 ↑ | 𝜆1(1) 𝜆1(3)�⃗�(1) ∙ �⃗�(3)|𝑛 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆1(1) 𝜆1(3)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆1(1) 𝜆1(3)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆1(1) 𝜆1(3)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆1(1) 𝜆1(3)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑛 ⟩ . 

=
5

3
. 

 ⟨𝑛 ↑ | 𝜆2(1) 𝜆2(3)�⃗�(1) ∙ �⃗�(3)|𝑛 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆2(1) 𝜆2(3)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆2(1) 𝜆2(3)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆2(1) 𝜆2(3)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆2(1) 𝜆2(3)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑛 ⟩ . 

=
5

3
. 

 ⟨𝑛 ↑ | 𝜆3(2) 𝜆3(3)�⃗�(2) ∙ �⃗�(3)|𝑛 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆3(2) 𝜆3(3)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑛 | 𝜆3(2) 𝜆3(3)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝑆

𝑛 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆3(2) 𝜆3(3)|𝜙𝑀𝑆
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑛 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑛 | 𝜆3(2) 𝜆3(3)|𝜙𝑀𝐴
𝑛 ⟩⟨𝜒𝑀𝐴

𝑛 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑛 ⟩ . 

=
5

3
. 

Then the total pion contribution of this diagram of the neutron is equal to  
 2 × {(

5

3
+
5

3
+
5

3
) + (

5

3
+
5

3
+
5

3
) + (

5

3
+
5

3
+
5

3
)} = 30.  

Next, we consider the kaon contribution, which is𝑗 = 4,5,6,7. 
 ⟨𝑛 ↑ | 𝜆4(1) 𝜆4(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ + ⟨𝑛 ↑ | 𝜆5(1) 𝜆5(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ 

+⟨𝑛 ↑ | 𝜆6(1) 𝜆6(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ + ⟨𝑛 ↑ | 𝜆7(1) 𝜆7(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ 

Similarly, we can get the results, 
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 ⟨𝑛 ↑ | 𝜆4(1) 𝜆4(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆5(1) 𝜆5(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆6(1) 𝜆6(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆7(1) 𝜆7(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ = 0. 

Also the results of calculation between the quark number 1 and number 3, and the quark 
number 2 and number 3, we obtain,  
 ⟨𝑛 ↑ | 𝜆4(1) 𝜆4(3)�⃗�(1) ∙ �⃗�(3)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆5(1) 𝜆5(3)�⃗�(1) ∙ �⃗�(3)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆6(1) 𝜆6(3)�⃗�(1) ∙ �⃗�(3)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆7(1) 𝜆7(3)�⃗�(1) ∙ �⃗�(3)|𝑛 ↑⟩ = 0 . 

⟨𝑛 ↑ | 𝜆4(2) 𝜆4(3)�⃗�(2) ∙ �⃗�(3)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆5(2) 𝜆5(3)�⃗�(2) ∙ �⃗�(3)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆6(2) 𝜆6(3)�⃗�(2) ∙ �⃗�(3)|𝑛 ↑⟩ = 0 , 

⟨𝑛 ↑ | 𝜆7(2) 𝜆7(3)�⃗�(2) ∙ �⃗�(3)|𝑛 ↑⟩ = 0 . 

From above results, we found that the kaon contribution for this diagram is equal to zero. 
And for the last one, we consider the eta contribution, which is 𝑗 = 8 in the same way. 
 ⟨𝑛 ↑ | 𝜆8(1) 𝜆8(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ = −

1

3
  , 

⟨𝑛 ↑ | 𝜆8(1) 𝜆8(3)�⃗�(1) ∙ �⃗�(3)|𝑛 ↑⟩ = −
1

3
  , 

⟨𝑛 ↑ | 𝜆8(2) 𝜆8(3)�⃗�(2) ∙ �⃗�(3)|𝑛 ↑⟩ = −
1

3
  , 

We sum the results of eta contribution as below,  
 =2⟨𝑛 ↑ | 𝜆8(1) 𝜆8(2)�⃗�(1) ∙ �⃗�(2)|𝑛 ↑⟩ 

+2⟨𝑛 ↑ | 𝜆8(1) 𝜆8(3)�⃗�(1) ∙ �⃗�(3)|𝑛 ↑⟩ 

+2⟨𝑛 ↑ | 𝜆8(2) 𝜆8(3)�⃗�(2) ∙ �⃗�(3)|𝑛 ↑⟩ , 

= 2(−
1

3
−
1

3
−
1

3
) = −2. 

Next, we evaluate the matrix element of proton in the same way same neutron. 
 ⟨𝑝 ↑ | 𝜆1(1) 𝜆1(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆1(1) 𝜆1(2)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑝 ⟩ =

5

3
. 

Acting on the quark number 1 and 2, in case of  𝑗 = 2, 
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 ⟨𝑝 ↑ | 𝜆2(1) 𝜆2(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆2(1) 𝜆2(2)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆2(1) 𝜆2(2)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆2(1) 𝜆2(2)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝
| 𝜆2(1) 𝜆2(2)|𝜙𝑀𝐴

𝑝
⟩⟨𝜒𝑀𝐴

𝑝
|�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴

𝑝
⟩ =

5

3
. 

Acting on the quark number 1 and 2, in case of 𝑗 = 3 , 
 ⟨𝑝 ↑ | 𝜆3(1) 𝜆3(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑝
| 𝜆3(1) 𝜆3(2)|𝜙𝑀𝑆

𝑝
⟩⟨𝜒𝑀𝑆

𝑝
|�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆

𝑝
⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆3(1) 𝜆3(2)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝
| 𝜆3(1) 𝜆3(2)|𝜙𝑀𝑆

𝑝
⟩⟨𝜒𝑀𝐴

𝑝
|�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝑆

𝑝
⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆3(1) 𝜆3(2)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(1) ∙ �⃗�(2)|𝜒𝑀𝐴
𝑝 ⟩ =

5

3
. 

Acting on the quark number 1 and 3, and  𝑗 = 1,2,3 
In case of 𝑗 = 1 , 
 ⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ 

=
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆1(1) 𝜆1(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆1(1) 𝜆1(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆1(1) 𝜆1(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆1(1) 𝜆1(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩ =

5

3
. 

In case of 𝑗 = 2,   
 ⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩   

=
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆2(1) 𝜆2(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆2(1) 𝜆2(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆2(1) 𝜆2(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆2(1) 𝜆2(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩ =

5

3
. 

In case of 𝑗 = 3, 
 ⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ 

=
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆3(1) 𝜆3(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  
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+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆3(1) 𝜆3(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝
| 𝜆3(1) 𝜆3(3)|𝜙𝑀𝑆

𝑝
⟩⟨𝜒𝑀𝐴

𝑝
|�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝑆

𝑝
⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝
| 𝜆3(1) 𝜆3(3)|𝜙𝑀𝐴

𝑝
⟩⟨𝜒𝑀𝐴

𝑝
|�⃗�(1) ∙ �⃗�(3)|𝜒𝑀𝐴

𝑝
⟩ =

5

3
. 

Next, to evaluate the ⟨𝑝 ↑ | 𝜆𝑗(2) 𝜆𝑗(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ , which the operators are acting on 
the quark number 2 and the quark number 3, in case of 𝑗 = 1,2,3 
In case of 𝑗 = 1,  
 ⟨𝑝 ↑ | 𝜆𝑗(2) 𝜆𝑗(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩   

=
1

2
⟨𝜙𝑀𝑆

𝑝
| 𝜆1(2) 𝜆1(3)|𝜙𝑀𝑆

𝑝
⟩⟨𝜒𝑀𝑆

𝑝
|�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝑆

𝑝
⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆1(2) 𝜆1(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝
| 𝜆1(2) 𝜆1(3)|𝜙𝑀𝑆

𝑝
⟩⟨𝜒𝑀𝐴

𝑝
|�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝑆

𝑝
⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆1(2) 𝜆1(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩ =

5

3
.  

In case of 𝑗 = 2,   
 ⟨𝑝 ↑ | 𝜆𝑗(2) 𝜆𝑗(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩  

=
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆2(2) 𝜆2(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆2(2) 𝜆2(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆2(2) 𝜆2(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆2(2) 𝜆2(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩ =

5

3
. 

In case of 𝑗 = 3, 
 ⟨𝑝 ↑ | 𝜆𝑗(2) 𝜆𝑗(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩   

=
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆3(2) 𝜆3(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝑆

𝑝 | 𝜆3(2) 𝜆3(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝑆

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆3(2) 𝜆3(3)|𝜙𝑀𝑆
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝑆
𝑝 ⟩  

+
1

2
⟨𝜙𝑀𝐴

𝑝 | 𝜆3(2) 𝜆3(3)|𝜙𝑀𝐴
𝑝 ⟩⟨𝜒𝑀𝐴

𝑝 |�⃗�(2) ∙ �⃗�(3)|𝜒𝑀𝐴
𝑝 ⟩ =

5

3
. 

We summarize the result of Pion contribution as below,  
 2⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ 

+2⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ 

+2⟨𝑝 ↑ | 𝜆𝑗(2) 𝜆𝑗(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ 

= 2 × (
5

3
+
5

3
+
5

3
) + 2 (

5

3
+
5

3
+
5

3
) + 2(

5

3
+
5

3
+
5

3
) = 30 
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Next, to evaluate the ⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ , which the operators are acting on 
the quark number 1 and the quark number 2, in case of Kaon contribution, which are 𝑗 =
4,5,6,7. By using some algebra and calculate straight forwardly, we can get the below 
results. 
 ⟨𝑝 ↑ | 𝜆4(1) 𝜆4(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ = 0 , 

⟨𝑝 ↑ | 𝜆5(1) 𝜆5(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ = 0 , 
⟨𝑝 ↑ | 𝜆6(1) 𝜆6(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ = 0 , 
⟨𝑝 ↑ | 𝜆7(1) 𝜆7(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ = 0 . 

And to evaluate the ⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ , which the operators are acting on 
the quark number 1 and the quark number 3, in case of Kaon contribution, 
 ⟨𝑝 ↑ | 𝜆4(1) 𝜆4(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ = 0 , 

⟨𝑝 ↑ | 𝜆5(1) 𝜆5(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ = 0 , 
⟨𝑝 ↑ | 𝜆6(1) 𝜆6(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ = 0 , 
⟨𝑝 ↑ | 𝜆7(1) 𝜆7(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ = 0 . 

And to evaluate the ⟨𝑝 ↑ | 𝜆𝑗(2) 𝜆𝑗(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩, in case of Kaon contribution, 
 ⟨𝑝 ↑ | 𝜆4(2) 𝜆4(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ = 0 , 

⟨𝑝 ↑ | 𝜆5(2) 𝜆5(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ = 0 , 
⟨𝑝 ↑ | 𝜆6(2) 𝜆6(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ = 0 , 
⟨𝑝 ↑ | 𝜆7(2) 𝜆7(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ = 0 , 

We summarize the result of Kaon contribution as below,  
 =2⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ + 2⟨𝑝 ↑ | 𝜆𝑗(1) 𝜆𝑗(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩  

+2⟨𝑝 ↑ | 𝜆𝑗(2) 𝜆𝑗(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ , 

= 0 + 0 + 0+ 0 = 0. 

Next, to evaluate the ⟨𝑝 ↑ | 𝜆𝑗(𝐼) 𝜆𝑗(𝐾)�⃗�(𝐼) ∙ �⃗�(𝐾)|𝑝 ↑⟩, in case of Eta contribution, which 
are 𝑗 = 8. By using some algebra we can get, 
 ⟨𝑝 ↑ | 𝜆8(1) 𝜆8(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ = −

1

3
  , 

⟨𝑝 ↑ | 𝜆8(1) 𝜆8(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩ = −
1

3
  , 

⟨𝑝 ↑ | 𝜆8(2) 𝜆8(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ = −
1

3
  , 
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We summarize the result of Eta contribution as below,  
 =2⟨𝑝 ↑ | 𝜆8(1) 𝜆8(2)�⃗�(1) ∙ �⃗�(2)|𝑝 ↑⟩ + 2⟨𝑝 ↑ | 𝜆8(1) 𝜆8(3)�⃗�(1) ∙ �⃗�(3)|𝑝 ↑⟩  

+2⟨𝑝 ↑ | 𝜆8(2) 𝜆8(3)�⃗�(2) ∙ �⃗�(3)|𝑝 ↑⟩ , 

= 2(−
1

3
−
1

3
−
1

3
) = −2. 
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Chiral invariance in SU (3) 
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Chiral invariance in SU (3) 

We consider the transformation of the wave function by a chiral rotation, 𝑒𝑖𝛾5
𝜆𝑖𝜙𝑖
2𝐹  

. Then, the quark wave functions become,  
 

𝜓′(𝑥) = 𝑒𝑖𝛾5
𝜆𝑖𝜙𝑖
2𝐹 𝜓  ,   �̅�′(𝑥) = 𝜓†𝑒−𝑖𝛾5

𝜆𝑖𝜙𝑖
2𝐹 𝛾0 

 

We consider the interaction term    �̅�′(𝑥)𝑆(𝑟)𝜓′(𝑥) , when 𝜓 is a quark field,  𝜙𝑖  is a 
meson field, and then we obtain, 
 �̅�′(𝑥)𝑆(𝑟)𝜓′(𝑥) = 𝜓†𝑒−𝑖𝛾5

𝜆𝑖𝜙𝑖
2𝐹 𝛾0𝑆(𝑟)𝑒𝑖𝛾5

𝜆𝑖𝜙𝑖
2𝐹 𝜓   ,   

                                = 𝜓†𝛾0𝑒𝑖𝛾5
𝜆𝑖𝜙𝑖
2𝐹 𝑆(𝑟)𝑒𝑖𝛾5

𝜆𝑖𝜙𝑖
2𝐹 𝜓  , 

                                = 𝜓†𝛾0 (1 + 𝑖𝛾5
𝜆𝑖𝜙𝑖

2𝐹
) 𝑆(𝑟) (1 + 𝑖𝛾5

𝜆𝑖𝜙𝑖

2𝐹
)𝜓   , 

                                = (𝜓†𝛾0 + 𝑖𝜓†𝛾0𝛾5
𝜆𝑖𝜙𝑖

2𝐹
) (𝑆(𝑟)𝜓 + 𝑖𝛾5𝑆(𝑟)

𝜆𝑖𝜙𝑖

2𝐹
𝜓)   , 

                                = 𝜓†𝛾0𝑆(𝑟)𝜓 + 𝜓†𝛾0𝑖𝛾5𝑆(𝑟)
𝜆𝑖𝜙𝑖

2𝐹
+ 𝑖𝜓†𝛾0𝛾5

𝜆𝑖𝜙𝑖

2𝐹
𝑆(𝑟)𝜓 

                                    +𝑖𝜓†𝛾0𝛾5
𝜆𝑖𝜙𝑖

2𝐹
𝑖𝛾5𝑆(𝑟)

𝜆𝑖𝜙𝑖

2𝐹
𝜓 . 

                                = �̅�𝑆(𝑟)𝜓 + �̅�𝑖𝛾5𝑆(𝑟)
𝜆𝑖𝜙𝑖

𝐹
𝜓 + 𝒪 (

1

𝐹
)
2

. 

In our approach, the terms 𝒪 (1
𝐹
)
2

can be neglected. And we restrict our calculation to 
the linear strong interaction term only. And from the properties of bilinear, the 
transformation of �̅�𝑖𝛾5𝑆(𝑟) 𝜆𝑖𝜙𝑖𝐹

𝜓 is pseudoscalar transformation. It implies that 𝜙𝑖   must 
be pseudoscalar quantity. 
 



 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix E 

The calculations of the nucleon form factors and some integrations 
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The calculations of the nucleon form factors and some integrations 

1) The evaluation of ∫𝑑3 𝑥 �̅�𝛼(𝑥) 𝛾  𝜓𝛽(𝑥)𝑒𝑖�⃗⃗�∙𝑥. 
We define the quark space part wave functions of 𝛼-state and 𝛽-state as below, 
 �̅�𝛼(𝑥) = �̅�𝛼(�⃗�)𝑒

𝑖ℇ𝛼𝑡 , and   𝜓𝛽(𝑥) = 𝑢𝛽(�⃗�)𝑒−𝑖ℇ𝛽𝑡 . 

∫𝑑3 𝑥  �̅�𝛼(𝑥) 𝛾  𝜓𝛽(𝑥)𝑒
𝑖�⃗⃗�∙𝑥 = ∫𝑑3 𝑥  �̅�𝛼(𝑥) 𝛾  𝑢𝛽(𝑥)𝑒

𝑖�⃗⃗�∙𝑥𝑒𝑖(ℇ𝛼−ℇ𝛽)𝑡  

 

Where 𝑢𝛼(�⃗�) and 𝑢𝛽(�⃗�) are Dirac spinors which are given by,  
 𝑢𝛼(�⃗�) = 𝑁𝛼 (

𝑔𝛼(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)
) ,   𝑢𝛽(�⃗�) = 𝑁𝛽 (

𝑔𝛽(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)
) ,  |�⃗�| = 𝑟   

We progress step by step, at the first step we will neglect the spin part of the quark 
wave function, but we will include them at the last calculation. 

(i)  �̅�𝛼 = 𝑢𝛼
†  𝛾0 = (𝑔𝛼(𝑟) , −𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)) (

1 0
0 −1

) , 
                                                   = (𝑔𝛼(𝑟) , 𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)). 

(ii)  �̅�𝛼(�⃗�) 𝛾 𝑢𝛽(�⃗�)  

                                  = 𝑁𝛼(𝑔𝛼(𝑟) , 𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)) (
0 �⃗�
−�⃗� 0

)𝑁𝛽 (
𝑔𝛽(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)
)  , 

                                  = −𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟) �⃗� 𝑔𝛽(𝑟) + 𝑔𝛼(𝑟) �⃗�  𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)  , 

                                  =  𝑖𝑔𝛼(𝑟)𝑓𝛽(𝑟) �⃗� ( �⃗� ∙ �̂�) − 𝑖(�⃗� ∙ �̂�) �⃗� 𝑓𝛼(𝑟)𝑔𝛽(𝑟) 

(iii) by using the identities of 𝜎𝑖 
                              [𝜎𝑖 , 𝜎𝑗] = 2𝑖𝜖𝑖𝑗𝑘𝜎𝑘  → 𝜎𝑖𝜎𝑗 − 𝜎𝑗𝜎𝑖 = 2𝜖𝑖𝑗𝑘𝜎𝑘 

                              {𝜎𝑖 , 𝜎𝑗} = 2𝛿𝑖𝑗 → 𝜎𝑖𝜎𝑗 + 𝜎𝑗𝜎𝑖 = 2𝛿𝑖𝑗, 

and then, 
 𝜎𝑖𝜎𝑗 = 𝛿𝑖𝑗 + 𝑖𝜖𝑖𝑗𝑘𝜎𝑘  

and multiply this equation by 𝐴𝑗 we get, 
 𝜎𝑖𝜎𝑗𝐴𝑗 = [�⃗� (�⃗� ∙ 𝐴)]𝑖 = (𝛿𝑖𝑗 + 𝑖𝜖𝑖𝑗𝑘𝜎𝑘)𝐴𝑗 

 

We re-arrange the index of  𝜖𝑖𝑗𝑘  to be 𝜖𝑖𝑘𝑗 in order to get a vector cross product.   
 𝜎𝑖𝜎𝑗𝐴𝑗 = 𝐴𝑖 − 𝑖𝜖𝑖𝑘𝑗𝜎𝑘𝐴𝑗 
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We can rewrite the above relation in term of vector dot product and cross product as, 
 �⃗�  (�⃗� ∙ 𝐴) = 𝐴 − 𝑖(�⃗� × 𝐴)  

Similarly, we can get the below relation, 
 (�⃗� ∙ 𝐴) �⃗�   = 𝐴 + 𝑖(�⃗� × 𝐴)  

Here, we replace the vector 𝐴 by a vector �̂�, and then we get the relations, 
 �⃗�  �⃗� ∙ �̂� − �⃗� ∙ �̂� �⃗�  = −2𝑖(�⃗� × �̂�)  

(i)  We can get  �̅�𝛼(𝑥) 𝛾 𝑢𝛽(�⃗�) in terms of two components, �̂� 
component and (�⃗� × �̂�) components which are perpendicular to each other,  
 �̅�𝛼(�⃗�) 𝛾 𝑢𝛽(�⃗�) = 𝑖𝑔𝛼(𝑟)𝑓𝛽(𝑟) �⃗�  �⃗� ∙ �̂� 

                             −𝑖�⃗⃗⃗� ∙ �̂� �⃗⃗⃗� 𝑓𝛼(𝑟)𝑔𝛽(𝑟) , 

                         = 𝑖�̂� (𝑔𝛼(𝑟)𝑓𝛽(𝑟)− 𝑓𝛼(𝑟)𝑔𝛽(𝑟)) 

                            +(�⃗� × �̂�)(𝑔𝛼(𝑟)𝑓𝛽(𝑟)+ 𝑓𝛼(𝑟)𝑔𝛽(𝑟) ) 

 

(ii)  After some calculations and select an appropriate direction of the 
external photon, we find that the �̂� component vanishes and only the (�⃗� × �̂�) component 
survives.  
 �̅�𝛼(�⃗�) 𝛾 𝑢𝛽(�⃗�)𝑒

𝑖�⃗⃗�∙𝑥 = (�⃗� × �̂�)(𝑔𝛼(𝑟)𝑓𝛽(𝑟)+ 𝑓𝛼(𝑟)𝑔𝛽(𝑟) )𝑒
𝑖�⃗⃗�∙𝑥.  

From the relation between �̂� and �̂�  acting on 𝑒𝑖�⃗⃗�∙𝑥, we get,  
 �̂�𝑒−𝑖�⃗⃗�∙𝑥 =

−𝑖

𝑟

𝜕𝑒𝑖𝑞𝑟𝑐𝑜𝑠𝜃

𝜕𝑞
= �̂� 𝑐𝑜𝑠𝜃 𝑒𝑖𝑞𝑟𝑐𝑜𝑠𝜃 .  

(iii) Plug the above relation into the equation, and then we obtain, 
 �̅�𝛼(�⃗�) 𝛾 𝑢𝛽(�⃗�)𝑒

𝑖�⃗⃗�∙𝑥 = (�⃗� × �̂�)(𝑔𝛼(𝑟)𝑓𝛽(𝑟)+ 𝑓𝛼(𝑟)𝑔𝛽(𝑟) ) 

× 𝑐𝑜𝑠𝜃 𝑒𝑖𝑞𝑟𝑐𝑜𝑠𝜃 . 

 

If we fix the direction of �⃗� in the direction �̂� , or �⃗� = (0, 𝑞, 0) then, 
 (�⃗� × �̂�) = �̂�(−𝜎𝑧) + �̂�(𝜎𝑥). 

 

And in this study, we restrict ourselves to the proton and neutron with spin up, then the 
second term vanishes, so we obtain, 
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 (�⃗� × �̂�) = �̂�(−𝜎𝑧) . 
 

(iv) And plug this result into the equation we can get, 
 �̅�𝛼(�⃗�) 𝛾 𝑢𝛽(�⃗�)𝑒

𝑖�⃗⃗�∙𝑥 = −𝜎𝑧�̂�(𝑔𝛼(𝑟)𝑓𝛽(𝑟)+ 𝑓𝛼(𝑟)𝑔𝛽(𝑟) ) 

× 𝑐𝑜𝑠𝜃 𝑒𝑖𝑞𝑟𝑐𝑜𝑠𝜃 . 

 

(v)  Finally, we obtain,  
 ∫𝑑3 𝑥  �̅�𝛼(�⃗�) 𝛾  𝜓𝛽(�⃗�) 𝑒

𝑖�⃗⃗�∙𝑥  

= 𝑁𝛼𝑁𝛽 ∫ 𝑑𝑟

∞

0

∫ 𝑑𝜃
𝜋

0

 𝑠𝑖𝑛𝜃 ∫ 𝑑𝜙
2𝜋

0

 (−𝜎𝑧)�̂�(𝑔𝛼(𝑟)𝑓𝛽(𝑟)+ 𝑓𝛼(𝑟)𝑔𝛽(𝑟) ) 

× 𝑐𝑜𝑠𝜃𝑒𝑖𝑞𝑟𝑐𝑜𝑠𝜃𝑒𝑖(ℇ𝛼−ℇ𝛽)𝑡 

 

2) The evaluation of the radial part of ∫𝑑3 𝑥 �̅�𝛼(�⃗�) 𝛾0𝜓𝛽(�⃗�) 𝑒𝑖�⃗⃗�∙𝑥 
We precede our calculation similarly as above methods. And then we obtain, 
 ∫𝑑3 𝑥  �̅�𝛼(𝑥) 𝛾  𝜓𝛽(𝑥)𝑒

𝑖�⃗⃗�∙𝑥 = ∫𝑑3 𝑥  �̅�𝛼(𝑥) 𝛾  𝑢𝛽(𝑥)𝑒
𝑖�⃗⃗�∙𝑥𝑒𝑖(ℇ𝛼−ℇ𝛽)𝑡 . 

Where 𝑢𝛼(�⃗�) and 𝑢𝛽(�⃗�) are Dirac spinors which are given by,  
 𝑢𝛼(�⃗�) = 𝑁𝛼 (

𝑔𝛼(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)
) , 𝑢𝛽(�⃗�) = 𝑁𝛽 (

𝑔𝛽(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)
) , |�⃗�| = 𝑟  

We progress step by step, at the first step we will neglect the spin part of the quark 
wave function, but we will include them at the last calculation. 

(i)  �̅�𝛼 = 𝑢𝛼
†  𝛾0 = (𝑔𝛼(𝑟) , −𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)) (

1 0
0 −1

) 
                                                 = (𝑔𝛼(𝑟) , 𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)) 

                                      �̅�𝛼𝛾
0 = 𝑢𝛼

†  𝛾0𝛾0 = (𝑔𝛼(𝑟) , −𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)) 

(ii)  �̅�𝛼(�⃗�) 𝛾
0 𝑢𝛽(�⃗�) = 𝑁𝛼(𝑔𝛼(𝑟) , −𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)) × 𝑁𝛽 (

𝑔𝛽(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)
) 

                                                                        = 𝑁𝛼𝑁𝛽{𝑔𝛼(𝑟)𝑔𝛽(𝑟) − 𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)} 

By the use of the identity (�⃗� ∙ �̂�)(�⃗� ∙ �̂�) =  �̂� ∙ �̂� + 𝑖 �⃗� ∙ ( �̂� × �̂�) = 1 . 
 = 𝑁𝛼𝑁𝛽{𝑔𝛼(𝑟)𝑔𝛽(𝑟) + 𝑓𝛼(𝑟)𝑓𝛽(𝑟)}    

And then ∫ 𝑑3𝑥 �̅�𝛼(�⃗�) (𝒬 𝛾0 )𝑢𝛽(�⃗�) 𝑒𝑖�⃗⃗�∙𝑥 becomes, 
 = 𝑁𝛼𝑁𝛽 ∫ 𝑑𝑟

∞

0
∫ 𝑑𝜃
𝜋

0
∫ 𝑑𝜙
2𝜋

0
(𝑓𝛼(𝑟)𝑓𝛽(𝑟) + 𝑔𝛼(𝑟)𝑔𝛽(𝑟))  

   × 𝑒𝑖𝑞𝑟𝑐𝑜𝑠𝜃𝑒𝑖(ℇ𝛼−ℇ𝛽)𝑡  

 

Evaluation of the product of spin part wave function 𝐼1 
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 𝐼1 = ∫𝑑
3 𝑥1  �̅�0(�⃗�1) 𝑖𝛾

5𝑆(𝑥1) 𝑢𝛼(�⃗�1)𝑒
𝑖𝑝∙𝑥1  

       × ∫𝑑3 𝑥  �̅�𝛼(�⃗�) 𝛾  𝑢𝛽(�⃗�)𝑒
𝑖�⃗⃗�∙𝑥 

       × ∫𝑑3 𝑥2  �̅�𝛽(�⃗�2) 𝑖𝛾
5𝑆(𝑥2)  𝑢0(�⃗�2)𝑒

−𝑖𝑝∙𝑥2  

 

We express the spin part of 𝑢0(�⃗�2) and �̅�0(�⃗�1) as, 
 𝑢0(�⃗�2) = 𝐶0𝑌0

0|↑⟩ , �̅�0(�⃗�1) = ⟨↑ |𝐶0𝑌0
0  

And we can also express 𝑢𝛼,𝛽(�⃗�) with total angular momentum  𝑗 =  ± 1

2
 as below, 

for 𝑗 =  + 1

2
  ,            |𝑢𝛼 , ↑⟩ =  𝐴1𝑌𝛼0|↑⟩ + 𝐴2𝑌𝛼1|↓⟩  . 

and 𝑗 =  − 1

2
  ,           |𝑢𝛼 , ↓⟩ =  𝐴3𝑌𝛼−1|↑⟩ + 𝐴4𝑌𝛼0|↓⟩  . 

Similarly, for the 𝑢𝛽(�⃗�) , 
for 𝑗 =  + 1

2
  ,           |𝑢𝛽 , ↑⟩ =  𝐵1𝑌𝛽0|↑⟩ + 𝐵2𝑌𝛽1|↓⟩  ,  

and 𝑗 =  − 1

2
  ,          |𝑢𝛽 , ↓⟩ =  𝐵3𝑌𝛼−1|↑⟩ + 𝐵4𝑌𝛼0|↓⟩  , 

Where the Clebsch-Gordan coefficients are 𝐴1 = (𝑙𝛼0 12
1

2
 |𝑗𝛼

1

2
), 𝐴2 = (𝑙𝛼1 12 −

1

2
 |𝑗𝛼

1

2
), 𝐵1 =

(𝑙𝛽0
1

2

1

2
 |𝑗𝛽

1

2
), and 𝐵2 = (𝑙𝛽1 12 −

1

2
 |𝑗𝛽

1

2
). 

We can split the integral of the spin part product  𝐼 into 4 parts as below, 
Part 1 𝑢𝛼,  𝑗 = + 1

2
  and   𝑢𝛽  ,  𝑗 = + 1

2
 

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴1𝑌𝛼

0|↑⟩ + 𝐴2𝑌𝛼
1|↓⟩) × (⟨↑ |𝐴1𝑌𝛼

0∗ + ⟨↓ |𝐴2𝑌𝛼
1∗)

× (−𝜎𝑧�̂�) × (𝐵1𝑌𝛽
0|↑⟩ + 𝐵2𝑌𝛽

1|↓⟩)

× (⟨↑ |𝐵1𝑌𝛽
0∗ + ⟨↓ |𝐵2𝑌𝛽

1∗)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ 

 

Part 2 𝑢𝛼,  𝑗 = + 1

2
  and   𝑢𝛽  ,  𝑗 = − 1

2
  

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴1𝑌𝛼

0|↑⟩ + 𝐴2𝑌𝛼
1|↓⟩) × (⟨↑ |𝐴1𝑌𝛼

0∗ + ⟨↓ |𝐴2𝑌𝛼
1∗)

× (−𝜎𝑧�̂�) × (𝐵3𝑌𝛽
−1|↑⟩ + 𝐵4𝑌𝛽

0|↓⟩)

× (⟨↑ |𝐵3𝑌𝛽
−1∗ + ⟨↓ |𝐵4𝑌𝛽

0∗)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ 

 

Part 3 𝑢𝛼  ,  𝑗 = − 1

2
  and   𝑢𝛽 ,  𝑗 = + 1

2
  

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴3𝑌𝛼

−1|↑⟩ + 𝐴4𝑌𝛼
0|↓⟩) × (⟨↑ |𝐴3𝑌𝛼

−1∗ + ⟨↓ |𝐴4𝑌𝛼
0∗)

× (−𝜎𝑧�̂�) × (𝐵1𝑌𝛽
0|↑⟩ + 𝐵2𝑌𝛽

1|↓⟩)

× (⟨↑ |𝐵1𝑌𝛽
0∗ + ⟨↓ |𝐵2𝑌𝛽

1∗)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ 

 

Part 4  𝑢𝛼  ,  𝑗 = − 1

2
  and   𝑢𝛽 ,  𝑗 = − 1

2
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 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴3𝑌𝛼

−1|↑⟩ + 𝐴4𝑌𝛼
0|↓⟩) × (⟨↑ |𝐴3𝑌𝛼

−1∗ + ⟨↓ |𝐴4𝑌𝛼
0∗)

× (−𝜎𝑧�̂�) × (𝐵3𝑌𝛽
−1|↑⟩ + 𝐵4𝑌𝛽

0|↓⟩)

× (⟨↑ |𝐵3𝑌𝛽
−1∗ + ⟨↓ |𝐵4𝑌𝛽

0)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ 

 

We sum all the parts together, and after using below properties of spherical harmonic 
function 𝑌𝛼𝑚𝛼 

(i) ∫ 𝑌𝛼,𝛽
12𝜋

0
𝑑𝜙 =  ∫ 𝑌𝛼,𝛽

−12𝜋

0
𝑑𝜙 = 0 , 

(ii) 𝐴2𝑌𝛼1∗𝐵2𝑌𝛽1 = 𝐴2𝑌𝛼1𝐵2𝑌𝛽1∗, 
(iii)⟨↓ |↑⟩ = ⟨↑|↓⟩ = 0 . 

Part 1: 
 = ⟨↑ |𝐶0𝑌0

0 �⃗� ∙ 𝑝 (𝐴1𝑌𝛼
0|↑⟩ + 𝐴2𝑌𝛼

1|↓⟩) × (⟨↑ |𝐴1𝑌𝛼
0∗ + ⟨↓ |𝐴2𝑌𝛼

1∗) ×

(−𝜎𝑧�̂�) × (𝐵1𝑌𝛽
0|↑⟩ + 𝐵2𝑌𝛽

1|↓⟩) × (⟨↑ |𝐵1𝑌𝛽
0∗ + ⟨↓ |𝐵2𝑌𝛽

1∗)�⃗� ∙

𝑝𝐶0𝑌0
0|↑⟩  

= �̂�⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴1𝑌𝛼

0|↑⟩) × (−𝐴1𝑌𝛼
0∗𝐵1𝑌𝛽

0 + 𝐴2𝑌𝛼
1∗𝐵2𝑌𝛽

1) 

× (⟨↑ |𝐵1𝑌𝛽
0∗)�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩ . 

= �̂�⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 𝐴1𝑌𝛼

0 × (
1 0
0 0

) (−𝐴1𝑌𝛼
0∗𝐵1𝑌𝛽

0 + 𝐴2𝑌𝛼
1∗𝐵2𝑌𝛽

1) 

 

Part 2 𝑢𝛼,  𝑗 = + 1

2
  and   𝑢𝛽  ,  𝑗 = − 1

2
  

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴1𝑌𝛼

0|↑⟩ + 𝐴2𝑌𝛼
1|↓⟩) × (⟨↑ |𝐴1𝑌𝛼

0∗ + ⟨↓ |𝐴2𝑌𝛼
1∗)

× (−𝜎𝑧�̂�) × (𝐵3𝑌𝛽
−1|↑⟩ + 𝐵4𝑌𝛽

0|↓⟩)

× (⟨↑ |𝐵3𝑌𝛽
−1∗ + ⟨↓ |𝐵4𝑌𝛽

0∗)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ = 0 

 

Part 3 𝑢𝛼  ,  𝑗 = − 1

2
  and   𝑢𝛽 ,  𝑗 = + 1

2
  

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴3𝑌𝛼

−1|↑⟩ + 𝐴4𝑌𝛼
0|↓⟩) × (⟨↑ |𝐴3𝑌𝛼

−1∗ + ⟨↓ |𝐴4𝑌𝛼
0∗)

× (−𝜎𝑧�̂�) × (𝐵1𝑌𝛽
0|↑⟩ + 𝐵2𝑌𝛽

1|↓⟩)

× (⟨↑ |𝐵1𝑌𝛽
0∗ + ⟨↓ |𝐵2𝑌𝛽

1∗)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ = 0  

 

Part 4  𝑢𝛼  ,  𝑗 = − 1

2
  and   𝑢𝛽 ,  𝑗 = − 1

2
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 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴3𝑌𝛼

−1|↑⟩ + 𝐴4𝑌𝛼
0|↓⟩) × (⟨↑ |𝐴3𝑌𝛼

−1∗ + ⟨↓ |𝐴4𝑌𝛼
0∗)

× (−𝜎𝑧�̂�) × (𝐵3𝑌𝛽
−1|↑⟩ + 𝐵4𝑌𝛽

0|↓⟩)

× (⟨↑ |𝐵3𝑌𝛽
−1∗ + ⟨↓ |𝐵4𝑌𝛽

0)�⃗�

∙ 𝑝𝐶0𝑌0
0 |↑⟩

= �̂�⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 𝐴1𝑌𝛼

0 (
−𝐴3𝑌𝛼

−1∗𝐵3𝑌𝛽
−1

+𝐴4𝑌𝛼
0∗𝐵4𝑌𝛽

0 )

× (
0 0
0 1

) (𝐵4𝑌𝛽
0)�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩. 

 

And then, 
 𝐼1 = �̂�⟨↑ |𝐶0𝑌0

0 �⃗� ∙ 𝑝 𝐴1𝑌𝛼
0 × (

1 0
0 0

) (−𝐴1𝑌𝛼
0∗𝐵1𝑌𝛽

0 + 𝐴2𝑌𝛼
1∗𝐵2𝑌𝛽

1)

+ �̂�⟨↑ |𝐶0𝑌0
0 �⃗�

∙ 𝑝 𝐴1𝑌𝛼
0(−𝐴3𝑌𝛼

−1∗𝐵3𝑌𝛽
−1 + 𝐴4𝑌𝛼

0∗𝐵4𝑌𝛽
0)

× (
0 0
0 1

) (𝐵4𝑌𝛽
0)�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩. 

 

From the Clebsch-Gordon coefficients relation, we get, 
 −𝐴1𝑌𝛼

0∗𝐵1𝑌𝛽
0 + 𝐴2𝑌𝛼

1∗𝐵2𝑌𝛽
1 = 𝐴3𝑌𝛼

−1∗𝐵3𝑌𝛽
−1 − 𝐴4𝑌𝛼

0∗𝐵4𝑌𝛽
0  

Finally, 
 𝐼1 = �̂�⟨↑ |𝐶0𝑌0

0 �⃗� ∙ 𝑝 𝐴1𝑌𝛼
0(−𝐴1𝑌𝛼

0∗𝐵1𝑌𝛽
0 +

𝐴2𝑌𝛼
1∗𝐵2𝑌𝛽

1) (
1 0
0 −1

) (𝐵4𝑌𝛽
0)�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩. 

 

Evaluation of the product of spin part wave function 𝐼2 
 𝐼2 = ∫𝑑

3 𝑥1  �̅�0(�⃗�1) 𝑖𝛾
5𝑆(𝑥1)  𝑢𝛼(�⃗�1)𝑒

𝑖𝑝∙𝑥1

×∫𝑑3 𝑥  �̅�𝛼(�⃗�) 𝛾0  𝑢𝛽(�⃗�)𝑒
𝑖�⃗⃗�∙𝑥

×∫𝑑3 𝑥2  �̅�𝛽(�⃗�2) 𝑖𝛾
5𝑆(𝑥2)  𝑢0(�⃗�2)𝑒

−𝑖𝑝∙𝑥2  

 

We can split the integral of the spin part product 𝐼2 into 4 parts similar to 𝐼1as below, 
 Part 1 𝑢𝛼,  𝑗 = + 1

2
  and   𝑢𝛽  ,  𝑗 = + 1

2
 

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴1𝑌𝛼

0|↑⟩ + 𝐴2𝑌𝛼
1|↓⟩) × (⟨↑ |𝐴1𝑌𝛼

0∗ + ⟨↓ |𝐴2𝑌𝛼
1∗)

× (𝐵1𝑌𝛽
0|↑⟩ + 𝐵2𝑌𝛽

1|↓⟩) × (⟨↑ |𝐵1𝑌𝛽
0∗ + ⟨↓ |𝐵2𝑌𝛽

1∗)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ 

= ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴1𝑌𝛼

0|↑⟩) × (𝐴1𝑌𝛼
0∗𝐵1𝑌𝛽

0 + 𝐴2𝑌𝛼
1∗𝐵2𝑌𝛽

1)(⟨↑ |𝐵1𝑌𝛽
0∗)�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩ 

= ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝𝐴1𝑌𝛼

0 (
1 0
0 0

) (𝐴1𝑌𝛼
0∗𝐵1𝑌𝛽

0 + 𝐴2𝑌𝛼
1∗𝐵2𝑌𝛽

1)(𝐵1𝑌𝛽
0∗)�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩ 
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Part 2 𝑢𝛼,  𝑗 = + 1

2
  and   𝑢𝛽  ,  𝑗 = − 1

2
  

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴1𝑌𝛼

0|↑⟩ + 𝐴2𝑌𝛼
1|↓⟩) × (⟨↑ |𝐴1𝑌𝛼

0∗ + ⟨↓ |𝐴2𝑌𝛼
1∗)

× (𝐵3𝑌𝛽
−1|↑⟩ + 𝐵4𝑌𝛽

0|↓⟩)

× (⟨↑ |𝐵3𝑌𝛽
−1∗ + ⟨↓ |𝐵4𝑌𝛽

0∗)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ = 0. 

 

Part 3 𝑢𝛼  ,  𝑗 = − 1

2
  and   𝑢𝛽 ,  𝑗 = + 1

2
  

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴3𝑌𝛼

−1|↑⟩ + 𝐴4𝑌𝛼
0|↓⟩) × (⟨↑ |𝐴3𝑌𝛼

−1∗ + ⟨↓ |𝐴4𝑌𝛼
0∗)

× (𝐵1𝑌𝛽
0|↑⟩ + 𝐵2𝑌𝛽

1|↓⟩)

× (⟨↑ |𝐵1𝑌𝛽
0∗ + ⟨↓ |𝐵2𝑌𝛽

1∗)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ = 0. 

 

Part 4  𝑢𝛼  ,  𝑗 = − 1

2
  and   𝑢𝛽 ,  𝑗 = − 1

2
  

 ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 (𝐴3𝑌𝛼

−1|↑⟩ + 𝐴4𝑌𝛼
0|↓⟩) × (⟨↑ |𝐴3𝑌𝛼

−1∗ + ⟨↓ |𝐴4𝑌𝛼
0∗)

× (𝐵3𝑌𝛽
−1|↑⟩ + 𝐵4𝑌𝛽

0|↓⟩) × (⟨↑ |𝐵3𝑌𝛽
−1∗ + ⟨↓ |𝐵4𝑌𝛽

0)�⃗� ∙ 𝑝𝐶0𝑌0
0|↑⟩ 

= ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 𝐴4𝑌𝛼

0|↓⟩(𝐴3𝑌𝛼
−1∗𝐵3𝑌𝛽

−1 + 𝐴4𝑌𝛼
0∗𝐵4𝑌𝛽

0)⟨↓ |𝐵4𝑌𝛽
0�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩ 

= ⟨↑ |𝐶0𝑌0
0 �⃗� ∙ 𝑝 𝐴4𝑌𝛼

0(𝐴3𝑌𝛼
−1∗𝐵3𝑌𝛽

−1 + 𝐴4𝑌𝛼
0∗𝐵4𝑌𝛽

0) (
0 0
0 1

) (𝐵4𝑌𝛽
0�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩) 

From the Clebsch-Gordon coefficients relation, we get, 
 𝐴1𝑌𝛼

0∗𝐵1𝑌𝛽
0 + 𝐴2𝑌𝛼

1∗𝐵2𝑌𝛽
1 = 𝐴3𝑌𝛼

−1∗𝐵3𝑌𝛽
−1 + 𝐴4𝑌𝛼

0∗𝐵4𝑌𝛽
0  

Finally, 
 𝐼2 = ⟨↑ |𝐶0𝑌0

0 �⃗� ∙ 𝑝𝐴1𝑌𝛼
0(𝐴1𝑌𝛼

0∗𝐵1𝑌𝛽
0 + 𝐴2𝑌𝛼

1∗𝐵2𝑌𝛽
1)

× (
1 0
0 1

) (𝐵1𝑌𝛽
0∗)�⃗� ∙ 𝑝𝐶0𝑌0

0|↑⟩ 
 

3) The evaluation of ∫𝑑3𝑥1 �̅�0(�⃗�1)𝑖𝛾5𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒𝑖𝑝⋅𝑥1   
 𝑢0(�⃗�1) = 𝑁0 (

𝑔0(𝑟)

𝑖�⃗� ∙ �̂�𝑓0(𝑟)
) 𝐶0𝑌0,0|↑⟩, 

𝑢𝛼(�⃗�1) = 𝑁𝛼 (
𝑔𝛼(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)
) 𝐴1𝑌𝛼,0|↑⟩ , 

 

and |�⃗�1| = 𝑟. 
We progress step by step, 

(i)  u̅0 = u0
† γ0 = (g0(r) ,−iσ⃗⃗⃗ ∙ r̂f0(r)) (

1 0
0 −1

) 
                      = (𝑔0(𝑟) , 𝑖�⃗� ∙ �̂�𝑓0(𝑟))⟨↑ |(𝐶0𝑌0,0)∗ 
(ii)  u̅0(x⃗⃗1)iγ

5S(x1)uα(x⃗⃗1) 

                    = 𝑖𝑁0(𝑔0(𝑟) , 𝑖�⃗� ∙ �̂�𝑓0(𝑟)) (0  1
1 0

)𝑁𝛼 (
𝑔𝛼(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛼(𝑟)
)𝐶0𝑌0,0𝐴1𝑌𝛼,0𝑆(𝑟), 

                    = 𝑖𝑁0𝑁𝛼[𝑖�⃗� ∙ 𝑟 ̂𝑓0(𝑟) 𝑔𝛼(𝑟) +  𝑖�⃗� ∙ �̂� 𝑔0(𝑟) 𝑓𝛼(𝑟)] 𝐶0𝑌0,0𝐴1𝑌𝛼,0 
(iii)�⃗� ∙ �̂� 𝑒𝑖𝑝⋅𝑥1 = −𝑖 �⃗⃗⃗�∙𝑝 ̂

𝑟

𝜕𝑒𝑖𝑝𝑟𝑐𝑜𝑠𝜃

𝜕𝑝
= �⃗� ∙ �̂� 𝑐𝑜𝑠𝜃 𝑒𝑖𝑝𝑟𝑐𝑜𝑠𝜃 
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And then, the result ∫𝑑3𝑥1 �̅�0(�⃗�1)𝑖𝛾5𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒𝑖𝑝⋅𝑥1 
 = −𝑁0𝑁𝛼�⃗� ∙ 𝑝 ̂ ∫ 𝑑𝑟

∞

0

∫ 𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

(𝐶0𝑌0,0)(𝐴1𝑌𝛼,0)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑒
𝑖𝑝𝑟𝑐𝑜𝑠𝜃

× 𝑟2𝑆(𝑟)(𝑓0(𝑟)𝑔𝛼(𝑟) + (𝑓𝛼(𝑟)𝑔0(𝑟)) 

4) The evaluation of ∫𝑑3𝑥2 �̅�𝛽(�⃗�2)𝑖𝛾5𝑆(𝑥2)𝑢0(�⃗�2)𝑒−𝑖𝑝⋅𝑥2  
 𝑢0(�⃗�2) = 𝑁0 (

𝑔0(𝑟)

𝑖�⃗� ∙ �̂�𝑓0(𝑟)
) 𝐶0𝑌0,0|↑⟩, 

𝑢𝛽(�⃗�2) = 𝑁𝛽 (
𝑔𝛽(𝑟)

𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)
)𝐵1𝑌𝛽,0 |↑⟩, 

 

and |�⃗�2| = 𝑟. 
We progress step by step, 

(i)  �̅�𝛽 = 𝑢𝛽
† 𝛾0 = (𝑔𝛽(𝑟) , −𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)) (

1 0
0 −1

) ⟨↑ |(𝐵1𝑌𝛽,0)
∗ 

                                                 = (𝑔𝛽(𝑟) , 𝑖�⃗� ∙ �̂�𝑓𝛽(𝑟)) ⟨↑ |(𝐵1𝑌𝛽,0)
∗
 

(ii)  �̅�𝛽(�⃗�2)𝑖𝛾
5𝑆(𝑥2)𝑢0(�⃗�2) 

                                                = 𝑖𝑁𝛽 (𝑔𝛽(𝑟) , 𝑖�⃗� ∙

�̂�𝑓𝛽(𝑟)) (
0  1
1 0

)𝑁0 (
𝑔0(𝑟)

𝑖�⃗� ∙ �̂�𝑓0(𝑟)
) 𝑆(𝑟)𝐶0𝑌0,0(𝐵1𝑌𝛽,0)

∗
 

                                               = 𝑖𝑁0𝑁𝛽[𝑖�⃗� ∙ 𝑟 ̂𝑓0(𝑟) 𝑔𝛽(𝑟) + 𝑖�⃗� ∙ �̂� 𝑔0(𝑟) 𝑓𝛽(𝑟)] 𝑆(𝑟)𝐶0𝑌0,0(𝐵1𝑌𝛽,0)
∗
 

                                               = −𝑁0𝑁𝛽�⃗� ∙ 𝑟 ̂[𝑓0(𝑟) 𝑔𝛽(𝑟) +  𝑔0(𝑟) 𝑓𝛽(𝑟)] 

(iii) �⃗� ∙ 𝑟 ̂𝑒−𝑖𝑝⋅𝑥2 =  𝑖
�⃗⃗⃗�∙𝑝 ̂

𝑟

𝜕𝑒−𝑖�⃗⃗⃗�⋅�⃗⃗⃗�2

𝜕𝑝
 

                                                                 = 𝑖
�⃗⃗⃗�∙𝑝 ̂

𝑟

𝜕𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃

𝜕𝑝
 

                                                                 = �⃗� ∙ 𝑝 ̂ 𝑐𝑜𝑠𝜃 𝑒−𝑖𝑝𝑟𝑐𝑜𝑠𝜃  

5) The evaluation of ∫𝑑3𝑥2 �̅�𝛽(�⃗�2)𝑖𝛾5𝑆(𝑥2)𝑢0(�⃗�2)𝑒−𝑖𝑝⋅𝑥2 
 = −𝑁0𝑁𝛽�⃗� ∙ 𝑝 ̂ ∫ 𝑑𝑟

∞

0

∫ 𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

(𝐶0𝑌0,0)(𝐵1𝑌𝛽,0)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑒
𝑖𝑝𝑟𝑐𝑜𝑠𝜃

× 𝑟2𝑆(𝑟) (𝑓0(𝑟)𝑔𝛽(𝑟) + (𝑓𝛽(𝑟)𝑔0(𝑟)) 

The evaluation of 𝐺𝐸𝑁(𝑄2)|𝛼,𝑀𝐶 : 
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 𝐺𝐸
𝑁(𝑄2)|𝛼,𝑀𝐶

= 4⟨𝜙0| −
1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞⋅𝑥 : (−�̅�(𝑥1)𝑖𝛾

5
𝜆𝑘
𝐹
𝛷𝑘(𝑥1)𝑆(𝑥1)𝜓𝛼(𝑥1)) 

× (−�̅�𝛼(𝑥2)𝑖𝛾
5
𝜆𝑙
𝐹
𝛷𝑙(𝑥2)𝑆(𝑥2)𝜓(𝑥2)) × (𝑓3𝑖𝑗 +

𝑓8𝑖𝑗

√3
)𝛷𝑖(𝑥)

𝜕𝛷𝑗(𝑥)

𝜕𝑡
: |𝜙0⟩ 

= −
2

𝐹2
⟨𝜙0|∫ 𝛿(𝑡)𝑑

4𝑥𝑑4𝑥1𝑑
4𝑥2𝑒

−𝑖𝑞⋅𝑥 �̅�0(�⃗�1)𝑒
𝑖ℰ0𝑡1𝑖𝛾5𝜆𝑘𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒

−𝑖ℰ𝛼𝑡1 

× 𝜃(𝑡1 − 𝑡2) �̅�𝛼(�⃗�2)𝑒
𝑖ℰ𝛼𝑡2𝑖𝛾5𝜆𝑙𝑆(𝑥2)𝑢0(�⃗�2)𝑒

−𝑖ℰ0𝑡2 × (𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
) 

× 𝛿𝑘𝑖∫
𝑑4𝑝1
(2𝜋)4𝑖

𝑒−𝑖𝑝1(𝑥1−𝑥)

𝑀𝛷
2 − 𝑝1

2 − 𝑖𝜀
× 𝛿𝑙𝑗

𝜕

𝜕𝑡
(∫

𝑑4𝑝2
(2𝜋)4𝑖

𝑒−𝑖𝑝2(𝑥−𝑥2)

𝑀𝛷
2 − 𝑝2

2 − 𝑖𝜀
) |𝜙0⟩ 

Because we restrict the calculation to nucleons with spin up, then we obtain, 
 = −

2𝑖

(2𝜋)8𝐹2
⟨𝑁 ↑|∫𝑑4𝑥1𝑑

4𝑥2𝑑
4𝑝1𝑑

4𝑝2𝑑
3𝑥 𝑒𝑖�⃗⃗�⋅𝑥𝑒−𝑖(ℰ𝛼−ℰ0)𝑡1𝑒𝑖(ℰ𝛼−ℰ0)𝑡2 

× 𝜃(𝑡1 − 𝑡2) × ∫𝛿(𝑡)𝑑𝑡 𝑒
−𝑖𝑝1

0(𝑡1−𝑡)𝑒−𝑖𝑝2
0(𝑡−𝑡2)𝑒−𝑖𝑞0𝑡 

× [�̅�0(�⃗�1)𝑖𝛾
5𝜆𝑖𝑆(𝑥1)𝑢𝛼(�⃗�1)] × [�̅�𝛼(�⃗�2)𝑖𝛾

5𝜆𝑗𝑆(𝑥2)𝑢0(�⃗�2)] 

× (𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
) ×

𝑒−𝑖𝑝1(𝑥1−𝑥)

𝑀𝛷
2 − 𝑝1

2 − 𝑖𝜀
 𝑝2
0  
𝑒−𝑖𝑝2(𝑥−𝑥2)

𝑀𝛷
2 − 𝑝2

2 − 𝑖𝜀
 |𝑁 ↑⟩. 

When we calculate the terms concerning with 𝑡 only, we can get the below result, 
 ∫𝛿(𝑡)𝑑𝑡 𝑒−𝑖𝑝1

0(𝑡1−𝑡)𝑒−𝑖𝑝2
0(𝑡−𝑡2)𝑒−𝑖𝑞0𝑡 = 𝑒−𝑖𝑝1

0𝑡1𝑒−𝑖𝑝2
0𝑡2   

Plug the result back into the equation, and then we get, 
 𝐺𝐸

𝑁(𝑄2)|𝛼,𝑀𝐶  

= −
2𝑖

(2𝜋)8𝐹2
⟨𝑁 ↑| ∫ 𝑑3𝑥1𝑑

4𝑥2𝑑
4𝑝1𝑑

4𝑝2 × ∫𝑑
3𝑥 𝑒𝑖(�⃗⃗�−�⃗�1+�⃗�2)⋅𝑥   

× ∫𝑑𝑡1  𝑒
−𝑖(𝑝1

0+∆ℰ𝛼)𝑡1𝜃(𝑡1 − 𝑡2)  × 𝑒
𝑖(𝑝2

0+∆ℰ𝛼)𝑡2  

× [�̅�0(�⃗�1)𝑖𝛾
5𝜆𝑖𝑆(𝑥1)𝑢𝛼(�⃗�1)] × [�̅�𝛼(�⃗�2)𝑖𝛾

5𝜆𝑗𝑆(𝑥2)𝑢0(�⃗�2)]   

× (𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
) ×

𝑒𝑖𝑝1∙𝑥1

𝑀𝛷
2 − 𝑝1

2 − 𝑖𝜀
 𝑝2
0  

𝑒−𝑖𝑝2∙𝑥2

𝑀𝛷
2 − 𝑝2

2 − 𝑖𝜀
 |𝑁 ↑⟩. 

Where ∆ℰ𝛼 = ℰ𝛼 − ℰ0. And make use of the definition of 𝜃(𝑡1 − 𝑡2), we get 
 ∫𝑑𝑡1  𝑒

−𝑖(𝑝1
0+∆ℰ𝛼)𝑡1𝜃(𝑡1 − 𝑡2) = 𝑙𝑖𝑚

𝜂→0

−𝑖

(𝑝1
0 + ∆ℰ𝛼) − 𝑖𝜂

𝑒−𝑖(𝑝1
0+∆ℰ𝛼)𝑡2 .  

And the terms concerning with 𝑡2  become, 
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 ∫𝑑𝑡2  𝑒
−𝑖(𝑝1

0+∆ℰ𝛼)𝑡2  × 𝑒𝑖(𝑝2
0+∆ℰ𝛼)𝑡2 = ∫𝑑𝑡2  𝑒

𝑖(𝑝2
0−𝑝1

0)𝑡2 

                                                                  = 2𝜋𝛿(𝑝2
0 − 𝑝1

0) 

 

This makes 𝑝20 = 𝑝10 . And the terms concerning with 𝑡 become 
 ∫𝑑3𝑥 𝑒𝑖(�⃗⃗�−𝑝1+�⃗�2)⋅𝑥 = (2𝜋)3𝛿(�⃗� − 𝑝1 + 𝑝2). 

 

This makes 𝑝1 = �⃗� + 𝑝2. 
We define the new 𝑝 ≡ 𝑝2 and 𝑝0 ≡ 𝑝20 = 𝑝10.And then, 
 𝐺𝐸

𝑁(𝑄2)|𝛼,𝑀𝐶   

= −
2

(2𝜋)4𝐹2
⟨𝑁 ↑| ∫ 𝑑3𝑝 × ∫𝑑3𝑥1 �̅�0(�⃗�1)𝑖𝛾

5𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒
𝑖(𝑝+�⃗⃗�)⋅𝑥1   

× ∫𝑑3𝑥2�̅�𝛼(�⃗�2)𝑖𝛾
5𝑆(𝑥2)𝑢0(�⃗�2)𝑒

−𝑖𝑝⋅𝑥2 × (𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
) 𝜆𝑖𝜆𝑗   

×∫𝑑𝑝0
1

𝑀𝛷
2 + (𝑝 + �⃗�)2 − 𝑝0

2 − 𝑖𝜀
 

𝑝0
(𝑝0 + ∆ℰ𝛼) − 𝑖𝜂

 
1

𝑀𝛷
2 + 𝑝2 − 𝑝0

2 − 𝑖𝜀
 |𝑁 ↑⟩. 

We evaluate the below term by using the Residue theorem,  
 

∫ 𝑑𝑝0

∞

−∞

1

𝑀𝛷
2 + (𝑝 + �⃗�)2 − 𝑝0

2 − 𝑖𝜀
 

𝑝0
(𝑝0 + ∆ℰ𝛼) − 𝑖𝜂

 
1

𝑀𝛷
2 + 𝑝2 − 𝑝0

2 − 𝑖𝜀

= −2𝜋𝑖 ∑Res(𝑓[𝑧0]).
𝑧0

 

 

We expand the left hand side of the above equation, then we get, 
 ∫𝑑𝑝0

1

(𝑝0 − 𝜔𝛷(�⃗� + �⃗�) + 𝑖𝜀)
 

1

(𝑝0 + 𝜔𝛷(𝑝 + �⃗�) − 𝑖𝜀)
 

×
𝑝0

(𝑝0 + ∆ℰ𝛼) − 𝑖𝜂

1

(𝑝0 −𝜔𝛷(𝑝) + 𝑖𝜀)
 

1

(𝑝0 + 𝜔𝛷(�⃗�) − 𝑖𝜀)
. 

 

Where 𝜔Φ(𝑝 + �⃗�) ≡ √𝑀Φ2 + (𝑝 + �⃗�)2 , and 𝜔Φ(𝑝) ≡ √𝑀Φ2 + 𝑝2 . 
There are 5 poles, three poles in the upper plane and two poles in the lower plane. In 
our calculation, we select the lower plane for simplicity. 
For 𝑧0 = 𝜔Φ(𝑝 + �⃗�) − 𝑖𝜀 , 
 Res(𝑓[𝑧0])

=
1

2𝜔𝛷(𝑝 + �⃗�)

𝜔𝛷(𝑝 + �⃗�)

(𝜔𝛷(𝑝 + �⃗�) + ∆ℰ𝛼)

1

(𝜔𝛷(�⃗� + �⃗�) − 𝜔𝛷(𝑝))
 

1

(𝜔𝛷(𝑝 + �⃗�) − 𝜔𝛷(�⃗�))
 

=
1

2

1

(𝜔𝛷(�⃗� + �⃗�) + ∆ℰ𝛼)

1

(𝜔𝛷(𝑝 + �⃗�) − 𝜔𝛷(𝑝))
 

1

(𝜔𝛷(�⃗� + �⃗�) − 𝜔𝛷(𝑝))
 

For 𝑧0 = 𝜔Φ(𝑝) − 𝑖𝜀 , 
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 Res(𝑓[𝑧0])

=
1

(𝜔𝛷(�⃗�) − 𝜔𝛷(𝑝 + �⃗�))
 

1

(𝜔𝛷(𝑝) + 𝜔𝛷(�⃗� + �⃗�))

𝜔𝛷(�⃗�)

(𝜔𝛷(𝑝) + ∆ℰ𝛼)
  

1

(2𝜔𝛷(𝑝))
 

= 
1

2

1

(𝜔𝛷(�⃗�) − 𝜔𝛷(𝑝 + �⃗�))
 

1

(𝜔𝛷(𝑝)+ 𝜔𝛷(𝑝 + �⃗�))

1

(𝜔𝛷(�⃗�) + ∆ℰ𝛼)
. 

And then we obtain,  
 −2𝜋𝑖 ∑Res(𝑓[𝑧0])

𝑧0

=
𝜋𝑖

(𝜔𝛷(�⃗�) + 𝜔𝛷(𝑝 + �⃗�))(𝜔𝛷(�⃗�) + ∆ℰ𝛼)(𝜔𝛷(𝑝 + �⃗�) + ∆ℰ𝛼)
. 

 

We expand the term (𝑝 + �⃗�)2and relate them with the four-momentum transfer in the 
Breit frame 𝑄2 and the 𝜃 , angle between 𝑝 and �⃗�, 
 (𝑝 + �⃗�)2 = 𝑝2 + �⃗�2 + 2𝑝 ∙ �⃗� = 𝑝2 +𝑄2 + 2|𝑝|√𝑄2𝑐𝑜𝑠𝜃 

                                             = 𝑝2 + 𝑄2 + 2𝑝√𝑄2𝑥 

 

Where 𝑝2 = 𝑝2, |𝑝| = 𝑝 and 𝑥 = 𝑐𝑜𝑠𝜃 . 
From the above results, the 𝐺𝐸𝑁(𝑄2)|𝛼,𝑀𝐶  becomes, 
 𝐺𝐸

𝑁(𝑄2)|𝛼,𝑀𝐶   

= −
2

(2𝜋)4𝐹2
⟨𝑁 ↑|∫𝑑3𝑝 × ∫𝑑3𝑥1 �̅�0(�⃗�1)𝑖𝛾

5𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒
𝑖(𝑝+�⃗⃗�)⋅𝑥1 

×∫𝑑3𝑥2�̅�𝛼(�⃗�2)𝑖𝛾
5𝑆(𝑥2)𝑢0(�⃗�2) 𝑒

−𝑖𝑝⋅𝑥2 × (𝑓3𝑖𝑗 +
𝑓8𝑖𝑗

√3
)𝜆𝑖𝜆𝑗 

×
𝜋𝑖

(𝜔𝛷(�⃗�) + 𝜔𝛷(𝑝 + �⃗�))(𝜔𝛷(�⃗�) + ∆ℰ𝛼)(𝜔𝛷(𝑝 + �⃗�) + ∆ℰ𝛼)
|𝑁 ↑⟩. 

Where 𝜔Φ(𝑝 + �⃗�) , and  𝜔Φ(𝑝) are as below, 
 𝜔𝛷(𝑝 + �⃗�) ≡ √𝑀𝛷

2 + (𝑝 + �⃗�)2 = √𝑀𝛷
2 + 𝑝2 +𝑄2 + 2𝑝√𝑄2𝑥  

𝜔𝛷(𝑝) ≡ √𝑀𝛷
2 + 𝑝2 = √𝑀𝛷

2 + 𝑝2. 

 

The evaluation of  𝐺𝐸𝑁(𝑄2)|𝛼𝛽,𝑉𝐶  

 𝜒𝑁𝑠′
† 𝜒𝑁𝑠𝐺𝐸

𝑁(𝑄2)|𝛼𝛽,𝑉𝐶

= ⟨𝜙0| ∑
𝑖𝑛

𝑛! ∫ 𝛿
(𝑡)𝑑4𝑥𝑑4𝑥1…𝑑

4𝑥𝑛𝑒
−𝑖𝑞⋅𝑥𝑇[ℒ𝑟

𝑠𝑡𝑟(𝑥1)…ℒ𝑟
𝑠𝑡𝑟(𝑥𝑛)𝑗𝑟

0(𝑥)]2
𝑛=0 |𝜙0⟩

𝑐

𝑁
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= 2⟨𝜙0| −
1

2
∫𝛿(𝑡)𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
−𝑖𝑞⋅𝑥 : (−�̅�(𝑥1)𝑖𝛾

5
𝜆𝑘
𝐹
𝛷𝑖(𝑥1)𝑆(𝑟)𝜓𝛼(𝑥1)) 

× (𝒬�̅�𝛼(𝑥)𝛾
0𝜓𝛽(𝑥)) (−�̅�𝛽(𝑥2)𝑖𝛾

5
𝜆𝑙
𝐹
𝛷𝑗(𝑥2)𝑆(𝑟)𝜓(𝑥2)): |𝜙0⟩ 

= −
1

𝐹2
⟨𝜙0|∫ 𝛿(𝑡)𝑑

4𝑥𝑑4𝑥1𝑑
4𝑥2𝑒

−𝑖𝑞⋅𝑥 [�̅�0(�⃗�1)𝑒
𝑖ℰ0𝑡1𝑖𝛾5𝜆𝑖𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒

−𝑖ℰ𝛼𝑡1] 

× [𝜃(𝑡1 − 𝑡)�̅�𝛼(�⃗�)𝑒
𝑖ℰ𝛼𝑡  (𝒬 𝛾0 )𝑢𝛽(�⃗�)𝑒

−𝑖ℰ𝛽𝑡  ] × 𝜃(𝑡 − 𝑡2)�̅�𝛽(�⃗�2)𝑒
𝑖ℰ𝛽𝑡2 

× 𝑖𝛾5𝜆𝑗𝑆(𝑥2) 𝑢0(�⃗�2)𝑒
−𝑖ℰ0𝑡2 × 𝛿𝑖𝑗∫

𝑑4𝑝

𝑖(2𝜋)4
𝑒−𝑖𝑝(𝑥1−𝑥2)

𝑀𝛷
2 − 𝑝2 − 𝑖𝜀

|𝜙0⟩. 

Consider the terms concerning with 𝑡 , we obtain, 
 ∫𝑑𝑡 𝛿(𝑡) 𝑒−𝑖𝑞0𝑡𝑒𝑖ℰ𝛼𝑡𝑒−𝑖ℰ𝛽𝑡𝜃(𝑡1 − 𝑡) 𝜃(𝑡 − 𝑡2) = 𝜃(𝑡1)𝜃(−𝑡2). 

 

We use the above result, then we get, 
  𝐺𝐸

𝑁(𝑄2)|𝛼𝛽,𝑉𝐶 

=
𝑖

(2𝜋)4𝐹2
⟨𝜙0|∫𝑑𝑡1𝑑𝑡2𝑑

4𝑝 [∫𝑑3𝑥1 �̅�0(�⃗�1)𝑖𝛾
5𝜆𝑖𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒

𝑖𝑝⋅𝑥1] 

× [ ∫𝑑3𝑥 �̅�𝛼(�⃗�) (𝒬 𝛾
0 )𝑢𝛽(�⃗�) 𝑒

𝑖�⃗⃗�∙𝑥] × 𝑒−𝑖(ℰ𝛼−ℰ0)𝑡1𝜃(𝑡1) 

× [∫𝑑3𝑥2 �̅�𝛽(�⃗�2)𝑖𝛾
5𝜆𝑖𝑆(𝑥2)𝑢0(�⃗�2)𝑒

−𝑖𝑝⋅𝑥2] × 𝑒𝑖(ℰ𝛽−ℰ0)𝑡2𝜃(−𝑡2) 

×
𝑒−𝑖𝑝0(𝑡1−𝑡2)

𝑀𝛷
2 + 𝑝2 − 𝑝0

2 − 𝑖𝜀
|𝜙0⟩. 

We make use of the definition of 𝜃(𝑡) and then we obtain, 
 ∫𝑑𝑡1 𝑒

−𝑖∆ℰ𝛼𝑡1  𝜃(𝑡1)   𝑒
−𝑖𝑝0𝑡1  = 𝑙𝑖𝑚

𝜂→0

−𝑖

𝑝0 + ∆ℰ𝛼 − 𝑖𝜂
, 

∫𝑑𝑡2  𝑒
𝑖∆ℰ𝛽𝑡2  𝜃(−𝑡2) 𝑒

𝑖𝑝0𝑡2 = 𝑙𝑖𝑚
𝜂→0

−𝑖

𝑝0 + ∆ℰ𝛽 − 𝑖𝜂
. 

 

Then the  𝐺𝐸𝑁(𝑄2)|𝛼𝛽,𝑉𝐶  becomes, 
  𝐺𝐸

𝑁(𝑄2)|𝛼𝛽,𝑉𝐶  

=
𝑖

(2𝜋)4𝐹2
⟨𝜙0|∫𝑑

3𝑝   [∫𝑑3𝑥1 �̅�0(�⃗�1)𝑖𝛾
5𝜆𝑖𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒

𝑖𝑝⋅𝑥1] 

× [ ∫𝑑3𝑥 �̅�𝛼(�⃗�) (𝒬 𝛾
0 )𝑢𝛽(�⃗�) 𝑒

𝑖�⃗⃗�∙𝑥] [∫𝑑3𝑥2 �̅�𝛽(�⃗�2)𝑖𝛾
5𝜆𝑖𝑆(𝑥2)𝑢0(�⃗�2)𝑒

−𝑖𝑝⋅𝑥2] 

×∫𝑑𝑝0  
1

(𝑝0 + ∆ℰ𝛼) − 𝑖𝜂

1

(𝑝0 + ∆ℰ𝛽) − 𝑖𝜂

1

(𝑝0 −𝜔𝛷(𝑝) + 𝑖𝜀)
 

1

(𝑝0 + 𝜔𝛷(�⃗�) − 𝑖𝜀)
|𝜙0⟩ 

We evaluate the term ∫𝑑𝑝0 by using the Residues Theorem, and then, 
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 ∫𝑑𝑝0  
1

(𝑝0 + ∆ℰ𝛼) − 𝑖𝜂

1

(𝑝0 + ∆ℰ𝛽) − 𝑖𝜂

1

(𝑝0 −𝜔𝛷(𝑝) + 𝑖𝜀)
 

1

(𝑝0 + 𝜔𝛷(�⃗�) − 𝑖𝜀)

= −2𝜋𝑖 ∑Res(𝑓[𝑧0])
𝑧0

 

There are four poles, three poles are in the upper plain, and one pole stay in the lower 
plane. In our calculation, we use the lower plane pole for simplicity. 
For 𝑧0 = 𝜔Φ(𝑝) , 
 −2𝜋𝑖 ∑Res(𝑓[𝑧0])

𝑧0

 

= −2𝜋𝑖
1

(𝜔𝛷(𝑝) + ∆ℰ𝛼)

1

(𝜔𝛷(�⃗�) + ∆ℰ𝛽)
 

1

(2𝜔𝛷(�⃗�))
 

=
−𝜋𝑖

(𝜔𝛷(𝑝) + ∆ℰ𝛼)(𝜔𝛷(𝑝) + ∆ℰ𝛽)𝜔𝛷(�⃗�)
. 

 

We restrict our calculation to nucleons with spin up. Finally, the  𝐺𝐸𝑁(𝑄2)|𝛼𝛽,𝑉𝐶   becomes, 
  𝐺𝐸

𝑁(𝑄2)|𝛼𝛽,𝑉𝐶   

=
𝜋

(2𝜋)4𝐹2
⟨𝑁 ↑|| ∫ 𝑑3𝑝   [∫𝑑3𝑥1 �̅�0(�⃗�1)𝑖𝛾

5𝑆(𝑥1)𝑢𝛼(�⃗�1)𝑒
𝑖𝑝⋅𝑥1]   

× [ ∫𝑑3𝑥 �̅�𝛼(�⃗�) (𝒬 𝛾
0 )𝑢𝛽(�⃗�) 𝑒

𝑖�⃗⃗�∙𝑥][∫𝑑3𝑥2 �̅�𝛽(�⃗�2)𝑖𝛾
5𝑆(𝑥2)𝑢0(�⃗�2)𝑒

−𝑖𝑝⋅𝑥2]   

×
𝜆𝑖𝜆𝑖

(𝜔𝛷(𝑝)+ ∆ℰ𝛼)(𝜔𝛷(𝑝) + ∆ℰ𝛽)𝜔𝛷(�⃗�)
|𝑁 ↑⟩. 

6) Evaluation of ∫ 𝑑3𝑝 �⃗� (�⃗�  ∙ 𝑝+�⃗⃗�
|𝑝+�⃗⃗�|

)(�⃗�  ∙
𝑝

|𝑝|
)    

 = ∫ 𝑑𝑝𝑝2
∞

0

∫ 𝑠𝑖𝑛 𝜃 𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

 𝑝  (�⃗�  ∙
𝑝 + �⃗�

|𝑝 + �⃗�|
)(�⃗�  ∙

𝑝

|𝑝|
) 

= ∫ 𝑑𝑝
∞

0

∫ 𝑠𝑖𝑛 𝜃 𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

 
𝑝2

|𝑝 + �⃗�|
 �̂� (�⃗�  ∙ (𝑝 + �⃗�))(�⃗�  ∙ 𝑝). 

We use the identity of  
 (�⃗�  ∙ 𝐴)(�⃗�  ∙ �⃗⃗�) = 𝐴 ∙ �⃗⃗� + 𝑖�⃗�  ∙ (𝐴 × �⃗⃗�).  

And then, we get, 
 = ∫ 𝑑𝑝

∞

0

∫ 𝑠𝑖𝑛 𝜃 𝑑𝜃
𝜋

0

∫ 𝑑𝜙
2𝜋

0

 
𝑝2

|𝑝 + �⃗�|
 �̂� [�⃗�  ∙ (𝑝 + �⃗�) + 𝑖�⃗�  

∙ ((𝑝 + �⃗�) × 𝑝)]. 

 

We proceed by evaluating the below term first,  
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 ∫ 𝑑𝜙
2𝜋

0

  �̂� [�⃗�  ∙ (𝑝 + �⃗�) + 𝑖�⃗�  ∙ ((𝑝 + �⃗�) × 𝑝)]  

The unit momentum vector 𝑝 ̂ and the spin operator �⃗� with their components in space 
can be shown as below, 
 𝑝 ̂ = 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 �̂� + 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 �̂� + 𝑐𝑜𝑠 𝜃 �̂� 

                     𝜎 ̂ = 𝜎𝑥 �̂� + 𝜎𝑦 �̂� + 𝜎𝑧 �̂�. 
 

And by defining the  �⃗� to be �⃗� = (0,0, 𝑞) = 𝑞�̂�  , we obtain, 
 

𝑝 ∙ (𝑝 + �⃗�) = 𝑝2 + 𝑝√𝑄2 𝑐𝑜𝑠 𝜃. 
 

and   
 �⃗�  ∙ ((𝑝 + �⃗�) × 𝑝) = �⃗�  ∙ (�⃗� × 𝑝), 

= (𝜎𝑥 �̂� + 𝜎𝑦 �̂� + 𝜎𝑧 �̂�) ∙ (−𝑞𝑝𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 �̂� + 𝑞𝑝 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 �̂� ) ,  

= −𝜎𝑥𝑞𝑝𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 + 𝜎𝑦  𝑞𝑝 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙. 

 

 ∫ 𝑑𝜙
2𝜋

0
  �̂� [�⃗�  ∙ (𝑝 + �⃗�) + 𝑖�⃗�  ∙ ((𝑝 + �⃗�) × 𝑝)]  

= �̂�𝑖𝜎𝑦  𝑞𝑝 𝑠𝑖𝑛
2 𝜃 ∫ 𝑑𝜙

2𝜋

0
𝑐𝑜𝑠2 𝜙 − �̂�𝑖𝜎𝑥𝑞𝑝 𝑠𝑖𝑛

2 𝜃 ∫ 𝑑𝜙
2𝜋

0
𝑠𝑖𝑛2 𝜙 . 

+�̂� (𝑝2 + 𝑝√𝑄2 𝑐𝑜𝑠 𝜃) 𝑐𝑜𝑠 𝜃 ∫ 𝑑𝜙
2𝜋

0
 , 

= 𝑖𝜋 𝑞𝑝 𝑠𝑖𝑛2 𝜃  (𝜎𝑦�̂� − 𝜎𝑥�̂�) + �̂� 2𝜋 (𝑝
2 + 𝑝√𝑄2 𝑐𝑜𝑠 𝜃) 𝑐𝑜𝑠 𝜃. 

 

From above, we have assigned �⃗� = 𝑞�̂� , so we can conclude that,  
 𝜎𝑦�̂� − 𝜎𝑥�̂� = �⃗� × �̂�.  

And re-write the right hand side of the equation to be as below, 
 = 𝑖𝜋 𝑞𝑝 𝑠𝑖𝑛2 𝜃  (�⃗� × �̂�) + {2𝜋 (𝑝2 + 𝑝√𝑄2 𝑐𝑜𝑠 𝜃) 𝑐𝑜𝑠 𝜃} �̂� .  

which has two terms, the term in �̂� direction and �⃗� × �̂� direction. 
 ∫ 𝑑𝑝𝑝2

∞

0
∫ 𝑠𝑖𝑛 𝜃 𝑑𝜃
𝜋

0
∫ 𝑑𝜙
2𝜋

0
 𝑝  (�⃗�  ∙

𝑝+�⃗⃗�

|𝑝+�⃗⃗�|
) (�⃗�  ∙

𝑝

|𝑝|
)  

= ∫ 𝑑𝑝
𝑝2

|𝑝 + �⃗�|

∞

0

∫ 𝑑𝑥
1

−1

{𝑖𝜋 𝑞𝑝(1 − 𝑥2) (�⃗� × �̂�) + 2𝜋 𝑥 (𝑝2 + 𝑝√𝑄2𝑥) �̂� } 

= ∫ 𝑑𝑝𝑝3 (𝑝2 +𝑄2 + 2𝑝√𝑄2𝑥)
−1/2∞

0

∫ 𝑑𝑥
1

−1

{𝑖𝜋 𝑞(1 − 𝑥2) (�⃗� × �̂�)

+ 2𝜋 𝑥 (𝑝 + √𝑄2𝑥) �̂� }. 
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The notation and the upper and lower components of the quark wave functions in the 

3rd, the 4th and the 5th excited states 

TABLE 9 quark wave functions in the 3rd, the 4th and the 5th excited states 

State 𝛼  

 ( 𝑢𝛼) 

Label 𝑔𝛼(𝑟) and 𝑓𝛼(𝑟) 

With 𝑅𝛼 and 𝜌𝛼 

𝑢6 2𝑝1/2 

𝑔6𝑟 =
𝑒
−
𝑟2

2𝑅62𝑟(
5
2
−
𝑟2

𝑅62
)

𝑅6
 

𝑓6𝑟 = −𝑒
−
𝑟2

2𝑅62 (
15

2
+
𝑟4

𝑅64
−
15𝑟2

2𝑅62
) 𝜌6 

𝑢7 2𝑝3/2 

𝑔7𝑟 =
𝑒
−
𝑟2

2𝑅72𝑟(
5
2 −

𝑟2

𝑅72
)

𝑅7
 

𝑓7𝑟 =
𝑒
−

𝑟2

2𝑅72𝑟2 (
9
2
−
𝑟2

𝑅72
) 𝜌7

𝑅72
 

𝑢8 1𝑓5/2 

𝑔8𝑟 =
𝑒
−
𝑟2

2𝑅82𝑟3

𝑅83
 

𝑓8𝑟 = −
𝑒
−

𝑟2

2𝑅82𝑟2 (7 −
𝑟2

𝑅82
) 𝜌8

𝑅82
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Table 9 (Continued) 

State 𝛼  

 ( 𝑢𝛼) 

Label 𝑔𝛼(𝑟) and 𝑓𝛼(𝑟) 

With 𝑅𝛼 and 𝜌𝛼 

𝑢9 1𝑓7/2 

𝑔9𝑟 =
𝑒
−
𝑟2

2𝑅92𝑟3

𝑅93
 

𝑓9𝑟 =
𝑒
−
𝑟2

2𝑅92𝑟4𝜌9

𝑅94
 

𝑢10 1𝑔7/2 

𝑔10𝑟 =
𝑒
−

𝑟2

2𝑅102𝑟4

𝑅104
 

𝑓10𝑟 = −
𝑒
−

𝑟2

2𝑅102𝑟3 (9 −
𝑟2

𝑅102
) 𝜌10

𝑅103
 

𝑢11 1𝑔9/2 

𝑔11𝑟 =
𝑒
−

𝑟2

2𝑅112𝑟4

𝑅114
 

𝑓11𝑟 =
𝑒
−

𝑟2

2𝑅112𝑟5𝑟ℎ𝑜11

𝑅115
 

𝑢12 2𝑑3/2 

𝑔12𝑟 =
𝑒
−

𝑟2

2𝑅122𝑟2(
7
2 −

𝑟2

𝑅122
)

𝑅122
 

𝑓12𝑟 = −
𝑒
−

𝑟2

2𝑅122𝑟 (
35
2 +

𝑟4

𝑅124
−
21𝑟2

2𝑅122
) 𝜌12

𝑅12
 

𝑢13 2𝑑5/2 

𝑔13𝑟 =
𝑒
−

𝑟2

2𝑅132𝑟2(
7
2 −

𝑟2

𝑅132
)

𝑅132
 

𝑓13𝑟 =
𝑒
−

𝑟2

2𝑅132𝑟3 (
9
2 −

𝑟2

𝑅132
) 𝜌13

𝑅133
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Table 9 (Continued) 

State 𝛼  

 ( 𝑢𝛼) 

Label 𝑔𝛼(𝑟) and 𝑓𝛼(𝑟) 

With 𝑅𝛼 and 𝜌𝛼 

𝑢14 3𝑠1/2 

𝑔14𝑟 =
𝑒
−

𝑟2

2𝑅142(4𝑟4 − 20𝑟2𝑅142 + 15𝑅144)

8𝑅144
 

𝑓14𝑟 =
𝑒
−

𝑟2

2𝑅142𝑟 (
35
8 +

𝑟4

2𝑅144
−

7𝑟2

2𝑅142
) 𝜌14

𝑅14
 

𝑢15 1ℎ9/2 

𝑔15𝑟 =
𝑒
−

𝑟2

2𝑅152𝑟5

𝑅155
 

𝑓15𝑟 = −
𝑒
−

𝑟2

2𝑅152𝑟4 (11 −
𝑟2

𝑅152
) 𝜌15

𝑅154
 

𝑢16 1ℎ11/2 

𝑔16𝑟 =
𝑒
−

𝑟2

2𝑅162𝑟5

𝑅165
 

𝑓16𝑟 =
𝑒
−

𝑟2

2𝑅162𝑟6𝜌16

𝑅166
 

𝑢17 2𝑓5/2 

𝑔17𝑟 =
𝑒
−

𝑟2

2𝑅172𝑟3 (
9
2 −

𝑟2

𝑅172
)

𝑅173
 

𝑓17𝑟 = −
𝑒
−

𝑟2

2𝑅172𝑟2 (
63
2
+

𝑟4

𝑅174
−
27𝑟2

2𝑅172
) 𝜌17

𝑅172
 

𝑢18 2𝑓7/2 

𝑔18𝑟 =
𝑒
−

𝑟2

2𝑅182𝑟3 (
9
2 −

𝑟2

𝑅182
)

𝑅183
 

𝑓18𝑟 =
𝑒
−

𝑟2

2𝑅182𝑟4 (
11
2 −

𝑟2

𝑅182
) 𝜌18

𝑅184
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Table 9 (Continued) 

State 𝛼  

 ( 𝑢𝛼) 

Label 𝑔𝛼(𝑟) and 𝑓𝛼(𝑟) 

With 𝑅𝛼 and 𝜌𝛼 

𝑢19 3𝑝1/2 

𝑔19𝑟 =
𝑒
−

𝑟2

2𝑅192𝑟(4𝑟4 − 28𝑟2𝑅192 + 35𝑅194)

8𝑅195
 

𝑓19𝑟 = −𝑒
−

𝑟2

2𝑅192 (
105

8
−

𝑟6

2𝑅196
+
7𝑟4

𝑅194
−
175𝑟2

8𝑅192
) 𝜌19 

𝑢20 3𝑝3/2 

𝑔20𝑟 =
𝑒
−

𝑟2

2𝑅202𝑟(4𝑟4 − 28𝑟2𝑅202 + 35𝑅204)

8𝑅205
 

𝑓20𝑟 =
𝑒
−

𝑟2

2𝑅202𝑟2 (
63
8 +

𝑟4

2𝑅204
−

9𝑟2

2𝑅202
) 𝜌20

𝑅202
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