

การศึกษาความลึกซาบซึมได้ของตัวนำยวดยิ่งที่ขึ้นกับทิศทางซนิดคลื่นเอส ด้วยทฤษฎีกินซ์เบิร์กแลนดาว THE STUDY ON THE PENETRATION DEPTH OF ANISOTROPIC S-WAVE SUPERCONDUCTORS BY GINZBURG-LANDAU THEORY

พงษ์กานต์ ทองครบุรี

บัณฑิตวิทยาลัย มหาวิทยาลัยศรีนครินทรวิโรฒ

2561

การศึกษาความลึกซาบซึมได้ของตัวนำยวดยิ่งที่ขึ้นกับทิศทางชนิดคลื่นเอส ด้วยทฤษฎีกินซ์เบิร์กแลนดาว

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร วิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ ปีการศึกษา 2561 ลิขสิทธิ์ของมหาวิทยาลัยศรีนครินทรวิโรฒ

THE STUDY ON THE PENETRATION DEPTH OF ANISOTROPIC S-WAVE SUPERCONDUCTORS BY GINZBURG-LANDAU THEORY

PONGKAN TONGKHONBURI

A Thesis Submitted in partial Fulfillment of Requirements for MASTER OF SCIENCE (Physics) Faculty of Science Srinakharinwirot University 2018

Copyright of Srinakharinwirot University

ปริญญานิพนธ์ เรื่อง การศึกษาความลึกซาบซึมได้ของตัวนำยวดยิ่งที่ขึ้นกับทิศทางชนิดคลื่นเอส ด้วยทฤษฎีกินซ์เบิร์กแลนดาว

ของ

พงษ์กานต์ ทองครบุรี

ได้รับอนุมัติจากบัณฑิตวิทยาลัยให้นับเป็นส่วนหนึ่งของการศึกษาตามหลักสูตร ปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ ของมหาวิทยาลัยศรีนครินทรวิโรฒ

.....

คณบดีบัณฑิตวิทยาลัย

(ผู้ช่วยศาสตราจารย์ นายแพทย์ฉัตรชัย เอกปัญญาสกุล)

.....ที่ปรึกษาหลัก

คณะกรรมการสอบปากเปล่าปริญญานิพนธ์

.....ประธาน

(รองศาสตราจารย์ ดร.พงษ์แก้ว อุดมสมุทรหิรัญ) (ผู้ช่วยศาสตราจารย์ ดร.อารียา เอี่ยมบู่)

.....

- O

.....กรรมการ (รองศาสตราจารย์ ดร.พงษ์แก้ว อุดมสมุทร หิรัญ)

.....กรรมการ (ผู้ช่วยศาสตราจารย์ ดร.อาภาพงศ์ ชั่ง จันทร์)

สื้อเ <u>รื่</u> อง	การศึกษาความลึกซาบซึมได้ของตัวนำยวดยิ่งที่ขึ้นกับทิศทาง
	ชนิดคลื่นเอส
	ด้วยทฤษฎีกินซ์เบิร์กแลนดาว
ผู้วิจัย	พงษ์กานต์ ทองครบุรี
ปริญญา	วิทยาศาสตรมหาบัณฑิต
ปีการศึกษา	2561
อาจารย์ที่ปรึกษา	รองศาสตราจารย์ ดร. พงษ์แก้ว อุดมสมุทรหิรัญ

ความลึกซาบซึมได้ถือว่าเป็นตัวแปรสำคัญของการศึกษาตัวนำยวดยิ่งในงานวิจัยมี จุดประสงค์ที่จะคำนวณในรูปแบบทฤษฎีกินซ์เบิร์กแลนดาวที่ขึ้นกับทิศทางชนิดคลื่นเอส และนำ เปรียบเทียบกับผลการทดลองของ แม็กนีเซียมไดโบไรด์ (MgB₂) และแคลเซียมอะลูมิเนียมซิลิคอน (CaAlSi) ซึ่งให้ผลสอดคล้องกับรูปแบบความไม่สมมาตรแบบ แพนเค็ก-แพนเค็ก และแพนเค็ก-ทรงรี ตามลำดับ นอกจากนี้แล้วรูปแบบความไม่สมมาตรยังส่งผลต่อความสัมพันธ์ของ ความลึก ซาบซึมได้และ T/T_c คือ รูปแบบแพนเค็ก-แพนเค็กจะมีความชันมากกว่ารูปแบบแพนเค็ก-ทรงรี เมื่ออุณหภูมิเข้าใกล้ T_c

คำสำคัญ : ความลึกซาบซึมได้, ทฤษฎีกินซ์เบิร์กแลนดาว, ตัวนำยวดยิ่งชนิดคลื่นเอสที่ขึ้นกับ ทิศทาง

Title	THE STUDY ON THE PENETRATION DEPTH OF
	ANISOTROPIC S-WAVE
	SUPERCONDUCTORS BY GINZBURG-LANDAU THEORY
Author	PONGKAN TONGKHONBURI
Degree	MASTER OF SCIENCE
Academic Year	2018
Thesis Advisor	Associate Professor Dr. PONGKAEW
	UDOMSAMUTHIRUN

London penetration depth is important point to study superconductor. The purpose of this research calculate and compare with experiment for MgB_2 and CaAlSi. The calculation followed with Ginzburg Landau theory. And result of experiment-graph of MgB_2 and CaAlSi fit very well with pancake-pancake style and pancake-ellipse style consequently. Further more pattern of anisotropic effected to slope of London penetration dept when T close to T_c .

Keyword : london penetration depth, Ginzburg Landau theory, anisotropic s-wave superconductor

กิตติกรรมประกาศ

ผู้วิจัยขอกราบขอบพระคุณ รองศาสตราจารย์ ดร.พงษ์แก้ว อุดมสมุทรหิรัญ ที่ได้ให้ คำปรึกษาตลอดระยะเวลาการทำปริญญานิพนธ์ฉบับนี้ ขอกราบขอบพระคุณผู้ช่วยศาสตราจารย์ ดร. อารียา เอี่ยมบู่ ที่ให้ความอนุเคราะห์เป็นประธาน, ผู้ช่วยศาสตราจารย์ ดร.อาภาพงศ์ ชั่งจันทร์ และ รองศาสตราจารย์ ดร.พงษ์แก้ว อุดมสมุทรหิรัญ ที่ให้ความอนุเคราะห์เป็นกรรมการในการสอบ ปากเปล่า ขอขอบพระคุณอาจารย์, เจ้าหน้าที่ทุกท่านในภาควิชาฟิสิกส์ และทุกคนในครอบครัวของ ผู้วิจัยที่คอยให้ความช่วยเหลือตลอดมา

พงษ์กานต์ ทองครบุรี

สารบัญ

หน้า	I
บทคัดย่อภาษาไทยง	
บทคัดย่อภาษาอังกฤษจ	
กิตติกรรมประกาศฉ	
สารบัญช	
สารบัญตารางณ	
สารบัญรูปภาพญ	
บทที่ 1 บทนำ1	
1.1 ประวัติการค้นพบตัวนำยวดยิ่ง1	
1.2 ชนิดของตัวนำยวดยิ่ง5	
1.3 ความมุ่งหมายของการวิจัย8	
1.4 ความสำคัญของการวิจัย8	
1.5 ขอบเขตของการวิจัย	
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง10	
2.1 ทฤษฎีกินซ์เบิร์กแลนดาว10	
2.2 สนามแม่เหล็กวิกฤตที่ 1	
2.3 สนามแม่เหล็กวิกฤตที่ 213	
2.4 ทฤษฎีบีซีเอล	
2.5 ช่องว่างพลังงานตามทฤษฏิบีซีเอส17	
2.6 ความลึกซาบซึมได้	
2.7 ตัวนำยวดยิ่งแบบแม่เหล็ก20	
2.8 ตัวนำยวดยิ่งแบบแถบพลังงานเดี่ยว และแบบสองแถบพลังงาน	

2.9 ฟังก์ชันความไม่สมมาตรของช่องว่างพลังงาน <i>,f(k)</i> 23
2.10 งานวิจัยที่เกี่ยวข้อง
บทที่ 3 วิธีการดำเนินงานวิจัย29
3.1 ตัวนำยวดยิ่งที่ขึ้นกับทิศทางคลื่นชนิดเอส โดยใช้ทฤษฎีกินซ์เบิร์กแลนดาว
3.2 ความลึกซาบซึมได้โดยใช้ทฤษฏีกินซ์เบิร์กแลนดาวของตัวนำยวดยิ่งที่ขึ้นกับทิศทางคลื่น ชนิดเอส
3.3 การศึกษาความลึกซาบซึมได้ในสารตัวอย่าง
3.4 การคำนวณเชิงตัวเลข
บทที่ 4 ผลการวิจัย
4.1เปรียบเทียบผลการคำนวณความลึกซาบซึมได้กับผลการทดลองของแม็กนีเซียมไดโบไรด์
<i>MgB</i> ₂
4.2 เปรียบเทียบผลการคำนวณความลึกซาบซึมได้กับผลการทดลองแคลเซียมอะลูมิเนียม
ซิลิคอน <i>CaAlSi</i>
บทที่ 5 สรป และ คภิปรายผลการวิจัย 54
5.1สรุปผลการวิจัย
5.1สรุปผลการวิจัย
5.1สรุปผลการวิจัย

สารบัญตาราง

	หน้า
ตาราง 1 รูปแบบลำดับของช่องว่างพลังงานและรูปแบบความไม่สมมาตรของตัวนำยวดยิ่ง	38
ตาราง 2 สมการรูปแบบค่าเฉลี่ยความไม่สมมาตร	42

สารบัญรูปภาพ

หน้า
ภาพประกอบ 1 คาร์เมอร์ลิง ออนเนส1
ภาพประกอบ 2 ความสัมพันธ์ระหว่างความต้านทานไฟฟ้ากับอุณหภูมิของปรอทและทองแดง2
ภาพประกอบ 3 ขอบเขตของการเกิดสภาพน้ำยวดยิ่งจากอุณหภูมิ (T)
ภาพประกอบ 4 ปรากฏการ์ณไมสเนอร์4
ภาพประกอบ 5 ลำดับการค้นพบตัวนำยวดยิ่ง5
ภาพประกอบ 6 ความสัมพันธ์ระหว่างค่าสนามแม่เหล็กภายนอก(H)และสนามแม่เหล็กภายใน (M) ที่อุณหภูมิคงตัว
ภาพประกอบ 7 ความสัมพันธ์ระหว่างค่าสนามแม่เหล็กภายนอก (H _{c1} ,H _c ,H _{c2}) และสนามแม่เหล็ก ภายใน (M) ระหว่างตัวนำยวดยิ่งประเภทที่ 1 และตัวนำยวดยิ่งประเภทที่ 2
ภาพประกอบ 8 บริเวณเฟสซัพนิคอฟที่มีการเรียงตัวเป็นรูปสามเหลี่ยม
ภาพประกอบ 9 แสดงการเสียรูปทรงของแลตทิชเมื่ออิเล็กตรอนเคลื่อนที่เข้าไปในแลตทิช 16
ภาพประกอบ 10 แผนภาพฟายแมนของอันตรกีริยาระหว่างอิเล็กตรอนและโฟนอน
ภาพประกอบ 11 แบบจำลองช่องว่างพลังงานแบบไม่สมมาตรรูปทรงรีตามแนวดิ่งแบบคลื่นเอส23
ภาพประกอบ 12 แบบจำลองช่องว่างพลังงานแบบไม่สมมาตรรูปทรงแพนเค้กแบบคลื่นเอส24
ภาพประกอบ 13 แสดงถึงการตอบสนองทางแม่เหล็กของตัวนำยวดยิ่ง
ภาพประกอบ 14 แสดงความสัมพันธ์ระหว่างอัตราส่วนสนามวิกฤตและสภาพยอมรับได้ทาง แม่เหล็กของตัวนำยวดยิ่งแบบแม่เหล็กที่ขึ้นกับทิศทาง
ภาพประกอบ 15 แสดงการเคลื่อนที่ในแบบ2มิติของอิเล็คตรอนคู่คูเปอร์ สภาวะนำยวดยิ่งใน ขณะที่ไม่มีสนามแม่เหล็กภายนอกและกระแสไฟฟ้าที่อุณหภูมิต่ำกว่าอุณภูมิวิกฤต
ภาพประกอบ 16 ความหนาแน่นกระแส J เกิดจากผลรวมย่อยของความหนาแน่นกระแส j 34
ภาพประกอบ 17 การเคลื่อนที่ของอิเล็คตรอนคู่คูเปอร์ ในสภาวะนำยวดยิ่งโดย H _{external} < H _c และ
สร้างสนามแม่เหล็กภายในทิศตรงข้ามกับสนามแม่เหล็กภายนอกอก

ภาพประกอบ 18 ความสัมพันธ์ระหว่าง $rac{\lambda^2(0)}{\lambda^2(T)}$ กับ $rac{T}{T_C}$ ของแม็กนีเซียมไดโบไรด์
ภาพประกอบ 19 ความสัมพันธ์ระหว่าง $rac{\lambda^2(0)}{\lambda^2(T)}$ กับ $rac{T}{T_C}$ ของแคลเซียมอะลูมิเนียมซิลิคอน 37
ภาพประกอบ 20 รูปแบบแพนเค้ก ลหรือb = 0, 1, 2, 3, 4 และ 5 ตามลำดับ43
ภาพประกอบ 21 รูปแบบทรงรี aหรือb = 0, 0.1, 0.2, 0.3, 0.4 และ 0.5 ตามลำดับ43
ภาพประกอบ 22 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ แพนเค้ก-แพนเค้ก เปรียบเทียบ กับการทดลองของแม็กนีเซียมไดโบไรด์
ภาพประกอบ 23 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ แพนเค้ก-ทรงรี เปรียบเทียบกับ การทดลองของแม็กนีเซียมไดโบไรด์
ภาพประกอบ 24 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ ทรงรี-แพนเค้ก เปรียบเทียบกับ การทดลองของแม็กนีเซียมไดโบไรด์
ภาพประกอบ 25 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ ทรงรี-ทรงรี เปรียบเทียบกับการ ทดลองของแม็กนีเซียมไดโบไรด์
ภาพประกอบ 26 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ แพนเค้ก-แพนเค้ก เปรียบเทียบ กับการทดลองของแคลเซียมอะลูมิเนียมซิลิคอน50
ภาพประกอบ 27 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ แพนเค้ก-ทรงรี เปรียบเทียบกับ การทดลองของแคลเซียมอะลูมิเนียมซิลิคอน51
ภาพประกอบ 28 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ ทรงรี-แพนเค้ก เปรียบเทียบกับ การทดลองของแคลเซียมอะลูมิเนียมซิลิคอน52
ภาพประกอบ 29 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ ทรงรี-ทรงรี เปรียบเทียบกับการ ทดลองของแคลเซียมอะลูมิเนียมซิลิคอน53
ภาพประกอบ 30 เปรียบเทียบกับผลการทดลองกับการคำนวณทั้ง4แบบ ของแม็กนีเซียมไดโบไรด์ 55
ภาพประกอบ 31 เปรียบเทียบกับผลการทดลองกับการคำนวณทั้ง4แบบ ของแคลเซียม อะลูมิเนียมซิลิคอน

ฏ

บทที่ 1 บทนำ

1.1 ประวัติการค้นพบตัวนำยวดยิ่ง

คาร์เมอร์ลิง ออนเนสใช้เวลาทำงานถึง 7 ปี ในการค้นพบวิธีการทำให้ก๊าซฮีเลียมเป็นฮีเลียม เหลว หลัก การทำงานของเครื่องมือที่สร้างขึ้นมา คือ ด้วยการนำก๊าซฮีเลียมที่ผ่านการลดอุณหภูมิ ลงด้วยไฮโดรเจนเหลวจนถึงอุณหภูมิ 15 เคลวิน ที่ความดัน 10⁷ Pa มาปล่อยให้ผ่านรูพรุนออกสู่ ภาชนะบรรจุที่มีความดัน 10⁵ Pa หรือ 1 บรรยากาศ การขยายตัวอย่างรวดเร็วทำให้อุณหภูมิของ ก๊าซลดต่ำลง และเมื่อนำก๊าซฮีเลียมที่มีอุณหภูมิต่ำมาก มาผ่านรูพรุนซ้ำอีกประมาณ 20 ครั้ง จึง ได้ฮีเลียมเหลวที่อุณหภูมิประมาณ 4 เคลวิน ซึ่งถือว่าเป็นอุณหภูมิที่ต่ำมากในสมัยนั้น (ค.ศ.1908) ดังนั้นจึงเป็นโอกาสที่จะได้ทดลองคุณสมบัติของสารชนิดต่างๆ ที่อุณหภูมิต่ำ (https://www.nobelprize.org/prizes/physics/1913/onnes/biographical/)

ภาพประกอบ 1 คาร์เมอร์ลิง ออนเนส

ที่มา : https://en.wikipedia.org/wiki/Heike_Kamerlingh_Onnes<u>.</u> (https://en.wikipedia.org)

การทดลองเมื่อนำฮีเลียมเหลวไปทดสอบกับตัวนำไฟฟ้าทองแดง เพื่อดูคุณสมบัติความ ต้านทานไฟฟ้า ผลที่ได้คือค่าความต้านทานไฟฟ้าเปลี่ยนแปลงลดลงเพียงเล็กน้อยและมีความ ต่อเนื่องเมื่อลดอุณหภูมิลงเข้าใกล้ 4 เคลวิน ดังภาพประกอบ 2 นอกจากนี้เมื่อทดลองในตัวนำ ไฟฟ้าชนิดอื่นก็ได้ผลในลักษณะเดียวกับตัวนำไฟฟ้าทองแดง(Callister, 2007)

ภาพประกอบ 2 ความสัมพันธ์ระหว่างความต้านทานไฟฟ้ากับอุณหภูมิของปรอทและทองแดง

ที่มา : William, D. ; and Callister, Jr. (2007) Materials Science and Engineering 7e,105.

ในปี ค.ศ.1911 ออนเนสได้นำฮีเลียมเหลวไปทดสอบกับปรอท เพื่อศึกษาคุณสมบัติทาง ความต้านทานไฟฟ้า พบว่าเมื่อลดอุณหภูมิถึง 4.2 เคลวิน ความต้านทานไฟฟ้าของปรอทลดลง อย่างรวดเร็วโดยค่าความต้านทานที่วัดได้ใกล้ศูนย์โอห์ม ดังภาพประกอบ 2 ต่อมาได้ทดลองกับ กับโลหะหลายชนิด เช่น ตะกั่ว ดีบุก ในโอเบียม พบว่าสารเหล่านี้มีค่าอุณหภูมิวิกฤต เท่ากับ 3.69 7.26 และ 9.2 เคลวิน ตามลำดับ

ในปีค.ศ.1913 ออนเนสได้รับรางวัลโนเบลจากผลงานในปี ค.ศ.1911 นอกจากนี้แล้ว ออน เนสยังได้ทดลองจ่ายการแสไฟฟ้าไปในตัวนำแบบเส้นวงกลม และรักษาอุณหภูมิไว้ที่ 4 เคลวิน เมื่อ เวลาผ่านไปหนึ่งปียังคงพบว่ามีกระแสไหลในตัวนำเส้นวงกลม เรียกกระแสนี้ว่า กระแสยืนยง (Persistent Currents) ซึ่งกระแสนี้ไหลโดยไม่มีศักย์ไฟฟ้า นอกจากนี้ยังพบว่าความหนาแน่น กระแสสามารถทำลายสภาพนำยวดยิ่งได้ เรียกค่าความหนาแน่นกระแสนี้ว่า ความหนาแน่น กระแสวิกฤต (Critical Current Density, J_c) หลังจากนั้นนักวิทยาศาสตร์ได้ทำความเข้าใจถึง หลักการของตัวนำยวดยิ่งและมีการค้นพบสารที่เป็นตัวนำยวดยิ่งเพิ่มขึ้น แต่ถึงอย่างไรก็ตาม อุณหภูมิที่จะทำให้เกิดปรากฏการณ์ดังกล่าวยังคงน้อยกว่า 23 เคลวิน ทำให้ต้องใช้ฮีเลียมเหลวที่ มีอุณหภูมิ 4 เคลวิน ในการรักษาอุณหภูมิให้อยู่ในสภาพตัวนำยวดยิ่ง

ในปี ค.ศ.1914 ออนเนสได้ค้นพบว่าสนามแม่เหล็กภายนอกสามารถทำลายสภาพนำยวด ยิ่งได้ เรียกค่าสนามแม่เหล็กค่านี้ว่า สนามแม่เหล็กวิกฤต (Critical Magnetic Field, H_c) คือ ถ้า สนามแม่เหล็กภายนอกมีค่าสูงกว่าค่าสนามแม่เหล็กวิกฤตจะทำลายสภาพนำยวดยิ่งโดยจะ เปลี่ยนไปเป็นสภาพตัวนำปกติ เมื่อได้รวมปัจจัยทั้ง 3 อุณหภูมิ ความหนาแน่นกระแส และ สนามแม่เหล็กภายนอกที่มีผลต่อสภาพนำยวดยิ่งดังที่แสดงในภาพประกอบ 3

ภาพประกอบ 3 ขอบเขตของการเกิดสภาพน้ำยวดยิ่งจากอุณหภูมิ (T) ความหนาแน่นกระแส (J) และสนามแม่เหล็กภายนอก (H)

ที่มา : Lyndon Evans (2009). The Large Hadron Collider: A Marvel of Technology. Cern and EPFL press. (Evans, 2009)

ในปี 1933 ไมสเนอร์ และโอเชนเฟลด์ (Meissner and Ochsenfeld, 1933) ได้พบสมบัติ พื้นฐานของตัวนำยวดยิ่งคือ เมื่อถูกทำให้มีอุณหภูมิมากกว่าอุณหภูมิวิกฤต สนามแม่เหล็กที่ใส่เข้า ไปจะสามารถทะลุผ่านได้แต่ถ้าถูกทำให้มีอุณหภูมิต่ำกว่าอุณหภูมิวิกฤตสนามแม่เหล็กภายนอกที่ ใส่เข้าไปจะไม่สามารถทะลุผ่านได้เรียกปรากฏการ์ณนี้ว่าปรากฏการ์ณไมสเนอร์ ดังแสดงใน ภาพประกอบ 4

ภาพประกอบ 4 ปรากฏการ์ณไมสเนอร์

ที่มา https://th.wikipedia.org/wiki/ตัวนำยวดยิ่งอุณหภูมิสูง.(Meissner, 1933)

ในปี ค.ศ.1986 เบดนอร์ซ และมูลเลอร์ (Bednorz & Müller, 1986) ได้มีการค้นพบตัวนำ ยวดยิ่งอุณหภูมิสูง ในสารประกอบ Ba-La-Cu-O ซึ่งมีอุณภูมิวิกฤตสูงกว่า 30 เคลวิน และจาก ผลงานนี้ทำให้พวกเขาได้รับรางวัลโนเบลในปี ค.ศ.1988

ในปี ค.ศ.1987 ชูและคณะ (Chu et al., 1987) ได้มีการค้นพบตัวนำยวดยิ่งอุณหภูมิสูง ในสารประกอบ Y-Ba-Cu-O ซึ่งมีอุณภูมิวิกฤต 90 เคลวิน

ในปี ค.ศ. 2001 อาคิมิซึ และคณะ (Nagamatsu, Nakagawa, Muranaka, Zenitani, & Akimitsu, 2001) ได้มีการค้นพบตัวนำยวดยิ่งในสารประกอบ MgB₂ ซึ่งมีอุณหภูมิวิกฤต 40 เคล วิน

ในปี ค.ศ.2008 คามิฮาราและคณะ (Kamihara, Watanabe, Hirano, & Hosono, 2008) ได้ค้นพบตัวนำยวดยิ่งในสารประกอบ La-O-F-Fe-As ที่ไม่มีส่วนประกอบของคอปเปอร์ออกไซต์มี อุณหภูมิวิกฤติ 26 เคลวิน แต่มีค่าสนามแม่เหล็กวิกฤติที่ 2 สูงมาก

ในปี ค.ศ.2015 โดรซดอฟและคณะ (Drozdov et al., 2015) ได้มีการค้นพบตัวนำยวดยิ่ง ในสารประกอบ H2S ซึ่งมีอุณหภูมิวิกฤตสูงถึง 203 เคลวิน โดยอยู่ในความดันสูง ประมาณ 150 GPaนระยะเวลามากกว่า 100 ปี การศึกษาวิจัยด้านตัวนำยวดยิ่งมีพัฒนาการอย่างต่อเนื่องมีการ ค้นพบตัวนำยวดยิ่งที่มีอุณหภูมิวิกฤตสูงขึ้นเรื่อยๆ ทำให้การรักษาอุณภูมิทำได้ง่ายขึ้นและใน อนาคตอันใกล้เราอาจจะได้เห็นตัวนำยวดยิ่งที่อุณหภูมิห้อง ดังแสดงในภาพประกอบ 5

ภาพประกอบ 5 ลำดับการค้นพบตัวนำยวดยิ่ง

ที่มา : (Einaga et al., 2016; https://www.asianscientist.com/2016/09/in-the-lab/hydrogensulfide-crystal-structure-superconducting-phase.)

1.2 ชนิดของตัวนำยวดยิ่ง

การแบ่งชนิดของตัวนำยวดยิ่งนั้นมีหลายแบบ ถ้าพิจารณาจากคุณสมบัติทางแม่เหล็ก ภายใน (M) และค่าสนามแม่เหล็กภายนอก (H) สามารถแบ่งออกเป็นตัวนำยวดยิ่งประเภทที่1 และตัวนำยวดยิ่งประเภทที่ 2 การแบ่งชนิดพิจารณาจากสนามแม่เหล็กวิกฤตภายนอก และ สนามแม่เหล็กภายในโดยให้อุณหภูมิคงที่ ตัวนำยวดยิ่งทั้งสองประเภทนี้ไม่มีความเป็นแม่เหล็ก นอกจากนี้ยังมีตัวนำยวดยิ่งที่ผ่านการเจือด้วยสารเจือแบบแม่เหล็กมีผลทำให้มีความเป็นแม่เหล็ก ในโครงสร้างมีผลทำให้อุณหภูมิวิกฤตมีค่าต่ำลง นอกจากนี้ยังมีการแบ่งตัวนำยวดยิ่งตามประเภท ขององค์ประกอบสาร แบ่งได้เป็น 3 ชนิดคือ ตัวนำยวดยิ่งในธาตุ ตัวนำยวดยิ่งในอัลลอย และ ตัวนำยวดยิ่งในสารประกอบ

1.2.1 ตัวน้ำยวดยิ่งประเภทที่1

ภาพประกอบ 6 ความสัมพันธ์ระหว่างค่าสนามแม่เหล็กภายนอก(H)และสนามแม่เหล็กภายใน (M) ที่อุณหภูมิคงตัว

ที่มา: (Buckel, 1991): Fundamentals and Application

เมื่อพิจารณาภาพประกอบ 6 พบว่าตัวนำจะอยู่ในสถานะนำปกติเมื่อสนามแม่เหล็ก ภายนอกมีค่ามากกว่าสนามแม่เหล็กวิกฤตที่ 1 และอยู่ในสถานะนำยวดยิ่งเมื่อสนามแม่เหล็ก ภายนอกมีค่าน้อยกว่าสนามแม่เหล็กวิกฤตที่ 1 ซึ่งที่สถานะยวดยิ่งสนามแม่เหล็กภายในจะมีค่า เป็นศูนย์ ทำให้เกิดปรากฏการณ์ไมส์เนอร์อย่างสมบูรณ์ คือ เส้นแรงแม่เหล็กไม่สามารถพุ่งผ่าน ตัวนำยวดยิ่งได้ 1.2.2 ตัวนำยวดยิ่งประเภทที่ 2

ภาพประกอบ 7 ความสัมพันธ์ระหว่างค่าสนามแม่เหล็กภายนอก (H_{c1},H_c,H_{c2}) และสนามแม่เหล็ก ภายใน (M) ระหว่างตัวนำยวดยิ่งประเภทที่ 1 และตัวนำยวดยิ่งประเภทที่ 2

ที่มา (Buckel, 1991): Fundamentals and Application.

สำหรับตัวนำยวดยิ่งประเภทที่ 2 จากทฤษฎีกินซ์เบิร์กแลนดาว จะให้ค่าสนามแม่เหล็ก วิกฤติสองค่า คือ สนามแม่เหล็กวิกฤตที่ 1 (*H*_{cl}) และสนามแม่เหล็กวิกฤตที่ 2 (*H*_{c2}) และเมื่อ พิจารณาภาพประกอบ 7 พบว่า ตัวนำจะอยู่นสถานะปกติเมื่อสนามแม่เหล็กภายนอกมีค่า มากกว่าสนามแม่เหล็กวิกฤตที่ 2 ตัวนำจะอยู่ในสถานะนำยวดยิ่งเมื่อสนามแม่เหล็กภายนอกมีค่า น้อยกว่าสนามแม่เหล็กวิกฤตที่ 1 ตัวนำจะแสดงปรากฏการณ์ไมสเนอร์อย่างสมบูรณ์ (*h* = 0) และตัวนำจะอยู่ในสถานะผสมระหว่างการนำแบบยวดยิ่งและการนำแบบปกติ เมื่อสนามแม่เหล็ก ภายนอกมีค่ามากกว่าสนามแม่เหล็กวิกฤตที่ 1 แต่จะน้อยกว่าสนามแม่เหล็กวิกฤตที่ 2 โดยเส้น แรงแม่เหล็กสามารถพุ่งผ่านบริเวณนี้ได้บางส่วนและมีการเรียงตัวของเส้นแรงเป็นรูปสามเหลี่ยม เรียกบริเวณนี้ว่าเฟสซับนิคอฟ (Shubnikov phase) แสดงในภาพประกอบ 8

ภาพประกอบ 8 บริเวณเฟสซัพนิคอฟที่มีการเรียงตัวเป็นรูปสามเหลี่ยม

ที่มา : Werner Buckel. (1991) Superconductivity : Fundamentals and Application.

1.3 ความมุ่งหมายของการวิจัย

1.3.1 สามารถหาความลึกซาบซึมได้ของตัวนำยวดยิ่งโดยใช้ทฤษฎีกินซ์เบิร์กแลนดาวของ ตัวนำยวดยิ่งที่ขึ้นกับทิศทางคลื่นชนิดเอส

1.3.2 สามารถเปรียบเทียบผลการคำนวณความลึกซาบซึมได้ของตัวนำยวดยิ่งโดยใช้ทฤษฎี กินซ์เบิร์กแลนดาวของตัวนำยวดยิ่งที่ขึ้นกับทิศทางคลื่นชนิดเอส กับผลการทดลอง

1.4 ความสำคัญของการวิจัย

การศึกษาตัวนำยวดยิ่งมีความสำคัญในการพัฒนาประเทศเป็นอย่างมาก เนื่องจากเป็น วัสดุพื้นฐานที่สามารถสร้างอุปกรณ์ต่างๆได้มากมาย เช่น ตัวนำไฟฟ้าที่มีประสิทธิภาพสูง มอเตอร์ หรือ เครื่องมือทางการแพทย์ ในงานวิจัยนี้ศึกษาความลึกซาบซึมได้ของตัวนำยวดยิ่งที่ขึ้นกับ ทิศทางคลื่นชนิดเอส ซึ่งสามารถนำผลการศึกษานี้ไปต่อยอด และพัฒนาอุปกรณ์ด้านตัวนำยวดยิ่ง ต่อไปได้

1.5 ขอบเขตของการวิจัย

1.5.1 ศึกษาความลึกซาบซึมได้ของตัวนำยวดยิ่งโดยใช้ทฤษฎีกินซ์เบิร์กแลนดาวของตัวนำ ยวดยิ่งที่ขึ้นกับทิศทางคลื่นชนิดเอสได้

1.5.2 เปรียบเทียบผลการคำนวณความลึกซาบซึมได้ กับผลการทดลอง

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

ทฤษฎีใช้อธิบายสภาพนำยวดยิ่งมี 2 รูปแบบคือ ทฤษฎีแบบจุลภาคคือ ทฤษฎีบีซีเอส (BCS Theory) และทฤษฎีแบบมหภาคคือ ทฤษฎีกินซ์เบิร์กแลนดาว (Ginzburg-Landau Theory) ซึ่งแต่ละทฤษฎีมีจุดเด่นและจุดด้อยต่างกัน คือ ทฤษฎีบีซีเอส สามารถอธิบายตัวนำยวดยิ่งแบบ อุณหภูมิต่ำได้ดีแต่ไม่ให้ผลถูกต้องมากนักในตัวนำยวดยิ่งอุณหภูมิสูง ส่วนทฤษฎีกินซ์เบิร์กแลน ดาว ใช้หลักการกำหนดตัวแปรความเป็นระเบียบ สามารถอธิบายสมบัติของตัวนำยวดยิ่งที่อยู่ใน บริเวณที่มีสนามแม่เหล็กได้ดี

2.1 ทฤษฎีกินซ์เบิร์กแลนดาว

ทฤษฎีกินซ์เบิร์กแลนดาวถูกนำเสนอโดยกินซ์เบิร์ก และแลนดาวเป็นทฤษฎีแบบ ปรากฏการณ์ (Phenomenological Theory) โดยพิจารณาถึงพลังงานอิสระในสถานะนำยวดยิ่ง สามารถเขียนกระจายอยู่ในเทอมของตัวแปรบอกความเป็นระเบียบ (Order parameter, *ψ*)รวม กับพลังงานอิสระในสถานะปกติดังสมการ(Buckel, 1991; Kittel, 1991)

$$f_s = f_n + a|\psi|^2 + \frac{1}{2}b|\psi|^4 + \dots$$

โดย

- f_s คือ ความหนาแน่นพลังงานอิสระในสถานะนำยวดยิ่ง
- *f*_n คือ ความหนาแน่นพลังงานอิสระในสถานะปกติ
- a,b คือ ค่าคงตัว
- ψ คือ ตัวแปรแสดงความเป็นระเบียบ
- $\left|\psi
 ight|^2 = 0$ เมื่อ $T > T_c$ $\left|\psi
 ight|^2 =$ ค่าคงตัว เมื่อ $T < T_c$

|𝒴|² คือ ความหนาแน่นของความน่าจะเป็นของฟังก์ชันคลื่นของอิเล็กตรอนในสภาพนำ
 ยวดยิ่ง และในทฤษฎีนี้ได้นำเทอมพลังงานจลน์รวมไว้ในสมการของความหนาแน่นพลังงานอิสระ

ซึ่งเทอมพลังงานจลน์ คือ $\frac{1}{2m^*} |-i\hbar
abla \psi|^2$ โดย $m^* = 2m$ เป็นมวลยังผลในสถานะนำยวดยิ่ง และ เป็นอนุภาคที่เป็นคู่คูเปอร์ ซึ่งเป็นกลไกของการเกิดสภาพนำยวดยิ่ง และเมื่อนำตัวยวดยิ่งอยู่ ภายใต้สนามแม่เหล็กภายนอก จะแสดงให้เห็นถึงสภาพแม่เหล็กภายใน $ar{h}(r)$ ที่เกิดขึ้นในเทอม ของศักย์เวกเตอร์ (Vector Potential, $\vec{A}(r)$ คือ $\vec{h} = \nabla \times \vec{A}$ ทำให้ $\hat{H} = \frac{1}{2m^*} (-i\hbar \nabla + \frac{q}{c}\vec{A})^2 \vec{\mathfrak{g}}_{\mathfrak{s}}$ เป็นฮามิลโทเนียนของอนุภาคที่มีประจุ q ในสนามแม่เหล็ก และทำให้เขียนเทอมพลังงานจลน์

ใหม่ได้เป็น $\frac{1}{2m^*} \left| (-i\hbar \nabla + \frac{e^*}{c} \vec{A}) \psi \right|^2$ โดย $e^* = 2e$ เป็นประจุยังผลดังนั้นความหนาแน่นพลังงาน อิสระในสถานะนำยวดยิ่งที่อยู่ในสนามแม่เหล็ก สามารถเขียนได้เป็น

$$f'_{s} = f_{n} + a|\psi|^{2} + \frac{1}{2}b|\psi|^{4} + \frac{1}{2m^{*}}\left|(-i\hbar\nabla + \frac{e^{*}}{c}\vec{A})\psi\right|^{2} + \frac{h^{2}}{8\pi}$$
(2.1)

โดย $\frac{h^2}{8\pi}$ คือ ความหนาแน่นพลังงานของสนามแม่เหล็ก และจากสมการที่ (2.1) พลังงานอิสระทั้งหมดของระบบหาได้จากการคิดผลรวมของพลังงานอิสระ ทั่วทั้งก้อนของตัวนำ และจาก $f_s = \int dar{r} f_s'(ar{r})$ สามารถเขียนสมการใหม่ได้ดังนี้

$$f_{s} = \int d\vec{r} \left[f_{n} + a |\psi|^{2} + \frac{1}{2} b |\psi|^{4} + \frac{1}{2m^{*}} \left| (-i\hbar\nabla + \frac{e^{*}}{c}\vec{A})\psi \right|^{2} + \frac{h^{2}}{8\pi} \right]$$
(2.2)

จากสมการที่ (2.2) ได้ทำการคำนวณและจัดรูปสมการเพื่อลดรูปเป็นสมการกินซ์เบิร์กแลนดาวที่ 1 และที่ 2 สำหรับสมการกินซ์เบิร์กแลนดาวที่ 1 ถูกเขียนให้อยู่ในรูป

$$\frac{1}{2m^*} \left(-i\hbar\nabla + \frac{e^*}{c}\vec{A} \right)^2 \psi + a\psi + b|\psi|^2 \psi = 0$$
(2.3)

โดยสมการกินซ์เบิร์กแลนดาวที่ 1 นี้มาจากการแปรค่าสมการความหนาแน่นพลังงานอิสระใน สมการที่สมการที่ (2.2) เทียบกับ ψ^* เพื่อให้ระบบมีค่าพลังงานรวมที่ต่ำที่สุดที่สภาวะสมดุล ซึ่ง ระบบจะมีความ เสถียรมากที่สุดและจะได้ว่า $\partial F_s = 0$ หรือ $\frac{\partial F_s}{\partial \psi^*} = 0$ และจาก $\partial F_s = \int d\bar{r} \frac{\partial f_s}{\partial \psi^*} \partial \psi^*$ สามารถเขียนสมการใหม่ได้ดังนี้ $\int d\bar{r} \frac{\partial f_s}{\partial \psi^*} \ \partial \psi^* = \int d\bar{r} \left[f_n + a|\psi|^2 + \frac{1}{2}b|\psi|^4 + \frac{1}{2m^*} \left(-i\hbar\nabla + \frac{e^*}{c}\vec{A} \right) \psi \right|^2 + \frac{h^2}{8\pi} \right]$ (2.4)

จัดรูปเทอมพลังงานจลน์จากสมการที่ (2.4) โดยพิจารณาจากทฤษฎีบทไดเวอร์เจนซ์ (Divergence Theorem)

$$\frac{1}{2m^*} \int \left(-i\hbar \nabla + \frac{e^*}{c} \vec{A} \right)^2 \psi \right|^2$$

$$=\frac{1}{2m^{*}}\int d\vec{r} \left[\hbar^{2}\nabla\psi^{*}\cdot\nabla\psi+-i\hbar\nabla+\frac{e^{*}}{c}\vec{A}\psi\cdot\nabla\psi^{*}-i\hbar\frac{e^{*}}{c}\vec{A}\psi^{*}\cdot\nabla\psi+\left(\frac{e^{*}}{c}\right)^{2}A^{2}|\psi|^{2}\right]$$
(2.5)

จากทฤษฎีบทไดเวอร์เจนซ์ $\int d ec v \, \nabla \cdot ec P = \oint ec P \cdot d ec s$

โดย 🗴 คือ ผิวปิดที่ล้อมรอบปริมาตร v

ds คือ เวกเตอร์ที่ตั้งฉากกับผิวปิด s

ซึ่งกำหนดให้ $\vec{P} = f\vec{Q}$ เมื่อ f เป็นปริมาณสเกลาร์ และ \vec{P}, \vec{Q} เป็นปริมาณเวกเตอร์ $\nabla \cdot \vec{P} = \nabla \cdot f\vec{Q} = f \nabla \cdot \vec{Q} + \vec{Q} \cdot \nabla f$ และจากทฤษฎีบทไดเวอร์เจนซ์จะได้ว่า $\int_{V} d\vec{v} f \nabla \cdot \vec{Q} + \int_{V} d\vec{v} \vec{Q} \cdot \nabla f = \oint_{S} f\vec{Q} \cdot d\vec{s}$

not
$$f = \psi^*$$
 μα: $\vec{Q} = \nabla \psi$

$$\int_{v} d\vec{v} \psi^* \nabla^2 \psi + \int_{v} d\vec{v} \nabla \psi \cdot \nabla \psi^* = \oint_{s} \psi^* \nabla \psi \cdot d\vec{s}$$
(2.6)

$$\int_{v} f = \psi^{*} \quad \text{inf} \quad \vec{Q} = \vec{A} \psi$$

$$\int_{v} d\vec{v} \, \psi^{*} \nabla \cdot \vec{A} \, \psi + \int_{v} d\vec{v} \vec{A} \, \psi \cdot \nabla \psi^{*} = \oint_{s} \psi^{*} \vec{A} \, \psi \cdot d\vec{s}$$

$$(2.7)$$

แทนสมการที่ (2.6) และ (2.7) ลงในสมการที่ (2.5) และเนื่องจาก

$$(-i\hbar\nabla + \frac{e^*}{c}\vec{A})^2 = -\hbar^2\nabla^2 - \frac{i\hbar e^*}{c}\nabla\cdot\vec{A} - \frac{i\hbar e^*}{c}\vec{A}\cdot\nabla + \frac{e^{*2}}{c^2}\vec{A}^2$$
 สามารถเขียนสมการที่

(2.5) ใหม่ได้

$$\frac{1}{2m^*} \int \left| \left(-i\hbar\nabla + \frac{e^*}{c}\vec{A} \right) \psi \right|^2 d\vec{v}$$

$$= \frac{1}{2m^*} \int_{\nu} d\vec{v} \left[\psi^* \left(-i\hbar\nabla + \frac{e^*}{c}\vec{A} \right)^2 \psi \right] + \frac{i\hbar}{2m^*} \oint_{s} \left[\psi^* \left(-i\hbar\nabla + \frac{e^*}{c}\vec{A} \right) \psi \right] \cdot d\vec{s}$$
(2.8)

จากเงื่อนไขพื้นที่ผิว (surface condition) $\hat{n} \cdot \left(-i\hbar \nabla + \frac{e^*}{c} \vec{A} \right) \psi = 0$ สำหรับทุกๆ จุดบนผิวของ ตัวนำยวดยิ่งกับเวกเตอร์ปกติ (\hat{n}) ดังนั้นสมการการแปรค่าเทียบกับ ψ^* ได้เป็น

$$\frac{df}{d\psi^*} = 0 = a\psi + b|\psi|^2\psi + \frac{1}{2m^*} \left(-i\hbar\nabla + \frac{e^*}{c}\vec{A}\right)^2\psi$$
(2.9)

และจัดรูปใหม่ได้เป็นสมการกินซ์เบิร์กแลนดาวที่ 1 ดังสมการที่ (2.3)

้จากสมการกินซ์เบิร์กแลนดาวได้มีผู้นำไปใช้อย่างกว้างขวางเพื่อนำไปใช้อธิบายสมบัติ ของตัวน้ำยวดยิ่งในสนามแม่เหล็ก เช่น สนามแม่เหล็กวิกฤตที่ 1 (*H*_{c1}) สนามแม่เหล็กวิกฤตที่ 2 (*H*_{c2}) และเป็นงานที่ได้รับการพัฒนาโดยอะบริโคซอฟ ในปี 1957 (Abrikosov, 1957) ได้ กำหนดตัวแปร κ โดย $\Box = rac{\Box_{\Box}}{\Box}$ เมื่อ ξ คือ ความยาวอาพันธ์ของคู่คูเปอร์ และ λ_L คือ ความลึก ซาบซึมได้ของลอนดอน ซึ่งเป็นเงื่อนไขสำหรับการแบ่งตัวนำยวดยิ่งเป็นชนิดที่ 1 และตัวนำยวดยิ่ง ชนิดที่ 2 โดย(Abrikosov, 1957)

$$\kappa < rac{1}{\sqrt{2}}$$
 สำหรับตัวนำยวดยิ่งชนิดที่ 1
 $\kappa > rac{1}{\sqrt{2}}$ สำหรับตัวนำยวดยิ่งชนิดที่ 2

2.2 สนามแม่เหล็กวิกฤตที่ 1 สมการค่าสนามแม่เหล็กวิกฤตที่ 1 พิจารณากรณีที่ $H_{c1} < H < H_{c2}$ และพิจารณาฟลักซ์ แม่เหล็กซึ่งไม่สม่ำเสมอแต่ถูกตรึงอยู่กับที่และมีการแทรกซึมอย่างสมมาตร กำหนดให้ฟลักซ์ แม่เหล็กอยู่ในแนวแกน z ซึ่งถ้าฟลักซ์แม่เหล็กที่พุ่งผ่านเนื้อตัวนำยวดยิ่งมีค่าสม่ำเสมอ จะได้ว่า $\psi=0$ สำหรับทุกๆ ตำแหน่งของฟลักซ์แม่เหล็ก โดยค่าสนามแม่เหล็กวิกฤตที่ 1 มีค่าเป็น

$$H_{c1} \approx \frac{1}{2} \frac{\hbar c}{e^*} \frac{1}{\lambda^2} \ln \kappa$$
(2.10)

เมื่อ к ถูกเรียกว่าค่ากินซ์เบิร์กแลนดาวพารามิเตอร์ มีค่าเป็นสัดส่วนของค่าความลึกซาบซึมได้ ของลอนดอน (λ_{I}) ต่อความยาวอาพันธ์ (ξ)

2.3 สนามแม่เหล็กวิกฤตที่ 2

สมการค่าสนามแม่เหล็กวิกฤตที่ 2 พิจารณากรณีที่ H มีค่าคงตัว และมีทิศทางอยู่ในแกน z ได้ค่าสนามแม่เหล็กวิกฤตดังนี้

$$H = \frac{2m^*c}{(2n+1)\hbar e^*} |a|$$
(2.11)

ในการพิจารณาค่า $H_{_{c2}}$ จะต้องพิจารณาค่าที่มากที่สุด เมื่อ $n\!=\!0$ จึงทำให้ได้สมการค่า สนามแม่เหล็กวิกฤตที่ 2 ดังนี้

$$H_{c2} = \frac{2m^*c}{\hbar e^*} |a|$$
(2.12)

สนามแม่เหล็กวิกฤตที่ 2 แบบสองแถบพลังงาน การคำนวณสนามแม่เหล็กวิกฤตที่ 2 ของตัวนำ ยวดยิ่งแบบสองแถบพลังงาน พิจารณาฟังก์ชันความหนาแน่นของพลังงานอิสระ (Askerzade et al., 2002; Doh et al., 1999)

$$F_{SC} = \int d^3 r \left(F_1 + F_{12} + F_2 + \frac{H^2}{8\pi} \right)$$

เมื่อ

$$F_{i} = \frac{\hbar^{2}}{4m_{i}} \left| \left(\nabla - \frac{2\pi i \vec{A}}{\phi_{0}} \right) \psi_{i} \right|^{2} + a_{i}(T) \psi_{i}^{2} + \frac{b_{i} \psi_{i}^{4}}{2}$$
(2.13)

และ

$$F_{12} = \varepsilon(\psi_1^*\psi_2 + c.c.) + \varepsilon_1 \left\{ \left(\nabla + \frac{2\pi i \vec{A}}{\phi_0} \right) \psi_1^* \left(\nabla - \frac{2\pi i \vec{A}}{\phi_0} \right) \psi_2 + c.c. \right\}$$
(2.14)

โดย F_i คือ ความหนาแน่นพลังงานอิสระของแต่ละแถบพลังงาน

F₁₂ คือ ความหนาแน่นพลังงานที่เกิดจากอันตรกิริยาระหว่างแถบพลังงานที่ 1 และ 2

c.c. คือ เทอมคอนจูเกตของเทอมด้านหน้า

*m*_i คือ มวลยังผลในแต่ละแถบพลังงาน

- *a*,*b* คือ ค่าคงตัว
- *H* คือ สนามแม่เหล็กภายนอก
- *A*ี คือ ศักย์เวกเตอร์
- ϕ_0 คือ ฟลักซ์แม่เหล็กควอนตัม
- ศือ ตัวแปรที่แสดงอันตรกิริยาของค่าตัวแปรที่บอกความเป็นระเบียบ

แปรค่าความหนาแน่นพลังงานอิสระเทียบกับ ψ_1^* และ ψ_2^* จะได้ $\frac{\partial F}{\partial \psi_1^*} = 0$ และ $\frac{\partial F}{\partial \psi_2^*} = 0$

กำหนด $\psi_1 = \lambda_1 e^{\frac{ax^2}{2}} \, \|a \approx \psi_2 = \lambda_2 e^{\frac{bx^2}{2}} \, |$ เนื่องจากปัญหาที่พิจารณาใกล้เคียงกับปัญหาการ เคลื่อนที่แบบฮาร์มอนิกส์อย่างง่าย ซึ่งสามารถคำนวณหาค่า H_{c2} โดยพิจารณาพลังงานที่ต่ำที่สุด จากสมการกินซ์เบิร์กแลนดาวที่ 1 ซึ่งมีสองสมการดังนี้

$$\frac{-\hbar^2}{4m_1} \left(\frac{d^2}{dx^2} - \frac{x^2}{l_s^2} \right) \psi_1 + a_1(T)\psi_1 + \varepsilon \psi_2 + \varepsilon_1 \left(\frac{d^2}{dx} - \frac{x^2}{l_s^2} \right) \psi_2 + b_1 \psi_1^3 = 0 \quad (2.15)$$

$$\frac{-\hbar^2}{4m_1} \left(\frac{d^2}{dx^2} - \frac{x^2}{l_s^2} \right) \psi_2 + a_2(T) \psi_2 + \varepsilon \psi_1 + \varepsilon_1 \left(\frac{d^2}{dx} - \frac{x^2}{l_s^2} \right) \psi_1 + b_2 \psi_1^3 = 0 \quad (2.16)$$

กำหนดศักย์เวกเตอร์ $\vec{A} = (0, Hx, 0)$ เมื่อ $l_s = \frac{\hbar c}{2He}$

จากนั้นจัดรูปให้อยู่ในรูปเมตริกซ์แล้วหาค่าไอเกนโดยให้ค่าดีเทอร์มิแนนท์ของเมตริกซ์ของ สัมประสิทธิ์เป็นศูนย์ แล้วใช้การกระจายทวินาม (Binomial Series) ทำให้ได้ค่าสนามแม่เหล็ก วิกฤตที่ 2 ของตัวนำยวดยิ่งแบบสองแถบพลังงานตามสมการ(ชั่งจันทร์, 2548)

$$H_{c2} = \frac{(a_1 a_2 - \varepsilon^2)}{(a_1 + a_2)\frac{\hbar c}{2mc} + \frac{4\varepsilon\varepsilon_1 e}{\hbar c}}$$
(2.17)

โดยค่าสนามแม่เหล็กวิกฤตที่ 2 แบบสองแถบพลังง านนี้สามารถลดรูปสู่สมการค่าสนามแม่เหล็ก วิกฤตแบบแถบพลังงานเดียวได้ จากความสัมพันธ์ $a_1(T_C)a_2(T_C) = \varepsilon^2$ ในกรณีไม่มีสนามแม่เหล็ก จากสมการที่ (2.15),(2.16)จะได้

$$|\psi_1|^2 = -\frac{\varepsilon^2 (a_1(T)a_2(T) - \varepsilon^2)}{\varepsilon^2 b_1 a_2(T) + b_2 a_1^3(T)}$$
(2.18)

$$\left|\psi_{2}\right|^{2} = -\frac{(a_{1}^{2}(T)(a_{1}(T)a_{2}(T) - \varepsilon^{2}))}{\varepsilon^{2}b_{1}a_{2}(T) + b_{2}a_{1}^{3}(T)}$$
(2.19)

จากพังก์ชั่นคลื่น $\psi(\vec{r}) = |\psi|e^{i\phi_j(\vec{r})}$). และ $\phi_j(\vec{r})$ คือเฟสของตัวแปรความเป็นระเบียบ จากสมการที่ (2.18),(2.19)มีเงื่อนไขของความต่างเฟส คือ $\cos(\phi_1 - \phi_2) = 1$ ถ้า $\varepsilon < 0$ และ $\cos(\phi_1 - \phi_2) = -1$ ถ้า $\varepsilon > 0$ เมื่อพิจารณาความสัมพันธ์ในรูปแบบศักย์เวกเตอร์ \vec{A} , ϕ_1 และ ϕ_2 จะได้รูปแบบสมการ

$$\nabla x \nabla x \vec{A} = \frac{2\pi}{\phi_0} \begin{cases} \frac{\hbar^2}{2m_1^*} n_1(T) \left(\frac{d\phi_1}{dr} - \frac{2\pi}{\phi_0} \vec{A} \right) + \frac{\hbar^2}{2m_2^*} n_2(T) \left(\frac{d\phi_2}{dr} - \frac{2\pi}{\phi_0} \vec{A} \right) + \\ \varepsilon_1 \sqrt{n_1(T)n_2(T)} \cos(\phi_1 - \phi_2) \left[\left(\frac{d\phi_1}{dr} - \frac{2\pi}{\phi_0} \vec{A} \right) + \left(\frac{d\phi_2}{dr} - \frac{2\pi}{\phi_0} \vec{A} \right) \right] \end{cases}$$

จากสมการแม็กซ์เวล $\nabla x \hat{H} = \frac{4\pi}{c} \vec{J}$ และเงื่อนไขของความต่างเฟลจะได้สมการ $\lambda^2 \frac{d^2 \vec{H}}{dr^2} - \vec{H} = 0$ (λ คือ ความลึกซาบซึมได้ หรือ Penetration depth) จะได้ค่าของ λ ดังนี้ (Askerzade & Gencer, 2002)

$$\lambda(T) = \left[\left(\frac{8\pi}{c^2} \right) \left(\frac{n_1(T)}{m_1^*} + \frac{n_2(T)}{m_2^*} n_2(T) + \varepsilon_1 \sqrt{n_1(T)n_2(T)} \right) \right]^{-\frac{1}{2}}$$

2.4 ทฤษฎีบีซีเอส

ในปี ค.ศ. 1957 บาร์ดีน คูเปอร์ และชริฟเฟอร์ (Bardeen, Cooper & Schrieffer, 1957) ได้เสนอทฤษฎีบีซีเอส ทฤษฎีบีซีเอสได้อธิบายกลไกการเกิดสภาพนำยวดยิ่งซึ่งเกิดจากการจับคู่ ของอิเล็กตรอน เรียกว่า คู่คูเปอร์ (Cooper pair) โดยเมื่ออิเล็กตรอนเคลื่อนที่เข้าไปในแลตทิช (Lattice) จะทำอันตรกิริยากับแลตทิช ทำให้แลตทิชมีการเสียสภาพ(Bardeen, Cooper, & Schrieffer, 1957) ดังภาพประกอบ 9

ภาพประกอบ 9 แสดงการเสียรูปทรงของแลตทิชเมื่ออิเล็กตรอนเคลื่อนที่เข้าไปในแลตทิช

ที่มา:

https://commons.wikimedia.org/wiki/File:Cooper_pairs.jpg(https://commons.wikimedia.org)

อันตรกิริยาทางไฟฟ้าจะเกิดขึ้นเมื่ออิเล็กตรอนตัวหนึ่งเคลื่อนที่ผ่านเข้าไประหว่างกลุ่ม ไอออนที่มีประจุบวก และอิเล็กตรอนตัวนี้จะดึงดูดไอออนบวกในบริเวณรอบ ๆ ให้เคลื่อนที่เข้ามา ใกล้ ทำให้บริเวณรอบๆ อิเล็กตรอนตัวนี้มีความหนาแน่นของไอออนบวกเพิ่มขึ้นทำให้มีผลกระทบ ต่ออิเล็กตรอนอีกตัวที่อยู่ใกล้บริเวณนั้น โดยอิเล็กตรอนจะถูกกลุ่มไอออนบวกดึงดูดเข้าใกล้กัน ทำ ให้ดูเหมือนอิเล็กตรอนตัวแรกดึงดูดอิเล็กตรอนตัวหลัง จึงเสมือนว่ามีแรงดึงดูดระหว่างอิเล็กตรอน เกิดขึ้น แต่ทั้งนี้อันตรกิริยาแบบดึงดูดมีค่าสูงกว่าอันตรกิริยาผลักแบบคูลอมบ์ระหว่างคู่คูเปอร์ ที่มาจับคู่กันในบริเวณใกล้ผิวเฟอร์มี (Fermi Surface, *E_F*) กล่าวคือ ต้องมีพลังงานอยู่ระหว่าง E_F – ω_Dถึง E_F + ω_D เมื่อ ω_D คือ ความถี่เดอบาย คู่คูเปอร์นี้จะสามารถเกิดขึ้นได้ต้อง ประกอบด้วยอิเล็กตรอนสองตัวที่มีขนาดโมเมนตัมเท่ากัน แต่มีสปินตรงข้ามกัน โดยระยะห่าง ระหว่างอิเล็กตรอนคู่หนึ่งๆ เรียกว่า ความยาวอาพันธ์ แต่ที่อุณหภูมิสูงๆ ไอออนบวกในแลตทิชมี การสั่นเนื่องจากอิทธิพลของความร้อนมากทำให้อันตรกิริยาผลักแบบคูลอมบ์มีค่ามากกว่า อันตรกิริยาดึงดูดอิเล็กตรอนจึงไม่สามารถจับคู่กันได้ ในกลศาสตร์ควอนตัมการสั่นของไอออนใน แลตทิชมีลักษณะเป็นคลื่น โดยมีพลังงานเป็นช่วงๆ ไม่ต่อเนื่อง เรียกว่า โฟนอน เขียนแทนอันตร กิริยาระหว่างอิเล็กตรอนกับโฟนอนดังภาพประกอบ 10

ภาพประกอบ 10 แผนภาพฟ่ายแมนของอันตรกิริยาระหว่างอิเล็กตรอนและโฟนอน

ที่มา : Werner Buckel. (1991) Superconductivity : Fundamentals and Applicationⁱ.

2.5 ช่องว่างพลังงานตามทฤษฏีบีซีเอส

นอกจากนี้ตัวนำยวดยิ่งยังมีสมบัติที่แตกต่างจากตัวนำปกติอีกประการหนึ่งคือ เมื่อตัวนำ ปกติกลายสภาพเป็นตัวนำยวดยิ่งจะมีช่องว่างพลังงาน (Energy Gap, Δ) ซึ่งมีค่าเท่ากับ 2Δ เกิดขึ้นที่ผิวเฟอร์มิ ช่องว่านี้เกิดจากการที่อิเล็กตรอนสองตัวจับคู่กันและทำให้พลังงานของคู่ลดลง การที่เรียกช่องว่าพลังงานเนื่องจากจะไม่มีอิเล็กตรอนตัวใดที่มีพลังงานอยู่ในระหว่างช่องว่าง พลังงานนั้นพลังงานภายนอก ที่สามารถกระตุ้นอิเล็กตรอนได้ต้องมีค่ามากกว่า 2Δ จึงจะสามารถ ทำลายสภาพนำยวดยิ่งได้แบบช่องว่างพลังงานเดียว พิจารณาช่องว่างพลังงานที่อุณหภูมิใดๆ โดย มีสมการช่องว่างพลังงานตามทฤษฏีบีซีเอส ดังนี้

$$\frac{1}{N_0 V_0} = \int_0^{\omega_p} \left(\frac{\tanh\left(\frac{\sqrt{\varepsilon_k^2 + \Delta^2(T)}}{2T}\right)}{\sqrt{\varepsilon_k^2 + \Delta^2(T)}} \right) d\varepsilon_k$$
(2.20)

เมื่อ N₀ คือ ความหนาแน่นสถานะของอิเล็กตรอนที่ระดับพลังงานเฟอร์มิ

- V₀ คือ พลังงานศักย์ดึงดูดของอิเล็กตรอน
- $\Delta(T)$ คือ ช่องว่างพลังงานที่อุณหภูมิใดๆ
- *a*_D คือ ความถี่เดอบาย

สามารถพิจารณาตามกรณีต่างๆ ได้ดังนี้

1. บริเวณ T ใกล้อุณหภูมิวิกฤต ที่บริเวณนี้ $\Delta(T)$ จะมีค่าน้อยมากแต่ไม่เป็นศูนย์ ใช้

ความสัมพันธ์จาก

$$\frac{\tanh x}{x} = \sum_{n=-\infty}^{\infty} \frac{1}{x^2 + \left[\pi\left(n + \frac{1}{2}\right)\right]^2}$$

สามารถจัดรูปสมการใหม่ได้

$$\frac{1}{N_0 V_0} = 4T \sum_{n=0}^{\infty} \int_0^{\omega_D} \frac{d\varepsilon_k}{\varepsilon_k^2 + \Delta^2(T) + \omega_n^2}$$
(2.21)

เมื่อ $\omega_D = \pi T (2n+1)$ เรียกว่าความถี่มัตซูบาระ (Matsubara Frequency) โดย n = 0, 1, 2, 3,... ที่อุณหภูมิใกล้อุณหภูมิวิกฤต $\Delta(T)$ จะมีค่าน้อย ดังนั้นสามารถใช้การประมาณเป็น

$$\frac{1}{N_0 V_0} = 4T \sum_{n=0}^{\omega_D/2\pi T} \int_0^{\omega_D} \frac{d\varepsilon_k}{(\varepsilon_k^2 + \omega_n^2)} \left(\frac{1}{1 + \frac{\Delta^2(T)}{\varepsilon_k^2 + \omega_n^2}} \right) d\varepsilon_k \qquad (2.22)$$

$$=4T\sum_{n=0}^{\omega_{D}/2\pi T}\left[\int_{0}^{\omega_{D}}\frac{d\varepsilon_{k}}{\varepsilon_{k}^{2}+\omega_{n}^{2}}-\int_{0}^{\omega_{D}}\frac{\mathrm{H}^{2}(T)}{(\varepsilon_{k}^{2}+\omega_{n}^{2})}d\varepsilon_{k}\right] \quad (2.23)$$

พิจารณาเทอม 4 $T \sum_{n=0}^{\omega_D/2\pi T} \left[\int_{0}^{\omega_D} \frac{d\varepsilon_k}{\varepsilon_k^2 + \omega_n^2} \right]$ เมื่อค่า $\omega_D >> T_c$ จะได้ $\frac{\omega_D}{T_c} \to \infty$ และสามารถ

ประมาณ

$$\cong 4T \sum_{n=0}^{\omega_D/2\pi} \int_0^\infty \frac{d\varepsilon_k}{\varepsilon_k^2 + \omega_k^2}$$
(2.24)

$$=2\sum_{n=0}^{\omega_D/2\pi}\frac{1}{(2n+1)}$$
(2.25)

$$\cong \ln \left(\frac{2\omega_D \gamma}{\pi T} \right) \tag{2.26}$$

พิจารณาเทอม
$$4T \sum_{n=0}^{\omega_D/2\pi} \int_0^{\omega_D} \frac{\Delta^2(T)}{(\varepsilon_k^2 + \omega_k^2)} d\varepsilon_k$$
 เมื่อค่า $\omega_D >> T_c$ จะได้
 $4T \sum_{n=0}^{\omega_D/2\pi} \int_0^{\omega_D} \frac{\Delta^2(T)}{(\varepsilon_k^2 + \omega_k^2)} d\varepsilon_k \cong 4T \sum_{n=0}^{\infty} \int_0^{\infty} \frac{\Delta^2(T)}{(\varepsilon_k^2 + \omega_k^2)} d\varepsilon_k$ (2.27)

$$\Re \Pi \int_{0}^{\infty} \frac{dx}{\left(x^{2} + a^{2}\right)^{2}} = \frac{\pi}{4a^{3}} \Re \Re \Re$$

$$4T \sum_{n=0}^{\omega_{D}/2\pi} \int_{0}^{\omega_{D}} \frac{\Delta^{2}(T)}{(\varepsilon_{k}^{2} + \omega_{k}^{2})} d\varepsilon_{k} = \frac{\Delta^{2}(T)}{\pi^{2}T^{2}} \sum_{n=0}^{\infty} \frac{1}{(2n+1)}$$
(2.28)

และจาก $\mathcal{G}(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ เรียกว่า รีมันซีตาฟังก์ชัน (Riemann zeta function) ดังนั้น

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)} = 1 + \frac{1}{3^3} + \frac{1}{5^5} + \frac{1}{7^3} + \dots$$
 lérin
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)} = \frac{7}{8} \zeta(3)$$
$$4T \sum_{n=0}^{\omega_D/2\pi T} \int_0^{\omega_D} \frac{\Delta^2(T)}{(\varepsilon_k^2 + \omega_k^2)} d\varepsilon_k = \frac{7}{8} \zeta(3) \frac{\Delta^2(T)}{\pi^2 T^2}$$
(2.29)

2. กรณีที่บริเวณ $T=T_c$ ที่บริเวณนี้ $\Delta(T)=0$ สามารถจัดรูปสมการที่ (2.20) ได้ดังนี้

$$\frac{1}{N_0 V_0} = \int_0^{\omega_p} \frac{\tanh\left(\frac{\varepsilon_k}{2T_c}\right)}{\varepsilon_k} d\varepsilon_k$$
(2.30)

$$= \int_{0}^{\omega_D/2T_c} \frac{\tanh u}{u} du$$
(2.31)

เนื่องจาก $\omega_D >> T_c$ ดังนั้น $\tanh(\omega_D / 2T_c) \approx 1$ และ $\frac{\omega_D}{2T_c} \approx \infty$ ดังนั้น

$$\frac{1}{N_0 V_0} \cong \ln \left(\frac{2\gamma \omega_D}{\pi T_c} \right) \tag{2.32}$$

น้ำสมการที่ (2.32) สมการที่ (2.26) และสมการที่ (2.29) แทนลงในสมการที่ (2.30)

$$\ln\left(\frac{2\gamma\omega_D}{\pi T_c}\right) = \ln\left(\frac{2\gamma\omega_D}{\pi T}\right) - \frac{7}{8}\zeta(3)\frac{\Delta^2(T)}{\pi^2 T^2}$$
(2.33)

$$\ln\left(\frac{T}{T_c}\right) = \frac{7}{8}\varsigma(3)\frac{\Delta^2(T)}{\pi^2 T^2}$$
(2.34)

จาก $x \cong \ln(1+x)$ เมื่อ $x \ll 1$ ดังนั้น $\ln\left(1 + \frac{T - T_c}{T_c}\right) \cong \frac{T - T_c}{T_c}$ เมื่อ T ใกล้ T_c จะได้

$$\left(\frac{T-T_c}{T_c}\right)\Delta(T) + \frac{7}{8}\varsigma(3)\frac{\Delta^2(T)}{\pi^2 T^2} = 0$$
(2.35)

จากสมการที่ (2.35) คล้ายกับสมการกินซ์เบิร์กแลนดาวที่ 1 เมื่อ Δ~Ψ และพิจารณากรณีที่ ตัวนำยวดยิ่งไม่ได้อยู่ในสนามแม่เหล็กภายนอก จะได้ค่า α ขึ้นกับ T และ T และ β ขึ้นกับ T จุ ได้

$$\alpha = -\left(1 - \frac{T}{T_c}\right) \tag{2.36}$$

เมื่อ T และ T, คือ อุณหภูมิใดๆ และอุณหภูมิวิกฤต ตามลำดับ

2.6 ความลึกซาบซึมได้

จากสมการของลอนดอน $\Lambda \vec{j} = -\vec{A}$ หรือ $\nabla X \vec{j} = \frac{-\vec{B}}{\Lambda}$ เมื่อความต้านทานไฟฟ้ามีค่าเป็น ศูนย์และตัวนำอยู่ภายใต้สนามไฟฟ้าการเปลี่ยนแปลงขนาดความหนาแน่นกระแสไฟฟ้าจะขึ้นกับ ขนาดสนามไฟฟ้าที่ให้ สมมติให้ตัวนำวางตัวในระนาบ xy และให้สนามแม่เหล็กมีเฉพา องค์ประกอบตามแนวแกน z คือ B=(0,0,B_z) และเพื่อแก้ปัญหาได้ง่ายจะพิจารณาเฉพาะตัวนำ ยวดยิ่งในแนวแกน x เท่านั้น จากสมการแมกซ์เวลล์ $\nabla X \vec{B} = \mu_0 \vec{j}$ ใส่ curl ทั้งสองข้างของ สมการแล้วแทนค่า $\vec{B} = B_Z \vec{k}$ จะได้ $\frac{d^2}{dx^2} B_Z(x) - \frac{\mu_0}{\Lambda} B_Z(x) = 0$ คำตอบของสมการ คือ $B_Z(x) = B_Z(0) e^{-x/\overline{\Lambda/\mu_0}}$ โดยกำหนดให้ $\lambda_L = \sqrt{\frac{\Lambda}{\mu_0}}$ และเรียก λ_L ว่าความลึกซาบซึมได้ หรือ Penetration Depth(Buckel, 1991; Kittel, 1991)

2.7 ตัวนำยวดยิ่งแบบแม่เหล็ก

ตัวนำยวดยิ่งแบบแม่เหล็กเป็นตัวนำยวดยิ่งที่มีสมบัติทั้งตัวนำยวดยิ่ง และสมบัติทาง แม่เหล็กเกิดจากตัวนำยวดยิ่งถูกเจือด้วยสารเจือแบบแม่เหล็ก มีผลทำให้เกิดสภาพความเป็น แม่เหล็กขึ้นในโครงสร้าง แต่ผลของความเป็นแม่เหล็กทำเกิดการทำลายสภาพนำยวดยิ่งและทำให้ อุณวิกฤตมีค่าลดลงในเบื้องต้นเมื่อพิจารณาที่มาการเกิดสนามแม่เหล็กความสัมพันธ์และค่าคงตัว

$$B = \mu H + \mu M$$
$$\mu_r = \mu / \mu_0$$
$$\chi = \mu_r - 1$$
$$B = \chi M$$

โดย *H* คือ ค่าความเข้มสนามแม่เหล็กภายนอก

M คือ ค่าความเข้มสนามแม่เหล็กภายใน

B คือ ค่าความเข้มสนามแม่เหล็กรวม

μ คือ ค่าซึมซาบได้ทางแม่เหล็กของสาร

 μ_0 คือ ค่าซึมซาบได้ทางแม่เหล็กในสุญญากาศมีค่าเท่ากับ 4 π x10⁻⁷ H/m

χ คือ ค่าสภาพยอมรับได้ทางแม่เหล็ก

การแบ่งชนิดของแม่เหล็ก

แม่เหล็กไดอา (Diamagnetism) คือ สนามแม่เหล็กภายนอกจะเหนี่ยวนำอิเล็คตรอนภาย ในแม่เหล็กไดอาให้สร้างไดโพลที่มีทิศตรงข้ามกับสนามแม่เหล็กภายนอกมีลักษณะเป็นแม่เหล็ก ชั่วคราวเกิดขึ้นเฉพาะช่วงเวลาที่มีแม่เหล็กภาพนอกมากระทำเท่านั้น สภาพแม่เหล็กแบบไดอานี้ พบได้ในวัสดุทุกชนิด แต่มีสภาพแม่เหล็กอ่อนมากจึงถูกสังเกตได้ในกรณีเฉพาะสภาพแม่เหล็ก แบบอื่นไม่เกิดขึ้นเท่านั้น และมีค่าสภาพยอมรับได้ทางแม่เหล็ก *χ* < 0 มีค่าประมาณ -10⁻⁵

แม่เหล็กพารา (Paramagnetism) คือ สภาพแม่เหล็กที่มีไดโพลภายในที่เกิดจาก อิเล็คตรอน และไดโพลมีทิศแบบสุ่ม เมื่อพิจารณาในภาพรวมจึงไม่เห็นของไดโพลเนื่องจากหักล้าง กันหมด แต่ถ้าแม่เหล็กพาราอยู่ในสนามแม่เหล็กจะเหนี่ยวนำให้ไดโพลมีทิศเดียวกันทำให้เกิด สภาพแม่เหล็ก แม่เหล็กพาราถือเป็นแม่เหล็กชั่วคราวเกิดขึ้นเฉพาะช่วงเวลาที่มีแม่เหล็กภาพนอก มากระทำเท่านั้นและมีค่าสภาพยอมรับได้ทางแม่เหล็ก *χ* > 0 มีค่าประมาณ 10⁻⁶-10⁻²

แม่เหล็กเฟอร์โร (Ferromagnetism) คือ สภาพแม่เหล็กที่เกิดขึ้นถาวรเกิดจาก โมเมนต์ ของอิเล็คตรอนที่หมุนรอบตัวเอง ทำให้เกิดไดโพลและมีทิศทางเดียวกันทั้งโดเมนโดยสภาพ แม่เหล็กเฟอร์โรนี้เกิดขึ้นได้โดยไม่ขึ้นอยู่กับสนามแม่เหล็กภายนอกและมีค่าสภาพยอมรับได้ทาง แม่เหล็ก $\chi >> 0$ มีค่าสูงประมาณ 10⁶ แม่เหล็กแอนไทเฟอร์โร (Antiferro magnetism) เมื่ออุณหภูมิต่ำกว่า *T_n* (Neel temperature)จะทำให้แม่เหล็กพาราเปลี่ยนเป็นแม่เหล็กแอนไทเฟอร์โรโดยจะทำให้แม่เหล็กมี จัดเรียงโดเมนใหม่ ไดโพลหักล้างกันหมด และไม่มีสภาพความเป็นแม่เหล็ก

2.8 ตัวนำยวดยิ่งแบบแถบพลังงานเดี่ยว และแบบสองแถบพลังงาน

แถบพลังงานหรือช่องว่างพลังงานของอิเล็กตรอนในสาขาของโซลิดสเตตฟิสิกส์นั้นแบ่ง ออกเป็น Forbidden Band และ Allowed Band ซึ่งได้จากคำนวณคลื่นอิเล็คตรอนที่เคลื่อนที่ใน ผลึกในรูปแบบของควอนตัม(Kittel, 1991) สำหรับตัวนำยวดยิ่งแถบพลังงานหรือช่องว่างพลังงาน เกิดจากการจับคู่กันของอิเล็คตรอนแล้วทำให้เกิดช่องว่างพลังงานซึ่งสามารถเกิดแถบพลังงานได้ หลายรูปแบบ

2.8.1 ตัวน้ำยวดยิ่งแบบแถบพลังงานเดี่ยว

พิจารณาการจับคู่ของอิเล็กตรอน หรือ คู่คูเปอร์ เกิดจากการดูดกันของอิเล็กตรอนที่มี โฟนอนเป็นตัวกลางซึ่งอิเล็กตรอนที่จะจับคู่ได้ต้องมีพลังงานในบริเวณผิวเฟอร์มิและมีโมเมนตัม และสปินตรงกันข้ามทำให้ค่าสปินรวมเป็นศูนย์นอกจากนี้ยังทำให้เกิดแถบพลังงาน ตัวนำยวดยิ่ง แบบดั้งเดิมและแบบอุณหภูมิสูงจะมีความแตกต่างกันในส่วนของขนาดช่องว่างพลังงานที่วัดได้ โดยตัวนำยวดยิ่งแบบดั้งเดิมจะมีค่าอัตราส่วนระหว่างช่องว่างพลังงาน $\Delta(0)$ กับอุณหภูมิวิกฤต เป็น $2(\Delta(0))/T_c = 3.53$ เท่ากันในทุกชนิดของตัวนำยวดยิ่ง แต่สำหรับตัวนำยวดยิ่งอุณหภูมิสูง จะมีค่าที่น้อยกว่าและมากกว่า

2.8.2 ตัวนำยวดยิ่งแบบสองแถบพลังงาน

หลังจากมีการค้นพบสภาพนำยวดยิ่งในแมกนีเซียมไดโบไรด์ (*MgB*₂) (Nagamatsu et al.,2001) (Nagamatsu et al., 2001) ได้มีการทดลองสมบัติทางฟิสิกส์ของตัวนำยวดยิ่ง คือ เป็น ตัวนำยวดยิ่งแบบคลื่นเอส มีช่องว่างพลังงานที่เด่นชัดอยู่สองช่องว่างพลังงาน ดังนั้นจึงมีความ พยายามที่จะอธิบายโดยใช้ทฤษฎี BCSเนื่องจากเป็นตัวนำยวดยิ่งแบบคลื่นเอสแต่ได้มีการ เพิ่มเติมจากหนึ่งแถบพลังงานเป็นสองแถบพลังงานโดยการสมมติให้แต่ละแถบพลังงานมีการเกิด คู่คูเปอร์ที่เหมือนกันและ สามารถแลกเปลี่ยนคู่คูเปอร์ซึ่งกันและกันได้ แต่การคำนวณมีความ ยุ่งยากมาก จึงใช้ทฤษฎีกินซ์เบิร์กแลนดาวมาปรับเปลี่ยนเป็นแบบสองช่องว่างพลังงาน และมีการ ส่งผ่านอนุภาคระหว่างช่องว่างพลังงานทั้งสองตามสมการ

$$F_{SC} = \int d^3 r \left(F_1 + F_{12} + F_2 + \frac{H^2}{8\pi} \right)$$
(2.37)
โดย F_{sc} คือ ความหนาแน่นพลังงานอิสระในสภาวะนำยวดยิ่ง

- *F*₁ คือ ความหนาแน่นพลังงานอิสระของแถบพลังงานที่ 1
- *F*₂ คือ ความหนาแน่นพลังงานอิสระของแถบพลังงานที่ 2
- F₁₂ คือ ความหนาแน่นพลังงานที่เกิดจากอันตรกิริยาระหว่างแถบพลังงานที่ 1 และ 2
- *H* คือ ค่าสนามแม่เหล็กภายนอก

2.9 ฟังก์ชันความไม่สมมาตรของช่องว่างพลังงาน ,f(k)

ในการคำนวณตัวนำยวดยิ่งแบบดั้งเดิมหรือตัวนำยวดยิ่งอุณหภูมิต่ำนั้น ที่บริเวณอุณภูมิ

วิกฤตพบว่าผลการทดลองสอดคล้องกับทฤษฎีคือ $\left. \frac{C_s - C_n}{C_n} \right|_{T=T_c} = \frac{\Delta C}{C_n} \bigg|_{T=T_c} = 1.43$

โดย $C_{_s}$ คือ ค่าความจุความร้อนจำเพาะในสถานะนำยวดยิ่ง

 $C_{\scriptscriptstyle n}$ คือ ค่าความจุความร้อนจำเพาะในสถานะปกติ

แต่ในตัวนำยวดยิ่งอุณหภูมิสูงส่วนใหญ่ผลการทดลองจะไม่สอดคล้อง คือจะมีค่าต่ำกว่า1.43 เมื่อ พิจารณาในรายละเอียดแล้วการคำนวณตัวนำยวดอุณหภูมิต่ำนั้นจะใช้ ตัวนำยวดยิ่งแบบคลื่น s ที่มีช่องว่างพลังงานมีความสมมาตร แต่ในตัวนำยวดยิ่งอุณหภูมิสูงนั้น ช่องว่างพลังงานไม่ สมมาตร (Anisotropic) แบบจำลองของช่องว่างพลังงานแบบไม่สมมาตรรูปทรงรีตามแนวดิ่งได้ถูก นำเสนอโดย(Haas & Maki, 2001) Hass และ Maki (2001) ตามสมการ (Haas & Maki, 2001)

$$\Delta(k) = \frac{\Delta(1 + az^2)}{(1 + a)}$$
(2.38)

โดย $z = \cos \theta$ เมื่อ θ เป็นมุมโพลาร์และ a เป็นตัวแปรความไม่สมมาตรขึ้นกับอัตราส่วน ระหว่าง ช่องว่างพลังงานในแกน z กับระนาบ ab

ภาพประกอบ 11 แบบจำลองช่องว่างพลังงานแบบไม่สมมาตรรูปทรงรีตามแนวดิ่งแบบคลื่นเอส

ที่มา : Haas S.; & Maki K. (2001) Anisotropic s-wave superconductivity in MgB₂. Physical Review B. 65(2):020502

และในปีต่อมา Posazhennikova และคณะ (2002) ได้เสนอช่องว่างพลังงานรูปทรงแพนเค้กหรือ รูปทรงรีตามแนวนอน ตามสมการ (Posazhennikova, Dahm, & Maki, 2002)

ภาพประกอบ 12 แบบจำลองช่องว่างพลังงานแบบไม่สมมาตรรูปทรงแพนเค้กแบบคลื่นเอส

ที่มา : Posazhennikova และคณะ (2002)

และในปีต่อมา Udomsamuthirun และคณะ (2003) ได้คิดค้นสมการที่ครอบคลุมความไม่ สมมาตรทั้งสองแบบ ตามสมการ(Udomsamuthirun, Rakpanich, & Yoksan, 2003)

•••••••

$$\Delta(k) = \frac{1}{2} \sum \frac{V_{kk'} \Delta_{k'}}{\sqrt{\varepsilon_{k'}^2 + \Delta_{k'}^2}} \tanh\left(\frac{\sqrt{\varepsilon_{k'}^2 + \Delta_{k'}^2}}{2T}\right)$$
(2.40)

กำหนดให้

V_{kk} = V₀f(k')f(k)
 เมื่อ f(k) คือฟังก์ชันของความไม่สมมาตร และ V₀ เป็นศักย์ของการเกิดคู่คูเปอร์ เนื่องจากมี
 ความสัมพันธ์รูปแบบเดียวกัน จึงสามารถกำหนดให้ช่องว่างพลังงานเป็นไปตามสมการ

$$\Delta_k = \Delta(T)f(k)$$
จะพบว่าสมการที่ 2.38 มี $f(k) = \frac{1+az^2}{(1+a)} และสมการที่ 2.39 มี$
$$f(k) = \frac{1}{\sqrt{1+az^2}}$$

2.10 งานวิจัยที่เกี่ยวข้อง

จากทฤษฎีกินซ์เบิร์กแลนดาวของตัวนำยวดยิ่งแบบแม่เหล็กแบบแถบพลังงานเดียว จาก การศึกษาพบว่า แม่เหล็กเฟอร์โรและแม่เหล็กแอนไทเฟอร์โรสามารถเกิดในสถานนำยวดยิ่งได้ สมบัติของตัวนำยวดยิ่งแบบแม่เหล็กถูกพิจารณาเมื่อมีอันตรกิริยาระหว่างไอออน และมีคู่คูเปอร์ ผ่านสนามแม่เหล็ก

ภาพประกอบ 13 แสดงถึงการตอบสนองทางแม่เหล็กของตัวนำยวดยิ่ง (a)ตัวนำยวดยิ่งชนิดที่ 1 (b)ตัวนำยวดยิ่งชนิดที่ 2 (c)ตัวนำยวดยิ่งจากแม่เหล็กเฟอร์โร ที่มา : Hampshire DP. (1998) Ferromagnetic and Antiferromagnetic Superconductivity. Physica C: Superconductivity.; 304(1):1-11. (Hampshire, 1998)

จากภาพประกอบ13 ภาพ (a) และภาพ (b) แสดงการตอบสนองทางแม่เหล็กของตัวนำ ยวดยิ่งชนิดที่ 1 และตัวนำยวดยิ่งชนิดที่ 2 ตามลำดับ และภาพ (c) ที่สนามแม่เหล็กมีค่าสูงๆ สามารถพบแม่เหล็กเฟอร์โรจากสภาพนำยวดยิ่ง พิจารณาสมการพลังงานอิสระของแฮล์มโฮล (Halmeholtz Free Energy) ซึ่งสามารถเขียนได้เป็นดังสมการ (Hampshire, 1998)(Hampshire, 1998)

$$F_{s}(H,T) = F_{n} + \alpha |\psi|^{2} + \frac{1}{2}\beta |\psi|^{4} + \frac{1}{2m} |(-i\hbar\nabla - 2e\bar{A})\psi|^{2} + \int H_{s} dB$$
(2.41)

เมื่อ F_s และ F_n คือ พลังงานอิสระของเฮล์มโฮลในสถานะนำยวดยิ่งและสถานะปกติ ตามลำดับ ψ คือ ตัวแปรบอกความเป็นระเบียบ α และ β คือ ค่าคงตัว m คือ มวลของ อิเล็กตรอน A คือศักย์เวกเตอร์ $H_s = \frac{B}{\mu_0 - M_{max}}$ โดยที่ $M = M_n + M_{max}$ และ $M_{max} = \chi H$ เมื่อ B คือ สนามแม่เหล็กสุทธิในตัวนำยวดยิ่ง H คือ สนามแม่เหล็กจากภายนอก และ χ คือ ค่า สภาพยอมรับได้ทางแม่เหล็กโดยสมการพลังงานอิสระของกิ๊บของตัวนำยวดยิ่งแบบแม่เหล็ก สามารถเขียนได้ในรูป $G_{mx}(B,T) = F_N(B,T) - \mu_0 HM$ ดังสมการ $G_{mx}(B,T) = f_N + \alpha |\psi|^2 + \frac{1}{2}\beta |\psi|^4 + \frac{1}{2m} |(-i\hbar\nabla - 2e\bar{A})\psi|^2 + \int (B - \mu_0 M_{max}) \frac{dB}{\mu_0}(B - \mu_0 M)M$ (2.42)

เมื่อประจุในสนามแม่ค่าน้อยๆ เรากำหนดให้

$$\gamma_0 + \gamma_1 B + \gamma_2 \frac{B^2}{2\mu_0} = \int (B - \mu_0 M_{\text{max}}) \frac{dB}{\mu_0} - (B - \mu_0 M) M_{sc} - (B - \mu_0 M) M_{\text{max}} \quad (2.43)$$

เมื่อ γ_0, γ_1 และ γ_2 เป็นค่าสัมประสิทธิ์ สามารถจัดรูปสมการพลังงานอิสระของกิ้บของตัวนำยวด ยิ่งแบบแม่เหล็กใหม่ได้ดังนี้

$$G_{mx}(B,T) = f_N + \alpha |\psi|^2 + \frac{1}{2} \beta |\psi|^4 + \frac{1}{2m} |(-ih\nabla - 2e\bar{A})\psi|^2 + \gamma_0 + \lambda_1 + \gamma_2 \frac{B^2}{2\mu_0}$$
(2.44)

เมื่อแม่เหล็กที่ถูกสร้างโดยประจุ ($\mu_0 M_{\max}$) สนามแม่เหล็กภายนอก ($\mu_0 H$) และสนามที่ถูกสร้าง โดยกระแสยวดยิ่ง ($\mu_0 M_{sc}$) คือ $B = \mu_0 H + \mu_0 M_{sc} + \mu_0 M_{\max}$ โดยที่ค่าความเป็นแม่เหล็กของ ประจุ $M_{\max} = \chi H_{c2} + \chi' (H + M_{sc} - H_{c2})$ ดังนั้นสนามแม่เหล็กลัพธ์ของตัวนำยวดยิ่งสามารถ เขียนได้ดังนี้

$$B = \mu_0(\chi - \chi')H_{c2} + \mu_0(1 + \chi')(H + M_{sc})$$
(2.45)

เมื่อ χ คือ ค่าสภาพยอมรับได้ทางแม่เหล็กและ χ ่คือค่าอนุพันธ์ของค่าสภาพยอมรับได้ทาง แม่เหล็ก ในปี ค.ศ. 2011 ชั่งจันทร์และอุดมสมุทรหิรัญ (Changjan and Udomsamuthirun, 2011) ได้ศึกษาอัตราส่วนสนามแม่เหล็กวิกฤต (Critical Magnetic Field Ratio) ของตัวนำยวดยิ่ง แบบแม่เหล็กที่ขึ้นกับทิศทาง(Changjan & Udomsamuthirun, 2011b)

$$\eta = \frac{B_{c2}}{B_{c1}}$$
(2.46)

เมื่อ η คือ อัตราส่วนสนามแม่เหล็กวิกฤต B_{c1} คือ สนามแม่เหล็กวิกฤตที่ 1 และ B_{c2} สนามแม่เหล็กวิกฤตที่ 2 โดยในงานวิจัยนี้ได้เริ่มศึกษาจากพลังงานอิสระของกิ๊บของตัวนำยวดยิ่ง แบบแม่เหล็กที่ถูกเสนอโดยแฮมป์เชีย (Hampshire, 1998) ซึ่งมีรูปแบบเป็น

$$g(B,T) = f_n + \alpha |\psi|^2 + \frac{1}{2}\beta |\psi|^4 + \frac{1}{2m} \left| \left(-ih\nabla - 2e\vec{A} \right) \psi \right|^2 + \gamma_0 + \gamma_1 \beta + \gamma_2 \frac{B^2}{2\mu_0} (2.47)$$
เมื่อก้าหนดศักย์เวกเตอร์ $\vec{A} = \left[\mu_0 (\chi - \chi') H_{c2} r + \mu_0 (1 + \chi') (H + M_{sc}) r \right] \hat{\theta}$

โดยพิจารณ าในพิกัดทรงกระบอก และสนามแม่เหล็กสุทธิในตัวนำยวดยิ่ง $B = \mu_0 (\chi - \chi') H_{c2} + \mu_0 (1 + \chi') (H + M_{sc})$ สามารถคำนวณค่าสนามแม่เหล็กวิกฤตที่ 1 คือ $B_{c1} = rac{h}{4\kappa^{2}} \ln \kappa$ เมื่อ λ คือ ความลึกซาบซึมได้ของลอนดอน และ κ คือค่ากินซ์เบิร์กแลนดาว พารามิเตอร์ และสามารถคำนวณค่าสนามแม่เหล็กวิกฤตที่ 2 คือ $B_{c2}=rac{\phi_0}{2\pi \xi^2(T)(1+\chi)}$ เมื่อ ξ คือ ความยาวอาพันธ์ของคู่คูเปอร์, ϕ_0 คือ ฟลักซ์ควอนตัม $\phi_0 = rac{\pi h}{c}$ คือ ดังนั้นสามารถหาค่า ้อัตราส่วนสนามแม่เหล็กได้ดังนี้

$$\eta = \frac{2\kappa^2}{(1+\chi)\ln\kappa} = \frac{4\theta\kappa_0^2}{(1+\chi)\ln\theta\kappa_0^2}$$
(2.48)

ในกรณีที่ _K >> 1 ค่าอัตราส่วนสนามแม่เหล็กวิกฤตจะประมาณได้

$$\eta = \frac{2\theta\kappa_0^2}{(1+\chi)(\sqrt{\theta}\kappa_0 - 1)}$$
(2.49)

เมื่อ $\kappa_0 = \frac{\lambda_0}{\xi_0}$ เป็นค่ากินเบิร์กแลนดาวพารามิเตอร์และ $\kappa^2 = \theta \kappa_0^2 \, \vec{\mathbb{g}} \, \vartheta \, \theta = \frac{\gamma_2 (1 + \chi')}{\left\langle f^2(\hat{k}) \right\rangle}$ โดยที่ γ_2

เป็นค่าสัมประสิทธิ์ และ $\left\langle f^{\,2}(\hat{k})
ight
angle$ เป็นค่าเฉลี่ยของฟังก์ชันที่ขึ้นกับทิศทางยกกำลังสอง

ภาพประกอบ 14 แสดงความสัมพันธ์ระหว่างอัตราส่วนสนามวิกฤตและสภาพยอมรับได้ทาง แม่เหล็กของตัวนำยวดยิ่งแบบแม่เหล็กที่ขึ้นกับทิศทาง

ที่มา: (Changjan & Udomsamuthirun, 2011a) The Critical Magnetic Field of Anisotropic two-band Magnetic Superconductors. Solid State Communications. 151(14): 988-992.

จากภาพประกอบ 14 ได้ใช้ค่ากินซ์เบิร์กแลนดาวพารามิเตอร์ 2 ค่า คือ $\kappa_0 = 57$ และ $\kappa_0 = 118$ ซึ่งเป็นค่ากินซ์เบิร์กแลนดาวพารามิเตอร์ของตัวนำยวดยิ่ง Y123 และ Hg1223 ตามลำดับ มี 3 กรณีสำหรับค่าสภาพยอมรับได้ทางแม่เหล็ก คือ กรณีตัวนำยวดยิ่งแบบไร้แม่เหล็ก ($\chi = 0$) กรณีที่เป็นแม่เหล็กไดอา ($\chi < 0$) และกรณีที่เป็นแม่เหล้กเฟอร์โร ($\chi > 0$) เมื่อ θ คือ พารามิเตอร์ที่ขึ้นกับทิศทาง ประกอบไปด้วย $\theta = 1$, $\theta > 1$, $\theta < 1$ เป็นกรณีของทิศทางที่ไร้ แม่เหล็ก กรณีที่ขึ้นกับทิศทางสูงและกรณีที่มีแม่เหล็กสูงตามลำกับ จากภาพประกอบที่ 14 ค่า อัตราส่วนสนามแม่เหล็กวิกฤตจะเพิ่มขึ้นเมื่อ κ_0 และ θ เพิ่มขึ้นโดยค่าอัตราส่วนสนามวิกฤตที่สูง ที่สุดจะพบตัวนำยวดยิ่งแบบแม่เหล็กไดอา ($\chi < 0$) ซึ่งเป็นค่าที่ขึ้นกับทิศทางสูง ส่วนค่าอัตราส่วน สนามวิกฤตที่สูง

บทที่ 3 วิธีการดำเนินงานวิจัย

ในการดำเนินงานวิจัยเรื่อง การศึกษาความลึกซึมซาบของตัวนำยวดยิ่งแบบขึ้นกับทิศทาง ชนิดคลื่นเอสด้วยทฤษฎีกินซ์เบิร์กแลนดาว มีวิธีการดำเนินงานตามขั้นตอนดังต่อไปนี้

3.1 ตัวนำยวดยิ่งที่ขึ้นกับทิศทางคลื่นชนิดเอส โดยใช้ทฤษฏีกินซ์เบิร์กแลนดาว

3.1.1 ตัวนำยวดยิ่งชนิดคลื่นเอส ตัวนำยวดยิ่งเมื่อพิจารณาจากสถานะ โมเมนตัม เชิงมุมสามารถมีค่าเป็น l = 0,1,2,3 ซึ่งเกิดจากระบบของคู่คูเปอร์ โดยแบบคลื่นหรือพื้นผิวเฟอร์มี จะเป็น s, p, d, f ตามลำดับและการที่จะเป็นพื้นผิวชนิดใดจะขึ้นอยู่กับความสอดคล้องกับผลการ ทดลอง เมื่อพิจารณาในรายละเอียด ในทฤษฎีควอนตัมฟังก์ชันคลื่นของอิเล็กตรอน2ตัวในfree space จะถูกเขียนในรูปแบบผลคูณ ของ spatial part ; ψ และ spin part ; χ พังก์ชั่นคลื่นรวม ของคู่อิเล็กตรอนซึ่งเป็นอนุภาคเฟอร์มิออนที่มี $s = \frac{1}{2}$ เมื่อพิจารณาการแลกเปลี่ยนพลังงานระหว่าง อิเล็กตรอน จะเป็นฟังก์ชั่นแบบ antisymmetric ซึ่งสามารถเขียนได้ 2 แบบคือ

$$\psi_{A,s=1} = \psi_{odd} \chi_{even,s=1} \quad (2S+1=3 \text{ spin triplet}) \tag{3.1}$$

$$\psi_{A,s=0} = \psi_{even} \chi_{odd,s=0} \quad (2S+1=1 \text{ spin singlet}) \tag{3.2}$$

เนื่องจากมีอิเล็กตรอน 2 ตัวและมีสปิน $+\frac{1}{2}$ และ $-\frac{1}{2}$ จึงมีผลรวมของสปินที่เป็นไปได้คือ 0 และ 1 (ตามหลักการกีดกันของเพาลีจะมีสปินตรงกันข้าม) ดังนั้นเงื่อนไขที่มีโอกาสเป็นไปได้ มากกว่าคือสปินเท่ากับ0 จะเป็นไปตามสมการที่ 3.2 ดังนั้นส่วนของ spatial part ;Y จึงเป็นแบบ even เมื่อพิจารณาในส่วน spatial part ; ψ ซึ่งเป็นฟังก์ชัน $\psi = R(r)A(\theta,\phi)$ คือ ψ เป็นeven มีผลทำให้ orbital part $A(\theta,\phi)$ เป็นeven คือorbit angular momentum ; l เป็นเลขคู่คือ l = 0,2จะมีพื้นผิวเฟอร์มีแบบคลื่น s และ d ตามลำดับ และในกรณีที่ l = 1,3จะมีพื้นผิวเฟอร์มีแบบคลื่น p และ f ตามลำดับ(อุดมสมุทรหิรัญ, 2016)

3.1.2 ตัวนำยวดยิ่งที่ขึ้นกับทิศทาง anisotropic superconductor คือตัวนำยวดยิ่ง เมื่อพิจารณาพื้นผิวเฟอร์มีในทิศทางต่างๆแล้วมีค่าพลังงานไม่เท่ากันทั้งหมด แต่ถ้าพลังงานมีค่า เท่ากันในทุกทิศทางแล้วจะเป็นแบบ isotropic superconductor 3.1.3 ตัวน้ำยวดยิ่งชนิดคลื่นเอสที่ขึ้นกับทิศทาง คือ ตัวน้ำยวดยิ่งที่มีสถานะ
 โมเมนตัมเชิงมุม *l* = 0 จากระบบของคู่คูเปอร์ โดยพื้นผิวเฟอร์มีจะเป็นคลื่นชนิด *s*

3.2 ความลึกซาบซึมได้โดยใช้ทฤษฏีกินซ์เบิร์กแลนดาวของตัวนำยวดยิ่งที่ขึ้นกับทิศทาง คลื่นชนิดเอส

คือ ความลึกของสนามแม่เหล็กที่ซึมเข้าไปในตัวนำยวดยิ่ง ที่มีสถานะเชิงมุม *l*=0 จาก ระบบของคู่คูเปอร์ โดยพื้นผิวเฟอร์มีจะเป็นคลื่นชนิด ^s การศึกษาความลึกซาบซึมได้ ถือว่ามี ความสำคัญที่ส่งผลต่อสภาพนำยวดยิ่งในการคำนวณนั้นสามารถพิจารณาจุลภาค (Microscopic approach) ตามทฤษฎี BCS หรือ แบบมหภาค (Macroscopic approach) ซึ่งทั้งสองแนวทาง ให้ผลการคำนวณที่ตรงกัน ในที่นี้จะทำการศึกษารายละเอียดในรูปแบบของมหภาค โดยแบ่ง รูปแบบการคำนวณเป็น 3แบบตามหัวข้อดังต่อไปนี้

- 1. การคำนวณด้วยวิธี กินซ์เบิร์กแลนดาว
- 2. การคำนวณด้วยวิธีตัวดำเนินการโมเมนตัม
- 3. การคำนวณด้วยวิธีแบบดั้งเดิม

3.2.1 การคำนวณในรูปแบบมหภาคด้วยวิธี กินซ์เบิร์กแลนดาว คือ การพิจารณาจากสภาพความ เป็นระเบียบ ซึ่งได้จากการคิดผลรวมของพลังงานอิสระทั่วทั้งก้อนของตัวน้ำตามสมการ

$$F_{sc}[\psi_1,\psi_2] = \int d^3 r f_{sc}$$
(3.3)

เมื่อนำผลรวมของพลังงานอิสระ ^Fsc เปรียบเทียบกับ ศักย์เวกเตอร์ Ā จะได้สมการความ หนาแน่นกระแสไฟฟ้า ^{Jี} ซึ่งสมการนี้เรียกว่า สมการกินซ์เบิร์กแลนดาวที่สอง

$$\frac{\partial F_{sc}}{\partial \vec{A}} = \vec{J} = \frac{2}{2m_1} \left| -i\hbar\nabla - 2q\vec{A} \right) \psi_1 \left| (-2q\psi_1) + \frac{2}{2m_2} \left| -i\hbar\nabla - 2q\vec{A} \right) \psi_2 \left| (-2q\psi_2) + \varepsilon_1 \left((i\hbar\vec{\nabla} - 2q\vec{A})\psi_1^* (-2q\psi_2) + (-i\hbar\vec{\nabla} - 2q\vec{A})\psi_2 (-2q\psi_1^*) + (i\hbar\vec{\nabla} - 2q\vec{A})\psi_2^* (-2q\psi_1) + (-i\hbar\vec{\nabla} - 2q\vec{A})\psi_1 (-2q\psi_2^*) \right) \right|$$
(3.4)

เมื่อพิจารณาฟังก์ชันความไม่สมมาตรของช่องว่างพลังงาน f(k) มีผลต่อ ตัวแปรความ เป็นระเบียบของช่องว่างพลังงาน ψ จะทำให้เกิดความสัมพันธ์ $\psi\left\langle f_{1}(\hat{k})
ight
angle$ ซึ่งมีผลทำให้ ช่องว่างพลังงานมีรูปร่างที่เปลี่ยนไป

$$\vec{J} = \frac{2q\psi_1}{m_1} \langle f_1^2(k) \rangle |i\hbar\nabla + 2q\psi_1 \vec{A}| + \frac{2q\psi_2}{m_2} \langle f_2^2(\hat{k}) \rangle |i\hbar\nabla + 2q\psi_2 \vec{A}|
+ \varepsilon_1 \langle f_1(\hat{k}) f_2(\hat{k}) \rangle ((i\hbar\nabla - 2q\vec{A})(-2q\psi_2\psi_1^* - 2q\psi_1^*\psi_2))
+ (-i\hbar\nabla - 2q\vec{A})(-2q\psi_1\psi_2^* - 2q\psi_1\psi_2^*)) (3.5)$$

จากสมการแม็กซ์เวล $\vec{J} = \frac{1}{\mu_0} (\nabla \times \vec{B})$ และ ทำการ $\nabla \times$ ที่สมการที่ (3.5)

$$\nabla \times \vec{J} = \frac{1}{\mu_0} \nabla \times \nabla \times \vec{B} = \left[\frac{4q^2 |\psi_1|^2}{m_1} \left\langle f_1^2(\hat{k}) \right\rangle + \frac{4q^2 |\psi_2|^2}{m_2} \left\langle f_2^2(\hat{k}) \right\rangle + \varepsilon \left\langle f_1(\hat{k}) f_2(\hat{k}) \right\rangle \left(8q^2 \psi_2 \psi_1^* + 8q^2 \psi_1 \psi_2^* \right) \right] \vec{B} \quad (3.6)$$

พิจารณาที่ 1มิติ $abla imes
abla imes \overline{B} = rac{d^2 \overline{B}(x)}{dx^2}$ แทนค่าในสมการที่ (3.6)

$$\frac{1}{\mu_{0}}\nabla\times\nabla\times\bar{B} - \left[\frac{4q^{2}|\psi_{1}|^{2}}{m_{1}}\left\langle f_{1}^{2}(\hat{k})\right\rangle + \frac{4q^{2}|\psi_{2}|^{2}}{m_{2}}\left\langle f_{2}^{2}(\hat{k})\right\rangle + \varepsilon\left\langle f_{1}(\hat{k})f_{2}(\hat{k})\right\rangle 8q^{2}(\psi_{2}\psi_{1}^{*}+\psi_{1}\psi_{2}^{*})\right]\bar{B} = 0$$

$$\frac{1}{\mu_{0}}\frac{d^{2}\bar{B}(x)}{dx^{2}} - \left[\frac{4q^{2}|\psi_{1}|^{2}}{m_{1}}\left\langle f_{1}^{2}(\hat{k})\right\rangle + \frac{4q^{2}|\psi_{2}|^{2}}{m_{2}}\left\langle f_{2}^{2}(\hat{k})\right\rangle + \varepsilon\left\langle f_{1}(\hat{k})f_{2}(\hat{k})\right\rangle 8q^{2}(\psi_{2}\psi_{1}^{*}+\psi_{1}\psi_{2}^{*})\right]\bar{B} = 0$$

$$(3.7)$$

เมื่อจัดสมการ (3.7) ให้อยู่ในรูปมาตรฐาน $rac{d^2ec{B}(x)}{dx^2} - rac{1}{\lambda^2}ec{B}(x) = 0$ จะได้

$$\frac{1}{\lambda^{2}} = 16q^{2}\mu_{0} \left[\frac{|\psi_{1}|^{2} \langle f_{1}^{2}(\hat{k}) \rangle}{m_{1}} + \frac{|\psi_{2}|^{2} \langle f_{2}^{2}(\hat{k}) \rangle}{m_{2}} + \varepsilon' \langle f_{1}(\hat{k}) f_{2}(\hat{k}) \rangle \langle \psi_{2} \psi_{1}^{*} + \psi_{1} \psi_{2}^{*} \rangle \right]$$
(3.8)

3.2.2 การคำนวณด้วยวิธีตัวดำเนินการโมเมนตัม

จากตัวนำเนินการโมเมนตัมที่กระทำต่อ ความเป็นระเบียบของช่องว่างพลังงาน $-i\hbar {d\psi\over dx}$ และ โมเมนตัม $P=mar{v}+qar{A}$ จะได้ความสัมพันธ์

$$-i\hbar\frac{d\psi}{dx} = (m\bar{\nu} + q\bar{A})\psi$$
(3.9)

กำหนดให้ $\psi = e^{ikx} = e^{i\phi(x)}$ จะได้

$$-i\hbar \frac{de^{i\phi(x)}}{dx} = (m\vec{v} + q\vec{A})e^{i\phi(x)}$$
(3.10)

ทำการเทียบอนุพันธ์กับ dxจะได้

$$\hbar d\phi(x) = (m\vec{v} + qA)dx \tag{3.11}$$

ทำการอินทริเกรตวงปิดเชิงเส้นสมการที่ (3.11)จะได้

$$\hbar \oint d\phi(x) = \oint (m\bar{\nu} + q\bar{A})dx \tag{3.12}$$

พิจารณาผลรวมของฟลักซ์แม่เหล็กในพื้นที่วงปิดจะมีค่าเป็นศูนย์∮*dφ*(x)=0จะได้

$$\oint m\vec{v}dx + \oint q\vec{A}dx = 0 \tag{3.13}$$

ความเร็วและความหนาแน่นกระแสมีความสัมพันธ์; $ar{v}=rac{ar{J}}{nq}$ แทนใน (3.13)

และใช้ทฤษฎี stoke theorem จะได้

$$\oint \frac{m\bar{J}}{nq} dx + q \int_{s} \nabla \times \bar{A} ds = 0$$
(3.14)

พิจารณารูปทรงของตัวนำยวดยิ่งตาม ภาพที่3-1 และทำการอินทริเกตสมการ(3.14)จะได้

$$\frac{m}{nq}\bar{J}L + qL\int\bar{B}dx = 0 \tag{3.15}$$

การคำนวณแบบที่2.1ทำการ∇× ที่สมการที่ (3.15)

$$\frac{m}{nq}\nabla \times \vec{J} + q\nabla \times \int \vec{B}dx = 0$$
(3.16)

สมการแมกซ์เวล $ar{J} =
abla imes ar{B}$ จะได้

$$\frac{1}{\mu_0} \nabla \times \nabla \times \vec{B} + \frac{nq^2}{m} \vec{B} = 0$$
(3.17)

ค่าความหนาแน่นต่อมวลสำหรับตัวนำยวดยิ่ง2แถบพลังงานมีค่าเป็น

$$\left[\frac{4|\psi_1|^2}{m_1}\left\langle f_1^2(\hat{k})\right\rangle + \frac{4|\psi_2|^2}{m_2}\left\langle f_2^2(\hat{k})\right\rangle + 8\varepsilon\left\langle f_1(\hat{k})f_2(\hat{k})(\psi_2\psi_1^* + \psi_1\psi_2^*\right\rangle\right] = \frac{n}{m}$$
(3.18)

จากสมการ (3.17) กำหนดค่าตัวแปรความลึกทราบซึมได้ λ

 $\frac{d^2\bar{B}}{dx^2} + \frac{1}{\lambda^2}\bar{B} = 0$ จะได้ค่าความลึกทราบซึมได้ เหมือนการคำนวณในรูปแบบมหภาคด้วยวิธี กินซ์เบิร์กแลนดาว การคำนวณแบบที่2.2 ใช้การพิจารณาจากความลึกซาบซึมได้จาก $\int_{x}^{x+\lambda} \bar{B}dx = \lambda \bar{B}$ คือ สนามแม่เหล็กจะมีเฉพาะบริเวณ λ เท่านั้น เมื่อนำไปแทนค่าในสมการที่ (3.15)จะได้

$$\frac{m}{nq}\vec{J}L + q\vec{B}L\lambda = 0 \tag{3.19}$$

$$\vec{B} = -\frac{m\vec{J}}{nq^2\lambda}$$
(3.20)

จากกฎของแอมแปร์ $ar{B}=rac{\mu_0(Nar{I})}{L}$ และ $Nar{I}=ar{J}L\lambda$ จะได้

$$\bar{B} = -\mu_0 \bar{J}\lambda \tag{3.21}$$

จากสมการที่ (3.20) และสมการที่ (3.21)

$$-\frac{m\vec{J}}{nq^2\lambda} = -\mu_0\vec{J}\lambda \tag{3.22}$$

$$\frac{1}{\lambda^2} = q^2 \mu_0 \frac{n}{m}$$
(3.23)

เมื่อแทนค่า
$$\frac{n}{m} = \left[\frac{4|\psi_1|^2}{m_1} \left\langle f_1^2(\hat{k}) \right\rangle + \frac{4|\psi_2|^2}{m_2} \left\langle f_2^2(\hat{k}) \right\rangle + 8\varepsilon \left\langle f_1(\hat{k}) f_2(\hat{k})(\psi_2\psi_1^* + \psi_1\psi_2^* \right\rangle \right]$$

ในสมการที่ (3.23) จะได้ผลที่ตรงกับการคำนวณรูปแบบมหภาคด้วยวิธี กินซ์เบิร์กแลนดาว

3.2.3 การคำนวณด้วยวิธีแบบดั้งเดิม จากความสัมพันธ์ ของการเคลื่อนที่ของประจุใน สนามแม่เหล็กและ แรงเข้าสู่ศูยน์กลางของการเคลื่อนที่แบบวงกลม เมื่อพิจารณาอิเล็คตรอนใน ตัวนำยวดยิ่งที่อุณหภูมิสูงกว่าอุณหภูมิวิกฤตแล้วจะมีการเคลื่อนที่ในรูปแบบ3มิติ ในกรณีที่มี อุณหภูมิต่ำกว่าอุณหภูมิวิกฤตแล้วจะมีการจับคู่กันของอิเล็กตรอน และมีการเคลื่อนที่ในรูปแบบ2 มิติ

ภาพประกอบ 15 แสดงการเคลื่อนที่ในแบบ2มิติของอิเล็คตรอนคู่คูเปอร์ สภาวะนำยวดยิ่งใน ขณะที่ไม่มีสนามแม่เหล็กภายนอกและกระแสไฟฟ้าที่อุณหภูมิต่ำกว่าอุณภูมิวิกฤต

ซึ่งถ้านำตัวนำยวดยิ่งอยู่ในสนามแม่เหล็กที่มีค่าน้อยกว่าสนามแม่เหล็กวิกฤตแล้วจะมีผลทำให้ อิเล็กตรอนเคลื่อนที่แบบวงกลมในระนาบเดียวกัน ดังภาพประกอบ 16

ถึงแม้ว่าประจุจะมีแนวการเคลื่อนที่ต่างกัน ในช่วงเวลาก่อนที่จะมีสนามแม่เหล็กภายนอกมา กระทำเมื่อประจุเคลื่อนที่ในสนามแม่เหล็กจะทำให้เกิดแรงสู่ศูนย์กลาง

$$qv\frac{B}{2} = \frac{mv^2}{r}$$
(3.24)

คูณด้วย $\pi r^2 nq$ ทั้งสองข้างของสมการ

$$\pi r^2 n q^2 \frac{B}{2} = \frac{\pi r^2 n q m v}{r} \tag{3.25}$$

ความหนาแน่นกระแส J = nqv

$$\pi r^2 n q^2 B = -2\pi r m J \tag{3.26}$$

ความหนาแน่นกระแส J เกิดจากผลรวมย่อยของ ความหนาแน่นกระแส j และพิจารณาการ หักล้างของ j จะเหลือเพียงบริเวณขอบนอกและสรุปได้ว่า $\sum j = J$ ดังภาพประกอบ 17

ภาพประกอบ 16 ความหนาแน่นกระแส J เกิดจากผลรวมย่อยของความหนาแน่นกระแส \dot{J}

ทำการรวมความหนาแน่นกระแส j ทั้งก้อนของเนื้อสารโดยใช้อินทิเกรตวงปิด

π

$$T^2 nq^2 B = -m \oint J dr \tag{3.27}$$

ใช้ทฤษฎี stoke theorem ; $\oint J \cdot dr = \iint (\nabla \times J) \cdot ds$

$$\frac{nq^2B}{m} = -\frac{1}{\pi r^2} \iint (\nabla \times J) \cdot ds \tag{3.28}$$

จะได้ผลลัพธ์

$$\frac{nq^2B}{m} = -(\nabla \times \nabla \times B) \tag{3.29}$$

และสามารถจัดให้อยู่ในรูปสมการมาตรฐาน $\frac{d^2 \vec{B}}{dx^2} + \frac{1}{\lambda^2} \vec{B} = 0$ สมการที่ (3.29) ได้ผลการ คำนวณที่ตรงกับการคำนวณรูปแบบมหภาคด้วยวิธี กินซ์เบิร์กแลนดาว และ การคำนวณด้วยตัว ดำเนินการโมเมนตัม นอกจากนี้แล้วการคำนวณในรูปแบบดั้งเดิมสามารถทำให้พิจารณาการเกิด ปรากฏการณ์ ไมสเนอร์ ได้ชัดเจนขึ้น คือการเคลื่อนที่เป็นวงกลมของคู่อิเล็กตรอนเนื่องจาก สนามแม่เหล็กภายนอก แล้วทำให้เกิดสนามแม่เหล็กภายในที่มีทิศตรงข้ามกับสนามแม่เหล็ก ภายนอก ตามภาพประกอบ 18

ภาพประกอบ 17 การเคลื่อนที่ของอิเล็คตรอนคู่คูเปอร์ ในสภาวะนำยวดยิ่งโดย H_{external} < H_c และ สร้างสนามแม่เหล็กภายในทิศตรงข้ามกับสนามแม่เหล็กภายนอก

เมื่อได้ ค่าความลึกซาบซึมได้ จากการคำนวณแล้วนำมาเปรียบเทียบกับผลการทดลอง โดยเพิ่มตัวแปรรูปแบบของพังก์ชันความไม่สมมาตร และลำดับของช่องว่างพลังงาน โดยปรับ ค่าตัวแปรเพื่อให้ค่าจากการคำนวณใกล้เคียงกับค่าที่ได้จากผลการทดลองโดยเปรียบกับ แม็กนี เซียมไดโบไรด์ *MgB*₂ และ แคลเซียมอะลูมิเนียมซิลิคอน *CaAlSi* ดังที่จะกล่าวในหัวข้อต่อไป

3.3 การศึกษาความลึกซาบซึมได้ในสารตัวอย่าง

3.3.1 ตัวนำยวดยิ่งแม็กนีเซียมไดโบไรด์ MgB₂

(*MgB*₂ ;Sample A,B), ในโอเบียมในไตร(NbN) จากการทดลองเปรียบเทียบกับผลการคำนวณใน รูปแบบ ต่างๆ

ที่มา: Jin และคณะ(2006) Energy gap, penetration depth, and surface resistance of MgB₂ thin films determined by microwave resonator measurements. Physical Review B 66

3.3.2 ตัวนำยวดยิ่ง แคลเซียมอะลูมิเนียมซิลิคอน *CaAlSi*

โดย กำหนดค่า $\psi_1 = 14, \psi_2 = 4, \eta = 20000, \varepsilon = 1.5$ ตามคุณสมบัติของ แคลเซียม อะลูมิเนียมซิลิคอน *CaAlSi* แล้วทำการปรับเปลี่ยน ค่าคงตัว *a,b* ให้เหมาะสม เพื่อให้ได้ค่า λ ที่ สอดคล้องกับผลการทดลอง จากภาพประกอบที่ 4-1 แสดงถึงความสัมพันธ์ระหว่าง $\frac{\lambda^2(0)}{\lambda^2(T)}$ กับ $\frac{T}{T_c}$ ที่อุณหภูมิวิกฤต 6.2 K นำมาปรับให้อยู่ในรูปแบบความสัมพันธ์ระหว่าง λ (*T*) กับ $\frac{T}{T_c}$ ดัง ภาพประกอบ 20

ภาพประกอบ 19 ความสัมพันธ์ระหว่าง $rac{\lambda^2(0)}{\lambda^2(T)}$ กับ $rac{T}{T_C}$ ของแคลเซียมอะลูมิเนียมซิลิคอน

ที่มา: Prozorov และคณะ (2006) Anisotropic s-wave superconductivity in CaAlSi single crystals from penetration depth measurements. Physical Review B 73(18): 184523 3.4 การคำนวณเชิงตัวเลข

การคำนวณในตัวนำยวดยิ่งจะต้องคำนึงถึงผลของความไม่สมมาตรของช่องว่างพลังงาน ตามทฤษฎี BCS ใช้ช่องว่างพลังงานรูปทรงกลมตามลักษณะของคลื่นเอส แต่ในตัวนำยวดยิ่งอุณ ภูมิสูงช่องว่างพลังงานไม่สมมาตร ซึ่งแบบจำลองช่องว่างพลังงานที่ไม่สมมาตรรูปทรงรีตาม แนวดิ่งถูกนำเสนอโดยฮาสและมากิ(Hass and Maki, 2002) และ แบบจำลองช่องว่างพลังงาน รูปทรงรีตามแนวนอนหรือแพนเค้กถูกนำเสนอโดยโพเซสเฮนนิโควาและคณะ (Posazhennikova et al., 2002) นำสมการที่คำนวณได้มาคำนวณเชิงตัวเลขตามแบบจำลองของตัวนำยวดยิ่งที่ ขึ้นกับทิศทางและอาศัยการเชื่อมโยง ตัวแปรความเป็นระเบียบตามทฤษฎีกินซ์เบิร์กแลนดาว และ ช่องว่างพลังงานตามทฤษฎี BCS โดยพิจารณาว่า

$$\Delta \approx \psi \tag{3.30}$$

พิจารณาความไม่สมมาตรที่มีผลต่อตัวแปรความเป็นระเบียบ

$$\psi \approx \psi(T)f(k) \tag{3.31}$$

แทนสมการที่ (3.30) ใน (3.31) จะได้

$$\Delta_k \approx \Delta(T) f(k) \tag{3.32}$$

จากสมการที่(3.32) สามารถกำหนดรูปแบบของความไม่สมมาตร และลำดับของช่องว่างพลังงาน หรือตัวแปรความเป็นระเบียบได้ดังตารางต่อไปนี้

แบบที่	ความไม่สมมาตรของ	ความไม่สมมาตรของ	สัญลักษณ์	
	Δ_1, ψ_1	$\Delta_2, {arphi}_2$		
1	แพนเค้ก	แพนเค้ก	$\Delta_1 f_p(k)$, $\Delta_2 f_p(k)$	
2	แพนเค้ก	ทรงรี	$\Delta_1 f_p(k)$, $\Delta_2 f_e(k)$	
3	ทรงรี	แพนเค้ก	$\Delta_1 f_e(k)$, $\Delta_2 f_p(k)$	
4	ทรงรี	ทรงรี	$\Delta_1 f_e(k)$, $\Delta_2 f_e(k)$	

ตาราง 1 รูปแบบลำดับของช่องว่างพลังงานและรูปแบบความไม่สมมาตรของตัวนำยวดยิ่ง

แบบ2ช่องว่างพลังงาน

จากตาราง 1 ทำให้สามารถทดลองค่าความไม่สมมาตรรูปแบบต่างๆ ในช่องว่างพลังงาน เพื่อ หาค่าความลึกซามซึมได้จากการคำนวณตามสมการที่ (4.6) เปรียบเทียบกับค่าความลึกซาบ ซึมได้ที่เป็นผลจากการทดลอง ดังต่อไปนี้

3.4.1 การคำนวณแบบที่1 ค่าเฉลี่ยความไม่สมมาตรแบบแพนเค้ก-แพนเค้ก

การหาค่าเฉลี่ยความไม่สมมาตรแบบแพนเค้ก-แพนเค้ก การคำนวณใช้รูปแบบที่1 จาก ตาราง1 สำหรับช่องว่างพลังงานที่1รูปทรงแพนเค้กมีรูปแบบเป็น $f(k) = \frac{1}{\sqrt{1+az^2}}$ และ ช่องว่าง พลังงานที่2 รูปทรงแพนเค้กมีรูปแบบเป็น $f(k) = \frac{1}{\sqrt{1+az^2}}$ นำมาแทนค่าลงในสมการที่ (3.8)ดัง ขั้นตอนต่อไปนี้

กำหนดให้
$$f_{p1}(\theta) = \frac{1}{\sqrt{1 + a\cos^2 \theta}}$$
 จะได้

$$\left\langle f_{p1}^2(\theta) \right\rangle = \frac{1}{2} \int_0^{\pi} \sin \theta \frac{1}{1 + a\cos^2 \theta} d\theta$$
(3.33)

ก้ำหนดให้
$$f_{p2}(\theta) = \frac{1}{\sqrt{1+b\cos^2\theta}}$$
 จะได้
 $\left\langle f_{p2}^2(\theta) \right\rangle = \frac{1}{2} \int_0^{\pi} \sin\theta \frac{1}{1+b\cos^2\theta} d\theta$ (3.34)

และค่าเฉลี่ยความไม่สมมาตรแบบแพนเค้ก-แพนเค้ก กรณี $f_{_{p1}}(heta)f_{_{p2}}(heta)$

$$\left\langle f_{p1}(\theta)f_{p2}(\theta)\right\rangle = \frac{1}{2}\int_{0}^{\pi}\sin\theta\left(\frac{1}{\sqrt{1+a\cos^{2}\theta}}\right)\left(\frac{1}{\sqrt{1+b\cos^{2}\theta}}\right)d\theta$$
 (3.35)

3.4.2 การคำนวณแบบที่ 2 หาค่าเฉลี่ยความไม่สมมาตรแบบแพนเค้ก-ทรงรี หาค่าเฉลี่ยความไม่สมมาตรแบบแพนเค้ก-ทรงรี การคำนวณใช้รูปแบบที่2 จากตาราง1 สำหรับช่องว่างพลังงานที่1รูปทรงแพนเค้กมีรูปแบบเป็น $f(k) = \frac{1}{\sqrt{1+az^2}}$ และ ช่องว่างพลังงาน ที่2 รูปทรงรีมีรูปแบบเป็น $f_{e^2}(\theta) = \frac{1+b\cos^2\theta}{1+b}$ นำมาแทนค่าลงในสมการที่ (3.8)ดังขั้นตอน ต่อไปนี้

กำหนดให้ $f_{_{p1}}(\theta) = \frac{1}{\sqrt{1 + a\cos^2{\theta}}}$ จะได้

$$\left\langle f_{p1}^{2}(\theta) \right\rangle = \frac{1}{2} \int_{0}^{\pi} \sin\theta \frac{1}{1 + a\cos^{2}\theta} d\theta$$
 (3.36)

หาค่าเฉลี่ยความไม่สมมาตรแบบทรงรี กรณี $f_{e^2}(\theta)$

กำหนดให้
$$f_{e2}(\theta) = \frac{1+b\cos^2\theta}{1+b}$$
 จะได้
 $\left\langle f_{e2}^2(\theta) \right\rangle = \frac{1}{2} \int_0^{\pi} \sin\theta \left(\frac{1+b\cos^2\theta}{1+b}\right)^2 d\theta$ (3.37)

หาค่าเฉลี่ยความไม่สมมาตรแบบแพนเค้ก-ทรงรี กรณี $f_{p1}(heta)f_{e2}(heta)$

$$\left\langle f_{p1}(\theta)f_{e2}(\theta)\right\rangle = \frac{1}{2}\int_{0}^{\pi}\sin\theta\left(\frac{1}{1+a\cos^{2}\theta}\right)\left(\frac{1+b\cos^{2}\theta}{1+b}\right)d\theta$$
 (3.38)

3.4.3 การคำนวณแบบที่ 3 หาค่าเฉลี่ยความไม่สมมาตรแบบทรงรี-แพนเค้ก หาค่าเฉลี่ยความไม่สมมาตรแบบทรงรี-แพนเค้ก การคำนวณใช้รูปแบบที่3 จากตาราง1 สำหรับช่องว่างพลังงานที่1รูปทรงรีมีรูปแบบเป็น $f_{e^1}(\theta) = rac{1+a\cos^2 heta}{1+a}$ และ ช่องว่างพลังงานที่2 รูปทรงแพนเค้กมีรูปแบบเป็น $f_{_{p2}}(heta) = rac{1}{\sqrt{1+b\cos^2 heta}}$ นำมาแทนค่าลงในสมการที่ (3.8)ดัง ขั้นตอนต่อไปนี้

กำหนดให้
$$f_{e1}(\theta) = \frac{1+a\cos^2\theta}{1+a}$$
 จะได้
 $\left\langle f_{e1}^2(\theta) \right\rangle = \frac{1}{2} \int_0^{\pi} \sin \theta \left(\frac{1+a\cos^2\theta}{1+a} \right)^2 d\theta$
(3.39)

หาค่าเฉลียความไม่สมมาตรแบบแพนเค้ก กรณี $f_{_{p2}}(heta)$

กำหนดให้
$$f_{p2}(\theta) = \frac{1}{\sqrt{1+b\cos^2\theta}}$$
 จะได้
 $\left\langle f_{p1}^2(\theta) \right\rangle = \frac{1}{2} \int_0^{\pi} \sin\theta \frac{1}{1+b\cos^2\theta} d\theta$ (3.40)

หาค่าเฉลี่ยความไม่สมมาตรแบบทรงรี-แพนเค้ก กรณี $f_{e1}(\theta) f_{p2}(\theta)$

$$\left\langle f_{e1}(\theta)f_{p2}(\theta)\right\rangle = \frac{1}{2}\int_{0}^{\pi}\sin\theta\left(\frac{1+a\cos^{2}\theta}{1+a}\right)\left(\frac{1}{\sqrt{1+b\cos^{2}\theta}}\right)d\theta$$
 (3.41)

3.4.4 การคำนวณแบบที่ 4 หาค่าเฉลี่ยความไม่สมมาตรแบบทรงรี-ทรงรี หาค่าเฉลี่ยความไม่สมมาตรแบบทรงรี-ทรงรี การคำนวณใช้รูปแบบที่4 จากตาราง1 สำหรับช่องว่างพลังงานที่1รูปทรงรีมีรูปแบบเป็น $f_{e1}(\theta) = \frac{1 + a\cos^2 \theta}{1 + a}$ และ ช่องว่างพลังงานที่2 รูปทรงแพนเค้กมีรูปแบบเป็น $f_{e^2}(\theta) = rac{1+b\cos^2{ heta}}{1+b}$ น้ำมาแทนค่าลงในสมการที่ (3.8)ดังขั้นตอน ต่อไปนี้

กำหนดให้
$$f_{e1}(\theta) = \frac{1+a\cos^2\theta}{1+a}$$
 จะได้
 $\left\langle f_{e1}^2(\theta) \right\rangle = \frac{1}{2} \int_0^{\pi} \sin\theta \left(\frac{1+a\cos^2\theta}{1+a} \right)^2 d\theta$
(3.42)

หาค่าเฉลี่ยความไม่สมมาตรแบบทรงรี กรณี $f_{e2}(heta)$

กำหนดให้
$$f_{e2}(\theta) = \frac{1+b\cos^2\theta}{1+b}$$
 จะได้
 $\left\langle f_{e2}^2(\theta) \right\rangle = \frac{1}{2} \int_0^{\pi} \sin\theta \left(\frac{1+b\cos^2\theta}{1+b} \right)^2 d\theta$
(3.43)

หาค่าเฉลียความไม่สมมาตรแบบทรงรี-ทรงรี กรณี $f_{e1}(heta)f_{e2}(heta)$

$$\left\langle f_{e1}(\theta) f_{e2}(\theta) \right\rangle = \frac{1}{2} \int_{0}^{\pi} \sin \theta \left(\frac{1 + a \cos^{2} \theta}{1 + a} \right) \left(\frac{1 + b \cos^{2} \theta}{1 + b} \right) d\theta$$
(3.44)
annns คำนวณทั้ง 4 แบบ สรุปรูปแบบได้ดังตารางที่ 2

ตาราง 2 สมการรูปแบบค่าเฉลี่ยความไม่สมมาตร

ŧ					
	รูปแบบ	แพนเด็ก-แพนเด็ก	แพนเด้ก-ทรงรี	ทรงรี-แพนเค้ก	ทรงรี-พรงรี
	ค่าเฉลี่ย				
	$\langle f_1^2(\theta) \rangle$	$\frac{1}{2}\int_0^{\pi} \sin\theta \left(\frac{1}{1+\alpha\cos^2\theta}\right)d\theta$	$\frac{1}{2}\int_0^\pi \sin \sigma \left(\frac{1}{1+\alpha\cos^2 \theta}\right) d\theta$	$\frac{1}{2}\int_0^\pi \sin\theta\left(\frac{1+a\cos^2\theta}{1+a}\right)^2d\theta$	$\frac{1}{2}\int_0^\pi \sin \theta \left(\frac{1+\alpha\cos^2\theta}{1+\alpha}\right)^2 d\theta$
	$\langle f_2^2(\theta) \rangle$	$\frac{1}{2}\int_0^\pi \sin\theta\left(\frac{1}{1+b\cos^2\theta}\right)d\theta$	$\frac{1}{2}\int_0^\pi \sin\theta\left(\frac{1+b\cos^2\theta}{1+b}\right)^2d\theta$	$rac{1}{2}\int_0^\pi \sin heta (rac{1}{1+b\cos^2 heta})d heta$	$\frac{1}{2}\int_0^\pi \sin\theta\left(\frac{1+b\cos^2\theta}{1+b}\right)^2d\theta$
	$\langle f_1(\theta), f_2(\theta) \rangle$	$\frac{1}{2} \int_0^{\pi} \sin \theta \left(\frac{1}{\sqrt{1 + \alpha \cos^2 \theta}} \right) \left(\frac{1}{\sqrt{1 + b \cos^2 \theta}} \right) d\theta$	$\frac{1}{2}\int_0^\pi \sin\theta\frac{1}{\sqrt{1+\alpha\cos^2\theta}}\left(\frac{1+b\cos^2\theta}{1+b}\right)d\theta$	$\frac{1}{2}\int_0^\pi \sin\theta\left(\frac{1+a\cos^2\theta}{1+a}\right)\frac{1}{\sqrt{1+b\cos^2\theta}}d\theta$	$\frac{1}{2} \int_0^\pi \sin \theta \left(\frac{1 + \alpha \cos^2 \theta}{1 + \alpha} \right) \left(\frac{1 + b \cos^2 \theta}{1 + b} \right) d\theta$

จากตาราง2 รูปแบบค่าเฉลี่ยพื้นผิวเฟอร์มี มีการกำหนดค่าคงตัวสำหรับพื้นผิวเฟอร์มี เป็น a และb สำหรับช่องว่างพลังงานที่1และ2 ตามลำดับซึ่งค่าคงตัวนี้มีผลต่อรูปร่าง ของผิวเฟอร์มีตามภาพประกอบ 21 แสดงถึงรูปแบบทรงแพนเค้กที่เด่นชัดขึ้นเมื่อมีการ ปรับค่าคงตัว aหรือb ระหว่าง 0 ถึง 5

ภาพประกอบ 20 รูปแบบแพนเค้ก ลหรือb = 0, 1, 2, 3, 4 และ 5 ตามลำดับ

ภาพประกอบ 22 แสดงถึงรูปทรงรีของผิวเฟอร์มีที่เด่นซัดขึ้นเมื่อมีการปรับค่าคงตัว a หรือb ระหว่าง 0 ถึง 0.5

ภาพประกอบ 21 รูปแบบทรงรี ลหรือb = 0, 0.1, 0.2, 0.3, 0.4 และ 0.5 ตามลำดับ

น้ำค่าที่ได้จากการคำนวณตามรูปแบบความไม่สมมาตรของตาราง 2) จะได้รูปแบบของสมการ4 รูปแบบน้ำมาแทนค่าในสมการที่ (3.8)

$$\frac{1}{\lambda^2} = 16q^2 \mu_0 \left(\frac{|\psi_1|^2 \langle f_1^2(\hat{k}) \rangle}{m_1} + \frac{|\psi_2|^2 \langle f_2^2(\hat{k}) \rangle}{m_2} + \varepsilon' \langle f_1(\hat{k}) f_2(\hat{k}) \rangle \langle \psi_2 \psi_1^* + \psi_1 \psi_2^* \rangle \right)$$

กำหนดให้
$$\eta = \frac{8q^2 \mu_0}{m}$$
 $2m = m_1 = m_2 \log \varepsilon' = \frac{\varepsilon}{2m}$ จะได้
 $\frac{1}{\lambda^2} = \eta \left(|\psi_1|^2 \langle f_1^2(\hat{k}) \rangle + |\psi_2|^2 \langle f_2^2(\hat{k}) \rangle + \varepsilon \langle f_1(\hat{k}) f_2(\hat{k}) \rangle (\psi_2 \psi_1^* + \psi_1 \psi_2^*) \right)$ (3.45)

ทำการแทนค่าตัวแปรที่เหมาะสมในสูตรคำนวณโดยใช้โปรแกรมMathematica เมื่อได้ค่าจาก โปรแกรมแล้วนำมาเปรียบเทียบกับค่าที่ได้จากผลการทดลอง

บทที่ 4 ผลการวิจัย

จากการคำนวณความลึกซาบซึมได้ ทั้ง 3 วิธีคือ การคำนวณด้วยวิธี กินซ์เบิร์กแลนดาว, การคำนวณด้วยวิธีตัวดำเนินการโมเมนตัม และ การคำนวณด้วยวิธีแบบดั้งเดิม ให้ผลที่ตรงกัน ดังที่แสดงในบทที่3 สมการที่ (3.45) คือ

$$\frac{1}{\lambda^{2}} = \eta \left(|\psi_{1}|^{2} \langle f_{1}^{2}(\hat{k}) \rangle + |\psi_{2}|^{2} \langle f_{2}^{2}(\hat{k}) \rangle + \varepsilon \langle f_{1}(\hat{k}) f_{2}(\hat{k}) \rangle \langle \psi_{2} \psi_{1}^{*} + \psi_{1} \psi_{2}^{*} \rangle \right)$$

จากสมการเป็นการทำให้ตัวแปรความเป็นระเบียบตามทฤษฎีกินซ์เบิร์ก หรือช่องว่าง พลังงานตามทฤษฎี บีซีเอสได้ถูกเพิ่มรูปแบบความไม่สมมาตร ซึ่งมี4รูปแบบ คือ แพนเค้ก-แพน เค้ก ,แพนเค้ก-ทรงรี ,ทรงรี-แพนเค้ก และทรงรี-ทรง นำมากำหนดค่าคงตัวที่เหมาะสมเพื่อให้ผลที่ ใกล้เคียงกับการทดลองของสาร แม็กนีเซียมไดโบไรด์ *MgB*₂ และแคลเซียมอะลูมิเนียมซิลิคอน *CaAlSi* และนำมาพิจารณาว่ารูปแบบความไม่สมมาตรแบบใดที่ให้ผลการคำนวณค่าความลึก ซาบซึมได้ใกล้เคียงกับผลการทดลอง

4.1เปรียบเทียบผลการคำนวณความลึกซาบซึมได้กับผลการทดลองของแม็กนีเซียมไดโบ ไรด์ MgB2

ตัวนำยวดยิ่ง แม็กนีเซียมไดโบไรด์ M_gB_2 ชนิดฟิลม์ซึ่งได้ทำการทดลอง เพื่อความสัมพันธ์ระหว่าง $\lambda^2(0)/\lambda^2(T)$ กับ $rac{T}{T_C}$ โดยทำการทดลอง2ชิ้นตัวอย่างการทดลอง (Jin และคณะ,2006)

4.1.1 ผลการคำนวณความลึกซาบซึมได้ของช่องว่างพลังงาน แบบ2ช่องว่างพลังงาน กรณี
ความไม่สมมาตรแบบ แพนเค้ก-แพนเค้ก โดยกำหนดให้|ψ₁|=25, |ψ₂|=78, η =10000, ε
=1, T_c=36, a=7 และ b=7เปรียบเทียบกับการทดลองของแม็กนีเซียมไดโบไรด์ ตาม ภาพประกอบ 21

ภาพประกอบ 22 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ แพนเค้ก-แพนเค้ก เปรียบเทียบ กับการทดลองของแม็กนีเซียมไดโบไรด์

4.1.2 ผลการคำนวณความลึกซาบซึมได้ของช่องว่างพลังงาน แบบ2ช่องว่างพลังงาน กรณี ความไม่สมมาตรแบบ แพนเค้ก-ทรงรี โดยกำหนดให้ |ψ₁|=25 ,|ψ₂|=78 ,η =10000 ,ε=2.01 ,T_c=36 ,a=7 และ b=0.5 เปรียบเทียบกับการทดลองของแม็กนีเซียมไดโบไรด์ ตามภาพประกอบ 22

ภาพประกอบ 23 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ แพนเค้ก-ทรงรี เปรียบเทียบกับ การทดลองของแม็กนีเซียมไดโบไวด์

4.1.3 ผลการคำนวณความลึกซาบซึมได้ของช่องว่างพลังงาน แบบ2ช่องว่างพลังงาน กรณีความไม่สมมาตรแบบ ทรงรี-แพนเค้ก โดยกำหนดให้ |ψ₁|=25 ,|ψ₂|=78 ,η =10000 ,ε=1 ,T_c=36 ,a=0.5 และ b=5 เปรียบเทียบกับการทดลองของแม็กนีเซียมไดโบไรด์ ตามภาพประกอบ 23

ภาพประกอบ 24 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ ทรงรี-แพนเค้ก เปรียบเทียบกับ การทดลองของแม็กนีเซียมไดโบไวด์

4.1.4 ผลการคำนวณความลึกซาบซึมได้ของช่องว่างพลังงาน แบบ2ช่องว่างพลังงาน กรณีความไม่สมมาตรแบบ ทรงรี-ทรงรี โดยกำหนดให้ |ψ₁|=25 ,|ψ₂|=78 ,η =10000 ,ε=1 ,T_c=36 ,a=0.5 และ b=0.5 เปรียบเทียบกับการทดลองของแม็กนีเซียมไดโบไรด์ ตามภาพประกอบ 24

ภาพประกอบ 25 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ ทรงรี-ทรงรี เปรียบเทียบกับการ ทดลองของแม็กนีเซียมไดโบไรด์

4.2 เปรียบเทียบผลการคำนวณความลึกซาบซึมได้กับผลการทดลองแคลเซียม อะลูมิเนียมซิลิคอน *CaAlSi*

ตัวนำยวดยิ่งอะลูมิเนียมซิลิคอน *CaAlSi* Prozorov และคณะ (2006)ได้ทำการทดลอง เพื่อ

ความสัมพันธ์ระหว่าง $\lambda^2(0)/\lambda^2(T)$ กับ $rac{T}{T_c}$

4.2.1 ผลการคำนวณความลึกซาบซึมได้ของช่องว่างพลังงาน แบบ2ช่องว่างพลังงาน กรณี
 ความไม่สมมาตรแบบ แพนเค้ก-แพนเค้ก โดยกำหนดให้

|ψ₁|=14 ,|ψ₂|=4 ,η =20000 ,ε =1.19 ,T_c=6.7 ,a=2 และ b=2เปรียบเทียบกับการทดลองของ แคลเซียมอะลูมิเนียมซิลิคอน ตามภาพประกอบ 25

ภาพประกอบ 26 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ แพนเค้ก-แพนเค้ก เปรียบเทียบ กับการทดลองของแคลเซียมอะลูมิเนียมซิลิคอน

4.2.2 ผลการคำนวณความลึกซาบซึมได้ของช่องว่างพลังงาน แบบ2ช่องว่างพลังงาน กรณีความไม่สมมาตรแบบ แพนเค้ก-ทรงรี โดยกำหนดให้ |ψ₁|=14 ,|ψ₂|=4 ,η =20000 ,ε =1.5 ,T_c=6.7 ,a=1.01 และ b=0.1 เปรียบเทียบกับการทดลองของแคลเซียมอะลูมิเนียมซิลิคอน ตามภาพประกอบ 26

ภาพประกอบ 27 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ แพนเค้ก-ทรงรี เปรียบเทียบกับ การทดลองของแคลเซียมอะลูมิเนียมซิลิคอน

4.2.3 ผลการคำนวณความลึกซาบซึมได้ของช่องว่างพลังงาน แบบ2ช่องว่างพลังงาน กรณีความไม่สมมาตรแบบ ทรงรี-แพนเค้ก โดยกำหนดให้ |ψ₁|=14 ,|ψ₂|=4 ,η =20000 ,ε =1.5 ,T_c=6.7 ,a=0.1 และ b=2 เปรียบเทียบกับการทดลองของแคลเซียมอะลูมิเนียมซิลิคอน ตามภาพประกอบ 27

ภาพประกอบ 28 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ ทรงรี-แพนเค้ก เปรียบเทียบกับ การทดลองของแคลเซียมอะลูมิเนียมซิลิคอน

4.2.4 ผลการคำนวณความลึกซาบซึมได้ของช่องว่างพลังงาน แบบ2ช่องว่างพลังงาน กรณีความไม่สมมาตรแบบ ทรงรี-แพนเค้ก โดยกำหนดให้ |ψ₁|=14 ,|ψ₂|=4 ,η =20000 ,ε =0.5 ,T_c=6.7 ,a=0.4 และ b=0.4 เปรียบเทียบกับการทดลองของแคลเซียมอะลูมิเนียมซิลิคอน ตามภาพประกอบ 28

ภาพประกอบ 29 ความลึกซาบซึมได้กรณีความไม่สมมาตรแบบ ทรงรี-ทรงรี เปรียบเทียบกับการ ทดลองของแคลเซียมอะลูมิเนียมซิลิคอน

บทที่ 5 สรุป และอภิปรายผลการวิจัย

5.1สรุปผลการวิจัย

จากการวิจัยสามารถหาความลึกซาบซึมได้ของตัวนำยวดยิ่งโดยใช้ทฤษฏีกินซ์เบิร์กแลนดาว ของตัวนำยวดยิ่งที่ขึ้นกับทิศทางคลื่นชนิดเอส โดยใช้การคำนวณแบ่งเป็น3วิธีคือ

- 1. การคำนวณด้วยวิธี กินซ์เบิร์กแลนดาว
- 2. การคำนวณด้วยตัวดำเนินการโมเมนตัม
- 3. การคำนวณด้วยวิธีแบบดั้งเดิม

และได้เพิ่มพึงก์ชั่น ที่ขึ้นกับทิสทางโดยอาศัยความสัมพันธ์ ∆ ≈ ψ และ ψ ≈ ψ(T)f(k) ซึ่ง ให้ผลการคำนวณที่ตรงกัน คือ

$$\frac{1}{\lambda^2} = 8q^2 \mu_0 \left[\frac{|\psi_1|^2 \langle f_1^2(\hat{k}) \rangle}{m_1^*} + \frac{|\psi_2|^2 \langle f_2^2(\hat{k}) \rangle}{m_2^*} + \varepsilon \langle f_1(\hat{k}) f_2(\hat{k}) \rangle (\psi_2 \psi_1^* + \psi_1 \psi_2^*) \right]$$

การเปรียบเทียบผลการคำนวณความลึกซาบซึมได้ของตัวนำยวดยิ่งโดยใช้ทฤษฏีกินซ์ เบิร์กแลนดาวของตัวนำยวดยิ่งที่ขึ้นกับทิศทางคลื่นชนิดเอส กับผลการทดลองในการคำนวณความ ลึกซาบซึมได้ของแม็กนีเซียมไดโบไรด์ ในรูปแบบ ของแพนเค้ก-แพนเค้ก, ทรงรี-แพนเค้ก, แพน เค้ก-ทรงรี และ ทรงรี-ทรงรี เปรียบเทียบกับผลการทดลองได้ผลดังภาพประกอบ 29 จะเห็นได้ว่า กราฟของผลการทดลองสอดคล้องกับ การคำนวณแบบ แพนเค้ก-แพนเค้ก คือความไม่สมมาตร แบบแพนเค้กกำหนดให้ $f_{p1}(\theta) = \frac{1}{\sqrt{1+a\cos^2 \theta}}$ และ ความไม่สมมาตรแบบแพนเค้กกำหนดให้ $f_{p2}(\theta) = \frac{1}{\sqrt{1+b\cos^2 \theta}}$ โดยใช้ค่าคงตัว $|\psi_1| = 25$, $|\psi_2| = 78$, $\eta = 10000$, $\varepsilon = 1$, $T_c = 36$, aและ b=7

ภาพประกอบ 30 เปรียบเทียบกับผลการทดลองกับการคำนวณทั้ง4แบบ ของแม็กนีเซียมไดโบไรด์

และจากการคำนวณความลึกซาบซึมได้ของแคลเซียมอะลูมิเนียมซิลิคอน ในรูปแบบ ของแพนเค้ก-แพนเค้ก, ทรงรี-แพนเค้ก, แพนเค้ก-ทรงรี และ ทรงรี-ทรงรี เปรียบเทียบกับผลการทดลองได้ผลดัง ภาพประกอบ 30 จะเห็นได้ว่ากราฟของผลการทดลองสอดคล้องกับ การคำนวณแบบ แพนเค้ก-ทรงรี คือความไม่สมมาตรแบบแพนเค้กกำหนดให้ $f_{p1}(\theta) = \frac{1}{\sqrt{1+a\cos^2{\theta}}}$ และ ความไม่ สมมาตรแบบทรงรีกำหนดให้ $f_{e2}(\theta) = \frac{1+b\cos^2{\theta}}{1+b}$ โดยใช้ค่าคงตัว $|\psi_1| = 14$, $|\psi_2| = 4$, η =20000, $\varepsilon = 1.5$, T_c=6.7, a=1.01 และ b=0.1

นอกจากนี้ ยังสังเกตุได้ว่ารูปแบบความไม่สมมาตรแบบ แพนเค้ก-แพนเค้ก มีความชันของ กราฟความสัมพันธ์ระหว่าง ความลึกซาบซึมได้ กับ T/T_c น้อยกว่า รูปแบบความไม่สมมาตรแบบ แพนเค้ก-ทรงรี ซึ่งสามารถนำไปอธิบายความโค้งของ กราฟความสัมพันธ์ระหว่าง $rac{\lambda^2(0)}{\lambda^2(T)}$ กับ $rac{T}{T_c}$

5.2 อภิปรายผลการวิจัย

จากวิธีการคำนวณทั้ง 3 วิธีคือ การคำนวณด้วยวิธี กินซ์เบิร์กแลนดาว, การคำนวณด้วย วิธีตัวดำเนินการโมเมนตัม และการคำนวณด้วยวิธีแบบดั้งเดิม เป็นการยืนยันความถูกต้องได้อย่าง ดี ทั้งพิจารณาในแบบ มหภาคและจุลภาค นอกจากนี้รูปแบบความไม่สมมาตร หรือ การขึ้นกับ ทิศทาง มีผลต่อความลึกซาบซึมได้ ในการเปรียบเทียบผลการคำนวณกับการทดลองในสาร ตัวอย่าง แม็กนีเซียมไดโบไรด์ ให้ผลใกล้เคียงกับ รูปแบบความไม่สมมาตรแบบ แพนเค้ก-แพนเค้ก โดยใช้ค่าคงตัว |ψ₁|=14, |ψ₂|=4, η =20000, ε =1.5, T_c=6.7, a=1.01 และ b=0.1 และในส่วนของแคลเซียมอะลูมิเนียมซิลิคอน ให้ผลใกล้เคียงกับ รูปแบบความไม่สมมาตรแบบ แพนเค้ก-ทรงรี โดยใช้ค่าคงตัว |ψ₁|=14, |ψ₂|=4, η =20000, ε =1.5, T_c=6.7, a=1.01 และ b=0.1 และสรุปได้ว่าเมื่อพิจารณารูปแบบความไม่สมมาตรของผิวเฟอร์มีแล้วจะเห็นได้ว่าส่งผลต่อ ความลึกซาบซึมได้ของตัวนำยวดยิ่ง

บรรณานุกรม

- Abrikosov, A. A. (1957). On the Magnetic properties of superconductors of the second group. *Sov.Phys.JETP*, *5*, 1174-1182.
- Askerzade, I. N., & Gencer, A. (2002). London penetration depth λ (T) in two-band Ginzburg-Landau theory: application to MgB 2. *Solid State Communications*, 123(1-2), 63-67.
- Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of Superconductivity. *Physical Review, 108*(5), 1175-1204. doi:10.1103/PhysRev.108.1175
- Bednorz, J. G., & Müller, K. A. (1986). Possible highTc superconductivity in the
 Ba—La—Cu—O system. *Zeitschrift für Physik B Condensed Matter, 64*(2), 189-193. doi:10.1007/BF01303701
- Buckel, W. (1991). Superconductivity: Fundamentals and Applications. NEW YORK: VHC.
- Callister, W. D. (2007). *Materials Science and Engineering* (7 ed.). United States of America: John Wiley & Sons, Inc.
- Changjan, A., & Udomsamuthirun, P. (2011a). The critical magnetic field of anisotropic two-band magnetic superconductors. *Solid State Communications*, *151*(14), 988-992. doi:<u>https://doi.org/10.1016/j.ssc.2011.04.032</u>
- Changjan, A., & Udomsamuthirun, P. (2011b). Critical magnetic field ratio of anisotropic magnetic superconductors. *Physica C: Superconductivity*, 471(1), 23-25. doi:<u>https://doi.org/10.1016/j.physc.2010.10.002</u>
- Chu, C. W., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., & Bechtold, J. (1987). Discovery and Physics of Superconductivity Above 90K. In S. A. Wolf & V. Z. Kresin (Eds.), *Novel Superconductivity* (pp. 581-597). Boston, MA: Springer US.
- Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., & Shylin, S. I. (2015). Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature*, *525*, 73. doi:10.1038/nature14964
- Einaga, M., Sakata, M., Ishikawa, T., Shimizu, K., Eremets, M. I., Drozdov, A. P., . . . Ohishi, Y. (2016). Crystal structure of the superconducting phase of sulfur hydride. *Nature*
Physics, 12, 835. doi:10.1038/nphys3760

Evans, L. (2009). The Large Hadron Collider a Marvel of Technology: Cern and EPFL.

- Haas, S., & Maki, K. (2001). Anisotropic s-wave superconductivity in \${\mathrm{MgB}}_{2}\$. *Physical Review B, 65*(2), 020502. doi:10.1103/PhysRevB.65.020502
- Hampshire, D. P. (1998). Ferromagnetic and antiferromagnetic superconductivity. *Physica C: Superconductivity*, 304(1), 1-11. doi:<u>https://doi.org/10.1016/S0921-4534(98)00293-7</u>
- Kamihara, Y., Watanabe, T., Hirano, M., & Hosono, H. (2008). Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05⁻⁰.12) with Tc = 26 K. *Journal of the American Chemical Society*, *130*(11), 3296-3297. doi:10.1021/ja800073m
- Kittel, C. (1991). Introduction to Solid State Physics. Singapore: John Wiley & Sons.
- Meissner, W. O., R. . (1933). Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. *Naturwissenschaften, 21 (44)*, 787–788. doi:10.1007/BF01504252
- Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., & Akimitsu, J. (2001). Superconductivity at 39 K in magnesium diboride. *Nature*, *410*, 63. doi:10.1038/35065039
- Posazhennikova, A. I., Dahm, T., & Maki, K. (2002). Anisotropic s-wave superconductivity: Comparison with experiments on MgB₂ single crystals. *EPL* (*Europhysics Letters*), *Volume 60, Issue 1, pp. 134-140 (2002). 60*, 134-140. doi:10.1209/epl/i2002-00330-9
- Udomsamuthirun, P., Rakpanich, S., & Yoksan, S. (2003). Effect of in-plane anisotropy on specific heat jump of MgB2. *physica status solidi (b), 240*(3), 591-595. doi:10.1002/pssb.200301884

้อุดมสมุทรหิรัญ, พ. (2016). ตัวนายวดยิ่งพื้นฐาน. กรุงเทพมหานคร: จุฬาลงกรณ์มหาวิทยาลัย.

https://commons.wikimedia.org. Cooper pairs. Retrieved from https://commons.wikimedia.org/wiki/File:Cooper_pairs.jpg https://en.wikipedia.org. Kamerlingh Onnes. Retrieved from

https://en.wikipedia.org/wiki/Heike_Kamerlingh_Onnes

- https://www.asianscientist.com/2016/09/in-the-lab/hydrogen-sulfide-crystal-structuresuperconducting-phase. superconducting transition temperature Retrieved from https://www.asianscientist.com/2016/09/in-the-lab/hydrogen-sulfide-crystalstructure-superconducting-phase.
- https://www.nobelprize.org/prizes/physics/1913/onnes/biographical/. Retrieved from https://www.nobelprize.org/prizes/physics/1913/onnes/biographical/

https://www.nature.com/articles/nphys3760#supplementary-information

ประวัติผู้เขียน

ชื่อ-สกุล	พงษ์กานต์ ทองครบุรี
วัน เดือน ปี เกิด	10 มีนาคม 2518
สถานที่เกิด	จ.กาญจนบุรี
วุฒิการศึกษา	ม.1-ม.3 โรงเรียนท่ามะกาวิทยาคม (2531-2533)
	ม.4-ม.6 โรงเรียนเตรียมอุดมศึกษา (2534-2536)
	วศ.บ.(วิศวกรรมไฟฟ้า) สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร
	ลาดกระบัง (2537-2540)
	วท.ม.(ฟิสิกส์) มหาวิทยาลัยศรีนครินทรวิโรฒ
ที่อยู่ปัจจุบัน	201/84 ต.บางเสาธง อ.บางเสาธง จ.สมุทรปราการ

