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With the rapid advancement of the digital economy, its influence on agricultural carbon 

emissions has garnered growing scholarly interest. Drawing upon panel data from 30 provinces in 
China over the period 2012–2022, this research investigates the linkage between digital economic 
development and agricultural carbon emissions, while also exploring the internal transmission 
pathways. The empirical findings demonstrate that the digital economy plays a significant role in 
curbing total agricultural carbon emissions, and this conclusion remains consistent across a range of 
robustness checks. Importantly, the emission reduction effects vary by region, with stronger impacts 
identified in key grain-producing areas. The principal transmission channels identified include 
farmland scale expansion, the proliferation of digital financial inclusion, and progress in agri-
technological innovation. Based on these insights, this paper proposes several policy 
recommendations: advancing digital infrastructure in rural areas, improving digital financial systems 
tailored for agriculture, cultivating a workforce skilled in digital agriculture, and encouraging the 
adoption of innovative digital agriculture models. 

 
Keyword : Digital economy, Agricultural carbon emissions, Scale effect, Financial effect, 
Technological innovation effect 
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CHAPTER 1 
INTRODUCTION 

1.1 Background of the Study 
(1) Agricultural carbon emissions constitute approximately 14% of China’s total 

carbon emissions, underscoring the critical importance of emission reductions in the 
agricultural sector.  

According to IPCC’s report, the year-on-year increase in atmospheric CO₂ 
concentrations over the past century has led to an estimated rise of 0.78°C in the Earth’s 
surface temperature. Observations from NASA further reveal that global concentrations 
of greenhouse gases have increased by 1.2°C relative to the 19th century baseline. 

Over the past 170 years, atmospheric CO₂ concentrations have surged by 47%, 
triggering resource depletion, biome degradation, falling water tables, shrinking rivers 
and lakes, and destabilizing terrestrial and marine ecosystems. These environmental 
shifts have, in turn, resulted in biodiversity loss, declining agricultural yields, and 
adverse human health impacts. The accelerating pace of carbonization and its 
consequences highlight that climate change, driven primarily by anthropogenic 
greenhouse gas emissions, has become a major threat to ecological integrity and the 
sustainable development of human society. Addressing carbon emissions has thus 
emerged as a priority for both the international community and the global research 
agenda. 

Agriculture continues to be a crucial economic activity for human society. 
In China, a country with a significant agricultural sector, greenhouse gas (GHG) 
emissions from agriculture activities releases between 5.5 and 7.5 billion tonnes of 

carbon dioxide equivalent (CO₂e) annually. In agricultural GHG emissions, CO₂, CH4, 

and N₂O account for roughly 80% of total anthropogenic emissions. According to the 
International Fertilizer Assohly 10–20% of the nation's total emissions. Globally, it is 
estimated that soil disturbance from agciation (IFA), China accounts for roughly 30% of 
global fertilizer consumption, significantly exceeding the world average (about 130 
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kilograms per hectare) and standing at 2.6 times and 2.5 times the usage rates of the 
USA and the EU, respectively. 

Amid global climate warming, China, a major source of agricultural 
carbon emissions, has a crucial role in reducing emission. At the 2021 COP15 
Conference, China targeting to top out carbon emissions by 2030 and achieve a 
balanced sustainable development strategy. Since the agricultural sector significantly 
contributes to the nation's total carbon emissions, speeding up its low-carbon 
transformation has become particularly pressing. While ensuring food security and 
agricultural product supply, exploring a coordinated mechanism to balance carbon 
peaking and neutrality remains one of the key challenges that must be addressed. 

(2) Rapid Development of China’s Digital Economy 
As a new economic style, the digital economy boasts substantial growth 

potential and distinct advantages, drawing broad public interest through its swift 
expansion, superior service quality, extensive market reach, and unique conveniences. 
The annual growth rate of the added value of China's digital industry was about 15%. By 
the end of 2023, the "China Urban Digital Economy Development Report" showed that 
the nationwide digital economy had exceeded 50 trillion yuan, representing about 41.5% 
of GDP. In such situations, central government bodies and the State Council have 
released several policy documents to promote the progress of ‘digital villages.’ It 
specifically demands that by 2025, digital economy in agriculture should exceed 20%, 
and mandates that internet usage in rural areas should expand annually by more than 
10.5%. By the end of 2021, China's digital rural development index reached 39.1%. By 
the end of 2022, rural areas had largely established their network infrastructure, with an 
internet penetration rate reaching 58.8%. Data indicates that in that year, the total 
transaction value of rural e-commerce surpassed 2.17 trillion yuan, with more than 80% 
of villages achieving complete coverage of delivery services. 

(3) Digital Economy as a New Approach to Enhancing Agricultural Carbon 
Emission Efficiency 
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The digital economy, known for its high level of innovation, acts as a crucial 
driving force and practical approach to improving carbon emission efficiency. Its key 
features are deep penetration and wide coverage. President Xi Jinping has clearly 
emphasized: ‘Our industries should towards high-end, intelligent, and green goals, fully 
harness vast data resources, broaden various application scenarios, advance the deep 
integration of digital technology with the real economy, expedite the transformation and 
upgrading of traditional sectors, and foster new momentum for emerging industries and 
new drivers for economic growth.’ 

The digitalization, intelligentization, and green transformation of 
traditional industries are crucial for carbon emission control and essential for the digital 
economy. The 'Energy Digital Transformation White Paper' suggests that utilizing 
advanced technologies can effectively achieve energy conservation and emission 
reduction, enhance operational efficiency, and promote innovations in decarbonization 
and negative carbon technologies. The report calls for speeding up the digital 
transformation in the energy sector to offer technical support for reaching regional 
carbon neutrality. Both theoretical research and practical applications highlight the 
significant value and strategic importance of using digital economy tools to improve the 
efficiency of agricultural carbon emissions management. 

1.2 Research Objectives 
Committing to green innovation and realizing green transformation stand as the 

main approaches for China to advance ecological civilization development and carbon 
neutrality objectives. To achieve the peak carbon emissions target in advance, it is 
crucial to fully utilize innovative elements like digital technology to comprehensively tap 
the latent emission reduction potential within agriculture. Current research findings show 
that when examining how the digital economy affects agricultural carbon emissions and 
its transmission mechanisms, there is a significant lack of relevant academic studies in 
this field. This becomes a critical issue that both academia and industry need to tackle. 
Against this backdrop, the study examines the impact of the digital economy on 
agricultural carbon emissions. It uses empirical methods to analyze the specific 
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mechanisms of influence and assess the emission reduction effects in all provincial 
regions nationwide, aiming to offer some support and guidance for the agricultural 
carbon neutrality. With this goal in mind, the article will explore the following aspects: 

(1) Building an indicator framework, while analyzing their spatio-temporal 
distribution patterns quantitatively. 

(2) In what ways does the digital economy affect agricultural carbon 
emissions? Can it break away from the traditional agricultural model reliant on resource 
depletion and environmental degradation, achieving simultaneous progress in economic 
growth and ecological conservation, thereby contributing to the formation of a modern 
economic system and advancing ecological civilisation? 

(3) Can the role of the digital economy be systematically examined through 
the lenses of scale economies, financial support impacts, and technological innovation 
influences? This topic is extensively explored. 

1.3 Research Significance 
The digital economy, as a crucial subject in academic research, has produced 

substantial outcomes. The existing literature often exhibits scattered and superficial 
traits, posing challenges in forming a theoretical framework with broad guiding 
significance. This offers significant opportunities for innovation and advancement in this 
area. 

This research introduces an innovative assessment system that integrates 
both the digital economy and agricultural carbon emission intensity. It performs a 
comprehensive quantitative analysis of the current development status from various 
angles, examines the spatial distribution features and temporal evolution trends, and 
uses empirical methods to explore the relationship between the two, including whether 
significant linear or non-linear connections exist. It further analyzes how the digital 
economy specifically impacts agricultural carbon emissions and establishes 
corresponding transmission pathways and intrinsic operational mechanisms. Policy 
recommendations are offered to advance the digital economy and enhance carbon 
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emission efficiency. This study carries theoretical innovation and offers practical 
operational guidance. 

(1) Theoretical Significance 
This study expands the theoretical viewpoint on the connection 

between the digital economy and carbon emissions, performing a systematic analysis. 
The digital economy serves as a crucial driver of contemporary economic growth, and 
the inherent link between it and agricultural carbon emissions warrants further 
investigation. This study enriches the relevant theoretical framework, updates research 
paradigms, and provides new insights for refining the carbon emissions theoretical 
framework by dissecting the mechanisms, while also deepening understanding of the 
driving factors behind carbon emissions. 

This study has important academic implications for improving the 
theoretical framework of the digital economy. As a potent driver of global economic 
growth, the digital economy has profound impacts across various industries, 
necessitating further exploration and systematic explanation. It broadens the scope of 
theoretical discussions and innovatively introduces fresh perspectives. 

(2) Practical Significance 
This study is practice-based and seeks to offer theoretical support 

for enhancing China's agricultural carbon emissions management policies and 
implementation approaches. As an agricultural powerhouse, China faces substantial 
pressure to cut emissions within global climate governance. A careful examination of 
how the digital economy impacts agricultural carbon emissions can aid in forming a 
scientific and systematic framework for emission reduction strategies. This also 
promotes green agricultural development and drives the agricultural economy towards 
sustainable transformation. 

This study seeks to identify practical pathways for closely 
integrating the digital economy with green development. Amid the swift advancement of 
the digital economy, its innovative role in fostering simultaneous economic growth and 
environmental protection grows ever more significant. Through a detailed analysis of the 
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mechanisms by which the digital economy affects agricultural carbon emissions, this 
article clarifies the inherent logic of their interaction and offers policy suggestions to 
foster coordinated development and high-quality growth, thus providing theoretical and 
empirical support for sustainable development goals. 

1.4 Scope of the Study 
1.4.1 Research Subjects 

The study focuses on 30 provinces in mainland China from 2012 to 2022 as 
sample objects. The data for the Tibet, Taiwan, Hong Kong and Macau are mostly 
unavailable, thus they are excluded from this sample. A standard panel data model is 
utilized to systematically examine the dynamic impact of the digital economy on 
agricultural carbon emissions, with empirical analysis conducted to validate the results. 

This study selects 30 regions in China as sample units, including 
Guangdong, Jiangsu, Beijing, Zhejiang, Shandong, Shanghai, Fujian, Sichuan, Anhui, 
Henan, Hubei, Jiangxi, Hunan, Hebei, Shaanxi, Tianjin, Chongqing, Liaoning, Guangxi, 
Shanxi, Gansu, Yunnan, Guizhou, Jilin, Xinjiang, Inner Mongolia, Heilongjiang, Hainan, 
Ningxia, and Qinghai. 

1.4.2 Research Methodology 
(1) Literature Review Method 

Thoroughly organize literature, examine the academic value and 
limitations of these documents, and thereby identify the key issues and starting points 
for this research. Additionally, discuss the innovative importance, offering theoretical 
backing for future studies and directing the course of practical applications. 

(2) Statistical Analysis Method 
This study uses a multi-dimensional research framework. Through the 

systematic collection and analysis of data from various provinces and regions in China 
between 2012 and 2022, along with detailed validation analyses, it was revealed that the 
level of the digital economy shows specific dynamic trends in both geographical space 
and temporal progression. Quantitative methods were used to estimate total agricultural 
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carbon emissions and their temporal changes, while further examining the relationship 
between them. 

(3) Integration of Theoretical Analysis and Empirical Testing 
This study gives a theoretical framework for the digital economy's impact 

on agricultural carbon emissions, explores the underlying mechanisms, and proposes 
relevant research hypotheses. Through a mediation effect model, it empirically analyzes 
and verifies the relationship between them, ultimately summarizing the key findings. 

1.5 Definition of Key Concepts 
To better grasp the impact mechanism of the digital economy on agricultural 

carbon emissions, it is essential to first define the key concepts involved in this research 
clearly. 

1.5.1 The Connotation of the Digital Economy 
(1) Definition of the Digital Economy Concept 

As research continues to expand and enrich, scholars have defined it 
from various perspectives. In terms of factor resource allocation, the digital economy 
denotes a range of economic activities or forms where data generation enhances the 
interaction among existing production factors, leading to profound shifts in production 
methods and economic structures. From an input-output viewpoint, the digital economy 
represents the overall economic output produced by digital inputs, such as skills, 
equipment, and diverse digital products In terms of Organisational structure, the digital 
economy denotes the process of attaining global connectivity via digital technologies 
like the internet and big data, creating a multi-layered and intricate framework 
composed of a growing number of interconnected nodes. 

Therefore, the digital economy is not separate from traditional 
industries. Instead, it integrates and spreads across sectors, continually offering new 
knowledge, products, and services to conventional fields, while enhancing 
communication and collaboration among entities . 

In general, the agreement on the core of the digital economy 
centres on the notion that data plays a crucial role, with digital products and services 
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being delivered via information technologies. Drawing on prior research and the 
definition in the 2021 Digital Economy and Its Core Industry Statistical Classification by 
China’s National Bureau of Statistics, this study characterizes the digital economy as "an 
emerging economic form where data serves as the central production factor, digital 
technology innovation propels growth, the internet functions as a critical platform, digital 
industrialization and industry digitalization act as primary drivers, and digital governance 
offers fundamental support." In this system, data, via information technology, boosts 
productivity, transforms traditional industry models, creates digital goods and services, 
and fosters significant improvements in economic quality, efficiency, and momentum. 

1.5.2 The Connotation of Agricultural Carbon Emissions 
(1) Carbon Emissions 

The idea of carbon emissions arose from the demand for low-carbon 
economic growth and pertains to global climate shifts triggered by greenhouse gas 
discharges. At present, the sources of carbon emissions in the industrial sector are 
relatively well-defined, whereas agricultural carbon emissions, given their multiple 
stages and varied mechanisms, represent a significant research focus. Agricultural 
carbon emissions encompass crop cultivation, livestock farming, forest management, 
and fisheries production, among other activities. Their emission pathways are varied and 
show distinct temporal dynamics.  

(2) Agricultural Carbon Emissions 
This study defines agricultural carbon emissions as greenhouse gas 

releases from activities associated with agricultural land use. The main sources of 
agricultural carbon emissions are the use of fertilizers, pesticides, and agricultural films 
in farming, the substantial energy usage linked to agricultural machinery, and the energy 
consumed from burning fossil fuels during farmland management and crop irrigation. 
The Intergovernmental Panel on Climate Change (IPCC) has identified and detailed 
prevalent agricultural greenhouse gases in its reports, including major atmospheric 
gases like CO₂, NO₂, CH₄, SF₆, PFCs, and HFCs. Agricultural carbon emissions are 
typically grouped into categories such as land-use changes, energy use, rice 
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production, and livestock rearing. Throughout the crop growth cycle, greenhouse gas 
emissions mainly occur as CO₂, N₂O, and CH₄ under varying land use conditions. 

These emissions can be classified as follows: Agricultural inputs 
represent the main carbon sources, primarily seen in greenhouse gas emissions from 
pesticide, agricultural film, and fertilizer use during farming. These also include carbon 
emissions from fuel combustion in agricultural machinery, soil carbon imbalances and 
organic matter breakdown due to ploughing or rotary tilling for soil fertility enhancement, 
and greenhouse gas releases during irrigation processes. 

1.6 Technical roadmap 
Based on a review of existing domestic and international research, this paper 

delves into the academic frontiers of the digital economy and agricultural carbon 
emissions, constructs a theoretical research and analysis framework. The specific 
research framework is illustrated in the figure below: 
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Figure 1 Technical roadmap 

 



 
 

CHAPTER 2 
THEORETICAL BASIS AND LITERATURE REVIEW  

2.1 Theoretical basis 
2.1.1 Environmental Kuznets Curve Theory (EKC) 

The EKC theory examines the dynamic relationship between economic and 
environmental. Initially introduced by economist Simon Kuznets in 1992, this theory 
seeks to reveal the fundamental patterns influencing changes in environmental quality 
throughout a nation's economic development. Based on the EKC model, in the early 
stages of economic growth, expanding output levels lead to a notable rise in 
environmental pollution. However, as an economy advances to a higher stage of 
development, environmental pollution initially rises and subsequently declines. The root 
cause of this phenomenon is that early economic growth often entails excessive 
resource extraction and a swift rise in pollutant emissions. With the enhancement of 
societal environmental awareness and progress in technological innovations, the conflict 
between economic growth and environmental conservation gradually eases, resulting in 
the realization of synergistic advancement and improvement. 

Agriculture, a major economic sector, is closely linked to the EKC theory, 
especially concerning agricultural carbon emissions. In numerous developing nations, 
agriculture serves as a significant economic pillar and is also among the leading 
sources of carbon emissions. Most studies confirm that in the early stages of agricultural 
development, carbon emissions tend to increase, consistent with the initial rise in 
environmental pollution as described by the Environmental Kuznets Curve (Atasel et al., 
2022; Khan et al., 2023; Mengke et al., 2023). 

However, with economic growth and increasing societal awareness 
of environmental concerns, the agricultural sector has started to recognize these issues 
and has adopted measures to cut carbon emissions and promote sustainable 
agricultural development. These measures involve smart agricultural technologies, 
including modern tools, to enable precision fertilization and targeted irrigation, thus 
cutting down on fertilizer and water use, which helps lower emissions. The 
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implementation of organic farming, which cuts down on chemical pesticides and 
fertilizers, enhances soil health, and reduces carbon emissions, is included among 
these measures. As these measures have been widely applied, agricultural carbon 
emissions have gradually decreased. This is mirrored in the EKC by the decline after the 
peak of agricultural carbon emissions. The smart agricultural technologies and new 
farming practices often stems from national economic development. Thus, it is 
reasonable to expect that as the national economy improves, agricultural carbon 
emissions will stabilize or even decrease. This is due to technological innovation and 
increased environmental awareness, leading the agricultural sector to increasingly 
prioritize environmental protection and steadily diminish its negative environmental 
impact. 

From the standpoint of marginal utility, the EKC suggests a 
declining marginal impact of carbon reduction, point that the marginal benefits of 
integrating the digital economy in agriculture are most significant in the early stages of 
carbon mitigation. Regarding heterogeneity, this observation also aids in explaining the 
varying impacts of digital economy empowerment between more developed eastern 
regions and less developed western regions. It offers a theoretical basis for including 
heterogeneity robustness checks in this study. 

2.1.2 Low Carbon Economy Theory 
The central idea of low-carbon economy theory is to foster the parallel 

advancement of economic growth and environmental preservation while markedly 
decreasing greenhouse gas emission levels. In the present global scenario of 
increasing temperatures and significant ecosystem challenges, the 'low-carbon 
economy' has emerged as a strategic concern shared by countries worldwide. This 
concept was initially introduced by Kinzig and later expanded upon by the British 
government as a novel approach to achieving high-quality growth through enhanced 
resource allocation. China has made substantial efforts in this field, implementing 
policies and regulations to foster a resource-efficient and environmentally protective 
society. In recent years, the Chinese government has increasingly reinforced its 
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strategic plans for green and low-carbon transformation, deeply embedding the concept 
of ecological civilization. It has explicitly introduced the development philosophy that 
"green mountains and clear waters equate to mountains of gold and silver" and formally 
pledged to achieve the dual carbon objectives. 

The issue of achieving sustainable development in both social 
production and the ecological environment has long been a key concern both in China 
and globally. Against the backdrop of the escalating ecological degradation and climate 
crisis caused by the traditional "high-carbon economy", investigating fresh approaches 
to the harmonious growth of the economy and the environment has become especially 
urgent. Markard and Rosenbloom (2022) point out that high-carbon pathways in energy 
systems not only exacerbate climate change but also limit the possibility of transitioning 
to sustainable development. Therefore, transitioning to a low carbon economy is a 
crucial strategic step toward achieving net-zero goals. In this context, low carbon 
economy theory has gradually become a core concept guiding green development. This 
theoretical framework spans multiple levels, from macroeconomic policy formulation to 
micro-level business behavior, emphasizing that green transformation drives the 
sustainable development of the economy and society. 

Thus, a deeper understanding of the theoretical essence of the low-
carbon economy holds significant practical importance for achieving coordinated 
development between ecological environmental protection and socio-economic 
progress. Although a unified definition of the low carbon economy concept remains 
elusive, several scholars have achieved consensus on specific aspects. For example, it 
is widely accepted that a low-carbon economy should feature "three lows" include "five 
aspects," encouraging energy-saving technologies, advancing green energy, and 
reaching sustainable development objectives. It achieves this by enhancing 
technological innovation, promoting large-scale green energy development, and 
establishing regulatory mechanisms and environmental protection systems. These 
efforts minimize greenhouse gas emissions and foster coordinated development 
between ecological environments and socio-economic progress. 
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2.1.3 Green Development Theory 
Green development serves as the central strategic framework for enacting 

sustainable development principles, striving for the balanced coexistence of economic 
progress and environmental preservation. In 2009, the Organisation for Economic Co-
operation and Development (OECD) outlined the core of green development, 
highlighting the significance of ecological protection in fostering economic growth. In 
2011, the United Nations Environment Programmeme (UNEP) further refined the 
theoretical framework of green development, describing it as a model that promotes 
social progress by substantially reducing environmental risks and ecological resource 
pressures. In 2012, China integrated green development into the national strategic 
framework, indicating that this concept had started to develop a systematic theoretical 
structure. Although its meaning is still under exploration, it has already shown the 
government's strong emphasis on ecological civilization construction, aiming to achieve 
a dynamic balance between economic transformation and environmental protection, 
and thus developing and enforcing policies and measures to advance green 
development. 

Overall, green development theory encompasses Marxist ecological 
thought, ecological economics, circular economy theory, sustainable development 
theory, and Xi Jinping's green development philosophy. Marxist ecological thought 
emphasizes that nature is the fundamental premise for human survival and development, 
and that humans must coexist harmoniously with nature (Wei, 2021). Ecological 
economics focuses on the fundamental contradiction between humanity's unlimited 
needs and the limited supply of resources. Røpke (2004) explored how to integrate 
ecological constraints into economic growth. Circular economy theory advocates 
extending the productive life of resources and promoting their recycling to reduce 
environmental burdens and foster sustainable resource management by Blomsma and 
Brennan (2017). Imperatives (1987) proposed sustainable development theory posits 
that we should "meet the needs of the present without compromising the ability of future 
generations to meet their own needs," and in many contexts, green development is seen 
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as synonymous with sustainable development. Xi Jinping's green development 
philosophy, as one of China's "Five Development Concepts," centres on the "Two 
Mountains Theory" (i.e., "green mountains and clear waters are as valuable as mountains 
of gold and silver") and provides a systematic framework for green development 
strategy and policy, aiming to achieve a unity of economic construction and ecological 
protection, pointed by Hu et al. (2018). While these theories emerged in different 
historical periods and social contexts, they fundamentally share a common emphasis on 
the need to ensure the sustainability of the ecological environment while promoting 
economic growth. 

As an important guiding principle for agricultural green development, 
the theory of green development provides clear directional guidance for practice. As a 
key pathway for promoting agricultural green transformation, agricultural green 
development become a central role in implementing the ‘dual carbon’ strategic goals. Its 
essence lies in practising the concept of green development, systematically improving 
traditional extensive production models, and driving agriculture toward sustainable 
development. 

2.1.4 Theory of Technological Innovation 
The theory of technological innovation can be traced back to Schumpeter 

(1934), in which he first systematically proposed the core role of innovation in driving 
economic dynamic changes. Although Schumpeter’s views did not attract widespread 
attention at the time, by the mid-to-late 20th, the rapid development of technology, 
scholars began to recognize the profound impact and foresight of his theory, 
(Fagerberg, 2006). In subsequent research, innovation was further refined and classified. 
For example, Dosi (1982) proposed the theory of path dependency in technological 
innovation, emphasizing that innovation is constrained by existing technological 
trajectories. 

During the evolution of technological innovation theory, Robert Solow 
developed the famous economic growth model and, through empirical analysis, 

confirmed for the first time the pivotal impact of technological advancements on 
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economic expansion, particularly highlighting the importance of technological progress 
in agricultural output growth (Solow, 1957). Subsequently, scholars such as Schmookler 
(1966) and Griliches (1979) deepened the understanding of technological innovation 
from various perspectives, including economics, industrial Organisation, and 
technological diffusion. Their work expanded the application of technological innovation 
theory in economic growth and industrial transformation. 

In the era of the digital economy, the theory of technological 
innovation provides crucial support for understanding the link between them. The 
application of new generation information technologies not only promotes research and 
development innovation within enterprises and enhances production efficiency but also 
fosters new business models, structures, and Organisational forms through platform 
economies (Brynjolfsson & McAfee, 2014).However, it is important to note that 
technological innovation itself may also trigger countervailing effects. For example, the 
production processes of certain high-tech products, such as data centres and the 
semiconductor industry, can lead to significant energy consumption (Andrae & Edler, 
2015). Therefore, the impact is dualistic, necessitating systematic research and 
appropriate guidance. 

2.2 Literature Review 
2.2.1 Research on Digital Economy 

(1) Concept and Characteristics of Digital Economy 
The digital economy, as an integral part of the modern economic system, 

has seen its scope continuously expand and evolve alongside advancements in 
information technology. Tapscott (1996) initially presented the idea, defined as 
economic activities carried out through digital computing technology. Its defining feature 
is the use of emerging technologies to reshape how businesses, consumers, and 
governments interact. Tapscott systematically articulate the concept of the digital 
economy; however, his definition of it remains somewhat unclear. Later, the World Bank 
(2016) broadened the scope of the digital economy, describing it as the complete 
process of production, distribution, and consumption carried out through digital 
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networks, while highlighting the role of digital technology in driving economic growth 
and social equity. As defined by the Organisation for Economic Co-operation and 
Development (OECD, 2019), data, knowledge, and information are identified as critical 
components of economic transactions, with significant attention given to privacy 
protection, data security, and market concentration. This definition shows that the digital 
economy includes technological innovation, economic operational mechanisms, social 
management frameworks, and policy regulatory measures, clearly reflecting its strategic 
role and impact in the modern economic system. 

Network effects are one of the fundamental characteristics of the 
digital economy. In the digital economy, the worth of a product or service rises with an 
increase in user count. Shapiro and Varian (1999) discussed how network effects 
influence product strategies and market structures, emphasizing that companies that 
successfully harness network effects often thrive in the digital economy. Mayer-
Schönberger and Cukier (2013) identified data as a core asset in the digital economy. 
Their research explored how big data transforms decision-making, innovation, and 
forecasting, noting that companies that own and can analyze data gain a competitive 
advantage. Innovation and rapid iteration are other significant features of the digital 
economy. Christensen’s theory defined by Christensen (2015) of disruptive innovation 
emphasizes how emerging technologies can disrupt existing markets and industries. In 
the digital economy, businesses can quickly iterate products and services, constantly 
adapting to and shaping market demand. Additionally, the platform economy has 
become a major characteristic of the digital economy. Pan et al. (2022) define the key 
features of the digital economy in terms of infrastructure, industrial scale, and the value 
of spillover effects. 

(2) Measurement of Digital Economy 
In recent years, scholars have conducted numerous studies on 

measuring the digital economy. Based on the focus, these studies are divided into two 
primary methodologies: indicator construction and scale estimation. 
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Countries have started to establish numerous research institutions 
that progressively enhance their analysis of global or regional digital economy 
development levels, creating various indicator systems for measurement. Examples 
include the China Urban Digital Economy Index by H3C Technologies, the China Digital 
Economy Index (CDEI) by Caixin Think Tank, Tencent's “Internet+” Digital Economy 
Index, and the Global Digital Economy Development Index jointly issued by Alibaba 
Research Institute and KPMG. 

In addition, some scholars have attempted to construct digital 
economy indicator systems to calculate the digital economy index. Bukht and Heeks 
(2017) measured from multiple dimensions such as digital infrastructure, digital services 
and content, and digital trade, aiming to provide a more comprehensive and accurate 
method for measuring the digital economy, thus better capturing its development status 
and trends and providing strong support for policymaking and strategic planning. Li and 
Wang (2022) developed an indicator system based on metrics such as output and 
employment in the internet industry, internet penetration rate, mobile communication 
coverage, and digital financial development. Ma and Zhu (2022) focused on dimensions 
such as industry digitalization, digital sustainability, and the integration of digital 
industries. Yi et al. (2022) referred to the digital economy and its core industries 
statistics released by the CAICT and the National Bureau of Statistics. Shahbaz et al. 
(2022) constructed a index based on four sub-indices. 

The digital economy in societal development continues to rise, 
the issue of measuring the scale has gained significant attention from various institutions 
and the academic community. These studies cover the application of the production 
approach and explore innovative applications, such as cloud platforms, and principal 
component analysis, in digital economy scale measurement. Machlup (1962) studied 
the measurement of value-added in knowledge and information economies. The U.S. 
Bureau of Economic Analysis calculated the scale of the U.S. digital economy in its 
report "Defining and Measuring the Digital Economy" using supply-use tables, (Barefoot 
et al., 2019). The New Zealand Statistics Bureau adopted BEA's measurement approach 
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to estimate the digital economy scale in New Zealand, Millar and Grant (2019), and 
Ahmad and Ribarsky (2018) using the OECD as a research sample, assessed the 
overall level and internal structure (Yang & Li, 2021), combining macroeconomic models 
and dynamic analysis, proposed a more accurate method to measure the scale of the 
digital economy and forecast its development trends. They provide a new measurement 
method for the digital economy's scale, constructing empirical equations to predict 
inflationary pressure and using dynamic coefficients to analyze the growth trends of 
China's manufacturing industry over time. 

Yuan (2023) emphasized the use of quantitative analysis 
of multidimensional data in the context of big data to comprehensively assess the scale 
and benefits of the digital economy. Chinoracky and Corejova (2021) introduced a 
composite indicator method for key areas such as the economy, labor, and skills, 
designed to measure the scale and potential of the digital economy, offering quantitative 
analytical tools for policymaking and growth strategies. Zhao and Zhou (2022) explored 
the use of cloud platforms for measuring the scale of the digital economy. This approach 
not only considers the direct output of the digital economy but also accounts for the 
application and efficiency of digital technologies in traditional industries, providing a 
comprehensive and dynamic measurement method. 

Novikova et al. (2020) developed a set of 
methodological tools, which includes a comprehensive evaluation system with twelve 
individual indicators, to measure the digital economy in a regional context. This system 
covers digital infrastructure construction and digital services applications. Zaicev et al. 
(2021) combined traditional national accounting systems (UN SNA, European System of 
National and Regional Accounts (ESA), and OECD) with innovative hedonic method 
techniques to measure the scale of the digital economy and its impacts. Ziming and 
Kharchenko (2023) used new models incorporating subjective and objective weighting 
methods such as principal component analysis, Analytic Hierarchy Process (AHP), 
cluster analysis, standard deviation, entropy methods, and extreme methods to analyze 
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biases caused by human factors in the results. These approaches offer a multi-
dimensional evaluation and analysis of the digital economy's scale. 

(3) Research on the Economic and Social Effects  
As a key engine driving global economic transformation and social 

change, the digital economy’s effects have increasingly attracted widespread attention 
from both academia and policymakers. Existing literature explores the multifaceted 
impacts of the digital economy from various perspectives, including economic growth, 
labor market restructuring, globalization, environmental impacts, and technological 
innovation. 

In recent years, the digital economy has become a pivotal force in 
driving economic transformation and social change. Scholars have examined its effects 
on economic growth, labor market restructuring, globalization, and its environmental and 
social implications from diverse angles. Pang et al. (2022) and Ding et al. (2021) 
highlighted through empirical analysis the critical role of digital tools and information and 
communication technologies (ICT) in enhancing supply-demand efficiency, optimizing 
resource allocation, and promoting high-quality growth. Likewise, Schreyer (2000) and 
Jorgenson et al. (2008) confirmed the foundational role of information technology in 
enhancing productivity and stimulating economic recovery, through case studies of G7 
countries and the United States. Although these studies differ in methodology and 
perspective, they all provide strong empirical evidence of the digital economy’s 
contribution to macroeconomic growth, while revealing shortcomings in cross-country 
comparisons and regional data integration. This lays the foundation for further 
exploration of the underlying mechanisms of digital economic effects. 

In the fields of labor markets and globalization, scholars have 
also delved into the structural changes brought about by the digital economy. Autor et al. 
(1998) pointed out that the widespread adoption of information technology has 
reshaped the skill demand structure in the labor market, driving the expansion of high-
skilled jobs while exerting pressure on low-skilled jobs, thereby having profound impacts 
on income distribution (Acemoglu & Autor, 2011), further explored the dynamic 
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relationship between technological change, employment structures, and income 
inequality. Baldwin (2016) emphasized the role of information technology in driving 
global resource flows and cross-border industrial chain reorganisation. Stallkamp and 
Schotter (2021) found that the digital economy has spurred the multinational businesses. 
Chatterjee and Kar (2020) concluded that the digital economy benefits the smart 
management of enterprise supply chains, adding momentum to corporate growth. 
However, the regional implementation bottlenecks described by Chatterjee and Kar 
(2020) indicate significant disparities in the performance of different economies during 
their digital economic transformation. Moreover, Tukhtabaev et al. (2022) warned of the 
potential risks of the digital economy concerning energy consumption and carbon 
emissions, while Aly (2022) and Yoo et al. (2010) provided new perspectives on the 
application in green transformation and resource optimization. 

In summary, existing literature not only systematically 
discusses the impact of the digital economy on various social and economic 
phenomena but also highlights the limitations of methodologies and data applications. It 
suggests that future research should further integrate macro and micro data from an 
interdisciplinary perspective to develop a more comprehensive and systematic 
theoretical framework, thereby providing a solid theoretical basis for policy formulation. 

2.2.2 Research on Agricultural Carbon Emissions 
The study of carbon emissions can be traced to Grossman and Krueger 

(1991), who analysed the effects of economic growth on variations in carbon emissions 
and proposed the existence of three major effects: scale, structure, and technology. 
Since then, research into the factors influencing carbon emissions has expanded 
substantially, encompassing dimensions such as technological advancement, industrial 
structural transformation, population aging, trade development, and foreign direct 
investment (Esmaeilpour Moghadam & Dehbashi, 2018; Hanif, 2018; Li & Li, 2020; Sun 
& Huang, 2020; Ye et al., 2019). The shift toward examining carbon emissions 
specifically within the agricultural sector emerged slightly later, with early studies 
focusing primarily on agricultural production processes, including crop varieties, 
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cultivation patterns, input materials, and waste management (Johnson et al., 2007; 
Vleeshouwers & Verhagen, 2002).  

Given the complex and multifaceted nature of factors influencing 
agricultural carbon emissions, considerable heterogeneity exists in the methodologies 
employed by scholars for its estimation. For example, West and Post (2002) measured 
agricultural carbon emissions based on agricultural material inputs. Johnson et al. (2007) 
refined the assessment by categorizing emissions across crop cultivation, livestock 
production, energy inputs, waste management, and biomass combustion, thereby 
providing a comprehensive estimation of agricultural carbon emissions in the USA Yun 
and Zhang (2014) applied a similar multi-faceted approach to estimate China's 
agricultural carbon emissions, examining energy consumption, rice cultivation, livestock 
farming, and unconventional waste disposal, while also analyzing the underlying 
mechanisms driving these emissions. Furthermore, Xiaowen et al. (2015) use the Kaya 
decomposition method to disentangle the multidimensional factors influencing 
agricultural carbon emissions, using differential factor decomposition analysis to 
determine the directional effects of these variables on agricultural emissions in China. 

2.2.3 Research on the Impact of Digital Economy on Agricultural Carbon 
Emissions 

Yang et al. (2023) studied how the digital economy reduces carbon 
emissions, focusing on digital industrialization and digitization. Zhou and Wang (2023) 
explained how the digital economy can change farming practices, looking at market 
politics. Wolfert et al. (2017) reinforced the argument that digital-tech are changing 
agricultural production paradigms through a comprehensive review of big data in smart 
agriculture. 

At the empirical level, someone found that the digital economy promotes 
agricultural structural upgrading, technological innovation, and large-scale management. 
This conclusion aligns with the development trends revealed by Sørensen et al. (2010), 
constructed for future agricultural management information systems. 
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Kaila and Tarp (2019) found digital economy improve agricultural 
productivity is becoming increasingly significant. Research shows that the digital 
economy not only significantly enhances agricultural productivity through technological 
innovation and factor flows, Fabregas et al. (2019), empowering high-quality agricultural 
development, but also unveils new opportunities and challenges in agricultural and 
environmental analysis through the application of big data technologies (Weersink et al., 
2018). These technologies provide substantial support for precision and intelligent 
agricultural production, improving resource allocation efficiency (Guo et al., 2013; 
Kamilaris et al., 2017), significantly reducing agricultural carbon emissions, and 
effectively promoting the transformation of agricultural green production modes. Low-
efficiency sectors or enterprises that cannot adapt to new production conditions or lag 
behind in production capabilities are gradually marginalized and eventually eliminated 
(Acemoglu & Autor, 2011). 

Furthermore, some scholars explored optimizing the spatial 
layout of the agricultural industry through the digital economy from the perspective of 
industrial agglomeration, enhancing the collaborative development capabilities of 
regional agriculture. Elijah et al. (2018) evaluated the application and environmental 
benefits of Internet of Things (IoT) technologies in modern agricultural production, 
revealing the multi-dimensional mechanisms of IoT in resource optimization, precision 
production, and carbon reduction through a meta-analysis of 50 typical agricultural 
cases worldwide. Sylvester presented a global perspective from the United Nations 
Food and Agriculture Organisation (FAO), systematically discussing the strategic 
implications of digital agricultural transformation for climate change mitigation. The study 
deeply analysed the crucial role of digital technologies in agricultural decarbonization 
and climate adaptability enhancement, providing innovative pathways for developing 
countries to address climate change. 

2.3 Literature Overview 
While China has been actively promoting the deep integration of digital 

technologies with economic and social life, with a particular emphasis on aligning these 
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developments with current ecological and environmental governance issues. Scholars 
both domestically and internationally have conducted extensive analysis from multiple 
perspectives and dimensions. These studies have yielded a wealth of research 
outcomes. The research findings related to the digital economy or carbon emissions 
provide a solid theoretical, methodological. However, there are still areas that warrant 
further expansion, as detailed below: 

Although there are already numerous digital economy evaluation systems in 
place, the fragmented understanding of statistical categories has led to significant 
challenges in existing research. This limitation prevents the selection of indicators and 
the allocation of weights from achieving uniform standards, resulting in assessment 
outcomes exhibiting diverse characteristics. 

Based on the theoretical framework mentioned earlier, this study 
pioneers the establishment of a statistical system for the digital economy across all 
provinces and regions in China, and designs a comprehensive evaluation model 
covering multiple aspects. It precisely calculates the primary digital economy indicators 
for each region, conducts a detailed analysis of the distribution of these indicators in 
rural areas, and employs empirical methods to explore the internal connection 
mechanisms and driving factors between the two. 

 
 
 
 
 
 
 



 
 

CHAPTER 3 
METHODOLOGY 

3.1 Research Hypotheses 
3.1.1 Direct Effects 

The digital economy directly affects agricultural costs, resource utilization 
efficiency, supply chains, and environmental management, influencing agricultural 
carbon emissions. 

First, the digital economy cuts agricultural costs and promotes the 
digitization of farming practices. Traditional agricultural inputs are converted into data-
driven resources. For example, the incorporation of digital technologies transforms 
traditional machinery into intelligent systems, boosting production efficiency while 
cutting labor costs and energy consumption. Studies show that a 1% rise in digital 
economy development correlates with a 0.595% decrease in agricultural carbon 
emissions. 

Second, the digital economy greatly improves resource utilization 
efficiency via precision agriculture technologies. The advancement of digital framework 
facilitates the widespread implementation of digital tools in networked, intelligent, and 
refined agricultural practices. By employing smart machinery, sensors, drones, and data 
analytics , enabling precise fertilization and irrigation ,said by Subeesh and Mehta 
(2021). This targeted approach reduces fertilizer and water consumption, thereby 
decreasing agricultural carbon emissions and contributing to climate change mitigation, 
pointed by García-García and Parra-López (2024). 

Third, the digital agricultural supply chain facilitates the 
transformation of traditional agricultural practices towards intelligent, value-driven, and 
efficient development, ultimately improving the overall efficiency of sustainable 
agricultural production, pointed by Tzachor et al. (2022) and Zhu et al. (2023) . Digital 
technologies enable producers to respond more effectively to market demand 
fluctuations, achieving a dynamic alignment between production and market needs. 
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This adaptability allows for better management of energy consumption during 
agricultural production, resulting in reduced greenhouse gas emissions (Ji et al., 2024). 

Finally, the role of the digital economy in environmental 
management is noteworthy (Fankhauser, 2013). Based on this, the author proposes the 
following hypotheses for further verification: 

H1: The digital economy can directly and effectively reduce 
agricultural carbon emissions. 

3.1.2 Indirect Effects 
(1) Scale-Mediated Effects of the Digital Economy on Agricultural Carbon 

Emissions 
Digital technology serves as a pivotal catalyst for contemporary 

agricultural reform, facilitating the reconfiguration of traditional small-scale business 
models. In an agroecological context dominated by smallholder operations, production 
is often constrained by high unit cultivation costs, low levels of mechanisation, and 
inefficient management practices. The introduction of digital technology has enabled the 
integration of advanced agricultural machinery and digital management systems, 
gradually replacing conventional fragmented and decentralized production models with 
more standardized and scalable approaches. 

This transformation not only boosts mechanisation and digital 
management capabilities but also enhances information flow. Digital technology 
facilitates the efficient exchange of market and technical information among agricultural 
producers via information platforms, tackling problems related to information asymmetry. 
This improved information exchange boosts resource allocation efficiency and aids the 
shift from traditional decentralized operations to moderate-scale farming. Moreover, 
digital platforms lower the financial costs of land transfers, facilitating smoother and 
quicker transactions. This promotes the efficient allocation of agricultural resources and 
aids in the growth of large-scale operations. 

Studies show that moderate-scale operations can improve land 
use efficiency and lower agricultural carbon emissions, addressing issues of operational 



  27 

fragmentation and resource waste. The incorporation of digital technology fosters the 
efficient allocation of land resources, enhancing agricultural production by accurately 
matching supply with demand. Scaling up agricultural operations has been found to 
enhance production efficiency, reduce resource waste, and alleviate pollution (Fan 
Guohua and Han Jianmin, 2024). This shift reduces the costs of rural pollution 
management and cuts agricultural carbon emissions. Additionally, large-scale 
operations are typically associated with greater mechanisation and automation, 
significantly lowering carbon emissions per unit of output. This shift directly cuts energy 
use and carbon emissions commonly linked to small-scale farming. Based on this 
analysis, the following hypothesis is proposed for the study: 

H2a: The digital economy can effectively reduce agricultural 
carbon emissions through the scale effect of land use. 

(2) Financial Intermediation Effects of the Digital Economy on Agricultural 
Carbon Emissions 

The digital economy has greatly expanded the boundaries of traditional 
finance, lowering service costs and increasing access to inclusive financial services, 
which in turn boosts the overall efficiency of the financial system. Traditionally, high 
costs have kept many "long-tail groups" from accessing financial services. However, the 
swift advancement of digital finance has reduced these costs, enhancing access for 
underserved groups and generating positive effects on economic growth, income, 
consumption, innovation, and entrepreneurship. 

The Guide to Digital Finance in Agriculture, published by the United 
States Agency for International Development (USAID, 2016), emphasizes that digital 
finance successfully broadens access to the formal financial system by utilizing 
advancements in digital and mobile infrastructure, as well as the expansion of 
branchless banking. This evolution has increased the accessibility of financial services 
for rural households. In China, the restricted coverage of traditional financial institutions 
in rural regions frequently leads to substantial time and travel expenses for farmers in 
need of financing, posing obstacles to easy access. 
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Through the use of internet technology and mobile payment 
systems, digital finance has broken down the long-standing exclusive connection 
between rural agriculture and financial capital. It offers services like online agricultural 
loans and microcredit, effectively tackling the financing challenges faced by farmers. 
This shift allows agricultural producers to access funding for sustainable development 
and prompts research institutions and enterprises to secure financial backing, thereby 
driving innovation in green agricultural technologies. This, in turn, enhances agricultural 
production efficiency and product quality. An empirical study by Zhao et al. (2021), 
utilizing a series of exogenous events and difference-in-differences methodology, 
confirmed that digital finance significantly contributes to carbon emission reductions. In 
light of this analysis, we propose the following hypothesis: 

H2b: The digital economy can effectively reduce agricultural 
carbon emissions through financial intermediation effects. 

(3) The Mediating Effect of Technological Innovation Between the Digital 
Economy and Agricultural Carbon Emissions 

Salahuddin and Alam (2015) and Hamdi et al. (2014) said technological 
innovation serves as a fundamental driver of economic progress, playing a pivotal role in 
enhancing environmental quality and fostering sustainable development. It strengthens 
interactions, collaboration, and knowledge exchange among key stakeholders, 
facilitating the pervasive adoption of digital technologies that significantly contribute to 
carbon emissions reduction. 

By leveraging advanced digital tools, such as multidimensional 
sensors, enterprises can monitor production processes with precision, obtaining real-
time data on various inputs and activities. This capability enables Organisations to 
identify inefficiencies within their production systems and implement incremental 
improvements that enhance operational efficiency, thereby reducing carbon emissions 
(Kohli & Melville, 2019). Empirical evidence provided by Dietz and Rosa (1994), utilizing 
an IPTA model that incorporates stochastic elements, underscores the critical influence 
of technological advancements on the mitigation of carbon emissions. Moreover, Yin et 
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al. (2015) demonstrate that technological innovation exerts a positive influence on 
carbon reduction performance, contributing to decreased carbon dioxide emissions. 
Research conducted by Cole et al. (2013)  among Japanese firms indicates that 
increased investment in research and development effectively catalyzes technological 
innovation and leads to substantial reductions in corporate carbon emissions. 
Supporting this, studies by Haseeb et al. (2019) and Shobande (2021) affirm that 
technological innovation can diminish carbon emissions over the long term. The digital 
economy has facilitated the integration of technological innovation with agricultural 
production. By leveraging advanced technologies, stakeholders can gain timely insights 
into crop growth, mitigate losses from natural disasters, and connect with experts to 
address challenges in cultivation. This enables the rational adjustment of agricultural 
inputs and fosters reductions in carbon emissions from agricultural practices. 
Based on this analysis, we propose the following research hypothesis: 

H2c: The digital economy can reduce agricultural carbon emissions 
through technological innovation. 

3.2 Measurement of Rural digital economy 
3.2.1 Rural digital economy indicator system 

As a novel and intricate economic form, it exhibits a variety of fundamental 
attributes. Owing to the complexity of its meaning, a single indicator cannot fully capture 
its development level. Thus, current studies mainly use indicator-based methods for 
quantitative analysis to assess its development level. 

Now, there is minimal study on the quantitative evaluation of rural digital 
development. The "2021 National County-Level Agricultural and Rural Informationized 
Development Level Evaluation Report" outlines a comprehensive evaluation system. It 
designed to reflect the overall state of digital agriculture and rural modernisation at the 
county level. introduced more precise evaluation criteria from three dimensions: digital 
infrastructure development, intelligent agricultural practices, and the digital economic 
shift in rural areas. 
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In 2022, the Central Cyberspace Administration of China, working 
with the Ministry of Agriculture and Rural Affairs and other relevant departments, 
released a document. This document outlined 30 key tasks targeting crucial areas like 
rural network infrastructure, agricultural digital transformation, intelligent rural 
governance, and enhancing farmers' digital literacy. 

This study aiming to develop a digital economy evaluation 
framework tailored to rural regional features. When designing indicators, the primary 
considerations are data availability, reasonableness, and comprehensiveness. At 
present, China has essentially set up a relatively comprehensive quantitative evaluation 
framework for the digital economy. The rural digital economy constitutes a vital part of 
the national economy, and its evaluation framework should align with the current 
statistical system(Wang et al., 2024) . Based on the ‘Statistical Classification of the 
Digital Economy and Its Core Industries (2021)’ document and referencing the research 
findings of Wang and Chen (2024), this study comprehensively analysed the reliability 
and applicability of data to select nine core indicators across three key dimensions. 
Finally, the EMW was used to calculate the rural digital economy across China's 
provinces, with detailed results shown in Table 1. 
Table 1 Rural digital economy indicator system 

Primary Indicator Secondary Indicator Indicator Description 

Rural Digital 
Foundation 

Rural Internet Penetration Rate Users of broadband internet in rural areas / rural population 

Computer Penetration Rate  Average number of computers owned per hundred households 

Communication Service Level  Population Served per Kilometer of Rural Delivery Route. 

Mobile Phone Penetration Rate  Number of mobile phone users per hundred individuals 

Rural Industry 
Digitization 

Rural Digital Transformation Model 
Total Agricultural Machinery Power / Total Output Value of Agricultural, 
Forestry, Animal Husbandry, and Fishery Industries 

Digital Talent Investment 
Number of personnel in information technology and software services (ten 
thousand) 

Rural Digital Industry 

Information Transmission Level  Number of Taobao Villages. 

E-commerce Sales Volume  Total e-commerce sales revenue 

Digital Finance Index  Index for digital financial services 
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3.2.2 Measurement Method of Rural Digital Economy – Entropy Weight Method 
Numerous comprehensive evaluation methods exist both domestically and 

internationally. Objective weighting methods are extensively used in multi-indicator 
comprehensive evaluation research because they determine weights based on inherent 
data differences, effectively minimizing human subjectivity. To address the limitations of 
subjective weighting methods, which often include arbitrary weight allocation and 
vulnerability to bias, this study uses the EWM to establish the rank of each evaluation 
indicator. The EWM is rooted in the entropy concept from information theory, which 
suggests that greater differences in indicators among various evaluation objects result 
in more information and consequently higher weights. By computing the information 
entropy of each indicator and handling redundancy, the Entropy Weight Method 
objectively mirrors the data's internal structure, effectively minimizing subjective 
influences and boosting the scientific and rational quality of comprehensive evaluation 
outcomes. This, together with subsequent comprehensive evaluation models, can 
further enhance the accuracy of indicator ranking and the reliability of results, offering 
robust data support for high-quality, multi-dimensional analysis. The Entropy Weight 
Method employs the range method for data convergence and dimensionless processing, 
as illustrated in the formula below: 

                    𝑌𝑖𝑗 =

{
 
 

 
 

𝑋𝑖𝑗 −𝑚𝑖𝑛𝑋𝑖𝑗

𝑚𝑎𝑥𝑋𝑖𝑗 −𝑚𝑖𝑛𝑋𝑖𝑗
, 𝑋𝑖  is a negative indicator

𝑚𝑎𝑥𝑋𝑖𝑗 − 𝑋𝑖𝑗
𝑚𝑎𝑥𝑋𝑖𝑗 −𝑚𝑖𝑛𝑋𝑖𝑗

, 𝑋𝑖  is a positive indicator

                     （1） 

Where 𝑖 represents the province, 𝑗 represents the indicator, 𝑚𝑎𝑥  and 
𝑚𝑖𝑛  represent the maximum and minimum values of 𝑋𝑖𝑗, 𝑌𝑖𝑗 represents the value of the 
indicator after standardization. 

This paper intends to collect data of China’s 30 provincial administrative 
regions from 2012 to 2022. This paper uses Stata software to assign weights to all index 
data after standardization. The weights of the indicators calculated according to formula 
(2) are. 

 𝑊𝑖𝑗 =
𝑌𝑖𝑗

∑ 𝑋𝑖𝑗
𝑛
𝑖=1

      (2) 
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The each indicator is calculated according to equation (3) as. (3) 

             𝑒𝑗 =
∑ 𝑊𝑖𝑗
𝑛
𝑖=1 lnW𝑖𝑗

ln𝑛
 

Calculate the information entropy redundancy according to equation 
(4)𝑑𝑗: 

𝑑𝑗 = 1 − 𝑒𝑗 

where is the evaluation year and the weights of the indicators are 

calculated according to formula (5) ∁𝑗:  

         ∁𝑗=
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

 

The level of rural digital economy development is derived by objectively 
assigning weights to each indicator in the rural digital economy evaluation index system 
based on the entropy value method and calculating the composite index, which is 
calculated by the formula (6): 

               𝑑𝑖𝑔𝑖𝑡𝑎𝑙𝑖 = ∑ ∁𝑗
𝑚
𝑗=1 ×𝑤𝑖𝑗  

3.2.3 Analysis of the weight of the rural digital economy 
(1) Analysis of the Weight Results of Rural Digital Economy 

Table 2 Rural igital economy weighting results 

First-level indicator Second-level indicator 
Entropy 
value 

Indicator weight (%) 

Ranking 

First-level indicator Second-level indicator 

 
Digital Foundations of the 
Countryside 
 

Internet penetration rate 0.947 7.163 

17.627 

4 

Computer penetration rate 0.968 4.239 6 

Level of communications 
services 

0.976 3.270 7 

Cell phone penetration 
rate 

0.978 2.955 8 

Digitalization of Rural 
Industries 

Scale of digitization in 
agriculture 

0.964 4.802 
18.535 

5 

Digital talent investment 0.897 13.733 3 

 
Digital Industrialization of 
the Countryside 

E-commerce penetration 0.670 44.189 

63.839 

1 

Digital trading levels 0.874 16.877 2 

Digital Inclusive Finance 0.979 2.773 9 

(6) 

(3) 

(4) 

(5) 
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The dimensional weight of the rural digital economy is shown in Table 2. 
The swift advancement of the digital economy has made digitalization a central force 
and crucial driver in revitalizing rural areas and enhancing the environment. The main 
task in promoting the rural digital economy involves speeding up the development of 
information infrastructure, broadening and deepening the use of information technology 
in rural sectors, fostering the integration of information technology with agricultural 
equipment, and continually driving innovation and enhancement in digital services, thus 
leading to new forms of digital villages. Specifically, in terms of indicators, e-commerce 
penetration, digital transaction levels, and digital talent investment rank in the top three 
positions. This reflects that new business models and economies, such as e-commerce, 
serve as effective avenues for rural digital economies to achieve breakthroughs. 
Building digital villages and establishing a "digital ecosystem" requires comprehensive 
strategies that focus on both hardware infrastructure construction and software service 
enhancement. The government needs to actively nurture digital talent in rural regions to 
boost agricultural productivity, refine resource allocation, and strengthen the market 
competitiveness of agricultural goods. Moreover, e-commerce platforms should be 
leveraged to expand sales channels and boost farmers' incomes. Moreover, rural 
digitalization can aid in advancing precision agriculture, minimizing resource waste, and 
utilizing information technology to attain sustainable agricultural growth, thus enhancing 
the living standards of rural inhabitants and encouraging a balanced relationship 
between rural economies and the natural environment (Jin et al., 2024). 

(2) Trend analysis of changes in the rural digital economy index by province 
This study employs the entropy method to quantitatively assess the 

growth of the rural digital economy across China's 30 provinces from 2012 to 2022, with 
the findings shown in Table 3. It has been confirmed that during this period, China's 
rural digital economy exhibited a significant overall growth trend. In comparison to 2012, 
the scale of China's rural digital economy in 2022 expanded by roughly 2.5 times, with 
most regions experiencing relatively slight shifts in rankings. Typical regions like 
Guangdong Province and Zhejiang Province are particularly notable.  
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Table 3 2012-2022 Development Levels of Rural Digital Economy in Each Province 
Region pro 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

East 

Beijing 0.200 0.228 0.249 0.256 0.261 0.296 0.305 0.330 0.366 0.414 0.431 

Tianjin 0.085 0.085 0.088 0.096 0.099 0.107 0.107 0.124 0.137 0.151 0.151 

Hebei 0.086 0.098 0.109 0.121 0.125 0.145 0.168 0.201 0.235 0.266 0.286 

Liaoning 0.064 0.075 0.084 0.096 0.099 0.108 0.108 0.105 0.105 0.117 0.127 

Shanghai 0.085 0.114 0.148 0.150 0.171 0.185 0.195 0.223 0.247 0.282 0.335 

Jiangsu 0.106 0.147 0.149 0.181 0.202 0.233 0.284 0.330 0.355 0.381 0.418 
Zhejiang 0.125 0.133 0.145 0.199 0.247 0.315 0.411 0.508 0.543 0.641 0.715 

Fujian 0.070 0.081 0.094 0.110 0.117 0.148 0.173 0.213 0.223 0.253 0.288 

Shandong 0.090 0.108 0.118 0.141 0.165 0.214 0.248 0.258 0.296 0.343 0.381 
Guangdong 0.107 0.150 0.175 0.202 0.246 0.310 0.382 0.445 0.500 0.592 0.658 

Hainan 0.028 0.036 0.042 0.050 0.056 0.067 0.072 0.080 0.084 0.095 0.113 

Average 0.095 0.114 0.127 0.146 0.163 0.193 0.223 0.256 0.281 0.321 0.355 

Central 

Shanxi 0.087 0.090 0.094 0.103 0.082 0.087 0.095 0.097 0.101 0.106 0.116 

Jilin 0.060 0.071 0.081 0.087 0.090 0.101 0.104 0.104 0.103 0.106 0.111 

Heilong 
jiang 

0.055 0.063 0.068 0.076 0.079 0.091 0.099 0.105 0.102 0.098 0.102 

Anhui 0.057 0.067 0.075 0.084 0.089 0.099 0.123 0.130 0.141 0.154 0.167 

Jiangxi 0.060 0.047 0.054 0.065 0.066 0.080 0.091 0.099 0.111 0.122 0.129 
Henan 0.064 0.078 0.086 0.097 0.103 0.116 0.127 0.137 0.152 0.168 0.179 

Hubei 0.057 0.069 0.078 0.082 0.085 0.101 0.115 0.133 0.141 0.152 0.164 

Hunan 0.053 0.062 0.068 0.075 0.079 0.091 0.105 0.112 0.120 0.131 0.137 
Average 0.061 0.068 0.076 0.084 0.084 0.096 0.107 0.115 0.121 0.130 0.138 

West 

Inner Mongolia 0.063 0.076 0.082 0.092 0.094 0.105 0.115 0.116 0.121 0.123 0.128 

Guangxi 0.037 0.043 0.050 0.055 0.057 0.069 0.082 0.090 0.101 0.111 0.121 
Chongqing 0.041 0.049 0.060 0.067 0.074 0.088 0.097 0.104 0.112 0.131 0.169 

Sichuan 0.035 0.056 0.063 0.078 0.086 0.102 0.116 0.128 0.141 0.152 0.172 

Guizhou 0.036 0.043 0.045 0.046 0.048 0.057 0.066 0.070 0.074 0.086 0.101 

Yunnan 0.039 0.049 0.054 0.059 0.055 0.061 0.069 0.075 0.081 0.087 0.092 

Shaanxi 0.058 0.064 0.072 0.077 0.083 0.093 0.099 0.104 0.110 0.119 0.138 

Gansu 0.062 0.068 0.074 0.081 0.073 0.083 0.099 0.101 0.106 0.112 0.120 

Qinghai 0.043 0.039 0.044 0.070 0.073 0.077 0.094 0.099 0.102 0.115 0.130 
Ningxia 0.060 0.064 0.068 0.068 0.058 0.068 0.082 0.089 0.094 0.101 0.102 

Xinjiang 0.038 0.044 0.046 0.055 0.056 0.064 0.073 0.079 0.079 0.088 0.099 

Average 0.047 0.054 0.060 0.068 0.069 0.079 0.090 0.096 0.102 0.111 0.125 

From 2012 to 2021, the total digital economy in Guangdong Province 
increased nearly 6.15 times, achieving a compound annual growth rate of 19.92%, 
solidifying its top position nationwide. Zhejiang Province utilized its advanced data 
infrastructure and high degree of industrial digitization to achieve a growth rate of nearly 
5.73 times during this period, with an annual compound growth rate of 19.07%, also 
placing it among the top ranks. Provinces like Anhui and Sichuan have consistently 
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focused on development in this sector and stayed within the top ten for a long time. 
Regarding Chongqing, its initial performance was not especially notable, but it started to 
climb from 2018 onward, reaching the 11th position nationwide by 2022.This resulted 
from the execution of infrastructure enhancement plans, resource integration 
approaches, and the introduction of incentive-driven support policies. Certain resource-
rich areas, such as Shanxi, Liaoning, and Gansu, have seen a significant reduction in 
their influence within the digital economy sector. Shanxi's overall ranking declined from 
6th in 2012 to 23rd in 2022, while Liaoning's position dropped from 11th in 2012 to 20th 
in 2022. Similarly, Gansu's ranking fell from 14th in 2012 to 22nd in 2022. This could 
stem from their prolonged overdependence on traditional resource-based industries, 
resulting in structural rigidity and impeding economic transformation. Innovation-driven 
growth, infrastructure enhancement, market environment optimization, and high-level 
talent development have all encountered substantial challenges. Moreover, their 
disadvantageous geographical positions and elevated logistics expenses have 
intensified these challenges, rendering the difficulties in digital economy element 
aggregation, technological R&D advancements, and industrial upgrading more 
pronounced in these areas. 

Figure 2 reveals significant regional disparities in the 
comprehensive development levels of the digital economy among China's provinces, 
municipalities, and key cities. Zhejiang Province tops the list with a total score of 0.362, 
followed by Guangdong Province and Beijing Municipality, scoring 0.343 and 0.303 
respectively. These regions exhibit robust competitiveness and development potential, 
particularly in digital infrastructure construction, technological innovation capabilities, 
and industrial integration. 

Jiangsu, Shandong, Shanghai, Hebei, Fujian, and other areas, 
despite showing considerable potential for development in the digital economy, still trail 
behind more developed regions in terms of overall digital economy levels. This suggests 
that these areas have significant potential for improvement and urgently require 
enhancing their competitive advantage to close the gap with more developed regions. 
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Figure 2 Average Level of Digital Economy Development 

Regions in the intermediate development stage, like Hubei 
and Shaanxi Provinces, show a balanced distribution of the digital economy, with 
infrastructure development starting to exhibit scale effects. However, substantial room 
for improvement remains in technological innovation capabilities and the depth of 
industrial integration. Regions in the underdeveloped stage, from Chongqing 
Municipality to the Ningxia Hui Autonomous Region, are in the early phases of digital 
economy development and urgently need policy guidance and resource allocation to 
achieve leapfrog growth. 

Some underdeveloped areas, like the Guangxi Zhuang 
Autonomous Region and Guizhou Province, exhibit relatively low levels of digital 
economy development. There are clear deficiencies in infrastructure development, 
technological innovation implementation, and industrial upgrading and transformation. 
To achieve comprehensive breakthroughs in all aspects of the digital economy, it is 
essential to enhance policy guidance and build a more robust technical support and 
resource protection system. 

Looking ahead, it is essential to strengthen the policy 
support system and increase resource allocation, with a particular focus on providing 
development support to low- and middle-income regions. It is crucial to fully harness the 
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technological spillover benefits and resource allocation strengths of high-tech industrial 
clusters through regional collaborative development strategies, thereby driving the swift 
rise of the digital economy in neighboring areas. Additionally, it is essential to focus on 
strengthening talent reserves, improving the digital literacy and professional skills of 
workers in the digital economy sector, promoting entrepreneurship and innovation, 
fostering new business models, and fully utilizing development potential to achieve 
balanced economic growth and comprehensive transformation across regions. 

(3) Average Level and Dynamic Evolutionary Features of Regional Digital 
Economy Development 

China is divided into three areas: eastern, central, and western. 
Assessing the development status of rural digital economies across these regions using 
this criterion, as depicted in Figure 3 statistical data reveals that from 2012 to 2022, 
China's digital economy showed notable spatial disparities. Generally, it follows a 
pattern of 'the eastern region leading, with the central and western regions trailing 
behind.' The eastern region, leveraging its solid economic base, advanced 
technological infrastructure, and strong innovation drive, has sustained a high digital 
economy index, reaching 0.3548 by 2022. In contrast, the central and western regions 
have seen relatively slow growth in their digital economies due to limited economic 
development potential and a lack of technological R&D capabilities. The eastern regions 
have established a distinct advantage in the digital economy. In contrast, the central 
and western regions, hindered by weaker economic foundations and insufficient 
innovative momentum, have experienced slower development. Although the digital 
economy in the central and western regions has expanded in recent years, its growth 
rate still lags far behind that of the eastern regions. To foster regional coordination and 
reduce developmental disparities, it is essential to enhance policy direction and boost 
resource allocation, speeding up the high-quality growth of the digital economy in less 
developed areas to attain nationwide balanced digital economic progress. 
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Figure 3 Comparison of Regional Average Digital Economy Development Levels 
To better understand the temporal changes across three regions of 

China and nationwide, then analyze the temporal dynamic evolution characteristics, a 
non-parametric kernel density estimation method was employed. The kernel density 
estimation plots of the digital economy levels for the entire country and for the eastern, 
central, and western regions are presented in Figure 4. 

 
   
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Kernel Density Estimations of National and Regional Digital Economy Level 
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From a macro perspective, China's digital economy experienced 
continuous growth from 2012 to 2022. The statistical characteristics of the annual 
distribution centre of the kernel density curve show minimal fluctuation and a steady 
upward trend, reflecting a development path of continuous improvement in core 
indicators. Exploring the patterns of changes in the main peak's height reveals short-
term fluctuations, yet the overall level stays consistently high. This suggests that the 
development of the digital economy shows no significant regional disparities nationwide, 
reflecting robust stability. 

The distribution of peaks shows clear phased features. From 
2012 to 2015, the national digital economy level curve showed a double-peak structure, 
where the main peak was notably higher than the secondary one. However, this trait 
started to diminish from 2016 and had shifted to a single peak by 2019. It means in the 
early step of digital economic growth, China encountered notable regional disparities. 
But, the enhancement of the macroeconomic environment and the strengthening of 
policy regulation efforts, its development model is progressively shifting towards a more 
balanced direction. 

Analysis of the curve's tail characteristics shows that the 
distribution of digital economy levels across provinces and municipalities nationwide 
displays a left-tail exceeding the right-tail pattern, indicating that regions with lower 
development levels significantly outnumber those with higher development levels. 
Although differences exist at both ends, the gaps are small, suggesting that regional 
imbalances in China's digital economy do indeed exist. However, overall, the 
development level stays relatively low, showing a pattern of balanced growth across the 
board. 

During the study period, the digital economy in the 
eastern region showed a pattern of slight fluctuations. The kernel density estimation 
curve's centre of gravity consistently shifted to the right with fluctuations, suggesting that 
the region's overall digital economy level is relatively high but shows some variability. 
The changes in the main peak height indicate that the disparities in the digital economy 
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within the eastern region experienced a dynamic process of initial contraction followed 
by subsequent expansion. 

The eastern region has consistently shown a single 
peak, suggesting no significant bipolarization in its digital economy during the study 
period. The curve's shape shows a notably longer left tail compared to the right, 
suggesting varying development levels among eastern provinces. Provinces at the 
forefront exhibit a more advanced digital economy, while those lagging behind display a 
lower and less evenly distributed digital economy. 

The digital economy in the central region shows more 
distinct dynamic features compared to other areas. Analysis through kernel density 
estimation shows that the trajectory of the centre of gravity followed a pattern of initially 
shifting rightward and then leftward during the study period. This suggests that the 
digital economy in the central region underwent a period of rapid growth, eventually 
transitioning into a phase of steady development. The peak height hit its highest point in 
2013, stayed at a relatively low level with a stable trend from 2014 to 2017, and then 
continued to decline, remaining low for an extended period. 

The statistical analysis of peak numbers revealed a 
double-peak structure in the central region during 2013–2014, which subsequently 
transformed into a single peak. This change reflects the stage-specific fluctuations and 
internal structural variations in the development of the digital economy in the central 
region over the study period. The curve's right-hand tail is slightly elevated compared to 
the left, suggesting a greater number of economically developed provinces than less 
developed ones, with an overall trend toward concentration. 

The development path of the digital economy in 
western regions has shown a relatively stable dynamic trend. According to the 
distribution curve plotted with the kernel density estimation method, the centre of gravity 
shows no significant shift, suggesting that the digital economy in this region sustained a 
relatively stable growth trend throughout the study period. The main peak's height 
peaked in 2013 and has gradually declined since, staying at a low level.  
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The digital economy in the western region shows a 
clear single-peak distribution pattern, indicating that the overall development status 
remained relatively stable throughout the study period, without notable fluctuations. In 
terms of distribution, it exhibits a left-tail-heavy, right-tail-narrow pattern, with the number 
of provinces having lower overall levels far exceeding those with higher levels. Although 
the overall level is still relatively low, regional balance is robust, with negligible 
differences. 

An examination of the dynamic evolution in the spatial 
distribution of China's digital economy uncovers clear spatial heterogeneity and 
temporal trends. In general, the national digital economy keeps expanding, and regional 
development disparities are gradually decreasing. While the eastern region boasts a 
solid foundation, its internal structural optimization is still incomplete. The central region 
has experienced a slowdown in growth rates following a period of rapid expansion. The 
western region, despite its later start, shows relatively balanced development and 
steady growth. These research findings offer crucial theoretical support and practical 
references for devising regional digital economy strategies and advancing coordinated 
regional economic growth. 

3.3 Measurement of agricultural carbon emission 
3.3.1 Agricultural carbon emission indicator system 

Due to the wide range of agricultural carbon sources, data and information 
are difficult to obtain, making it difficult to accurately measure agricultural carbon 
emissions. This paper adopts the coefficient measurement method of Zhu and Huo 
(2022) to divide the agricultural land use carbon emission sources of agriculture (this 
paper refers to the planting industry) into four categories. The specific measurement 
model of total agricultural carbon emissions is as follows. 

𝑇 = 𝑇𝑘 + 𝑇𝑔 + 𝑇𝑢 + 𝑇𝑗                             
In equation (7): 𝑇  denotes the total agricultural carbon emissions, 

and  𝑇𝑘 , 𝑇𝑔 , 𝑇𝑢 , 𝑇𝑗  denote the agricultural carbon emissions from agricultural inputs, 
agricultural land plowing, agricultural irrigation, and mechanical diesel fuel, respectively. 

(7) 
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Table 4 Emission factors of agricultural carbon emission sources 
Input Elements Carbon Emission 

Coefficient 
Data Selection Reference Sources 

Fertilizer 0.8956 kg C/kg Application of Agricultural Fertilizer 
(Adjusted Amount) 

Oak Ridge National Laboratory (ORNL) 

Pesticide 4.9341 kg C/kg Pesticide Application Quantity Oak Ridge National Laboratory (ORNL) 
Agricultural Film 5.18 kg C/kg Usage of Agricultural Film College of Resources and Environmental 

Sciences,Nanjing Agricultural University 
Irrigation 20.476kg/hm² Effective Irrigated Area Dubey 
Ploughing 3.126 kg /hm² Total Area Under Crop Cultivation Faculty of Biological Science and 

Technology, China Agricultural University 

 

Carbon emissions from agricultural land are estimated by the equation: 
      

𝑇𝐴𝐶 = ∑𝑇𝐴𝐶𝑖 = ∑𝐹𝑖 × ∑𝑌𝑖 

𝑇𝐴𝐶𝑖 represents the carbon emissions from the 𝑖 -th type of carbon 
source; 𝐹𝑖 represents the absolute amount of the 𝑖  -th type of carbon source; 
𝑌𝑖 represents the carbon emission coefficient of the 𝑖 -th type of carbon source. 

3.3.2 Analysis of agricultural carbon emission measurement results 
(1) Trend analysis of changes in agricultural carbon emissions 

 
 
 
 
 
 
 
 

 
 

Figure 5 Changes in Average Agricultural Carbon Emissions Across Provinces 
 
 

(8) 
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Table 5 Calculation Results of Agricultural Carbon Emissions(10,000 tons) 
Region pro 2012  2013  2014  2015  2016  2017  2018  2019  2020  2021  2022  

East Beijing 23.51  22.35  20.15  18.32  17.05  15.15  13.43  11.94  11.67  11.72  11.81  

Tianjin 40.57  40.09  38.82  36.64  36.37  31.93  22.92  21.70  20.45  20.55  20.38  
Hebei 587.12  595.64  597.17  597.03  549.03  536.52  506.86  477.38  430.41  417.87  409.70  

Liaoning 283.25  289.00  289.34  286.35  277.61  268.56  259.26  248.62  243.54  241.14  235.56  

Shanghai 30.36  30.42  29.38  28.82  27.61  26.90  24.99  23.06  23.20  15.41  15.27  

Jiangsu 467.52  466.71  462.80  458.32  451.21  442.78  431.35  423.34  416.26  405.41  395.15  

Zhejiang 265.89  268.38  265.62  265.08  258.78  254.86  248.01  234.73  230.11  222.50  216.81  

Fujian 220.53  221.16  222.93  224.21  224.01  214.07  205.63  198.27  187.15  179.83  173.39  
Shandong 791.44  783.20  766.98  756.75  745.98  718.94  684.68  646.39  623.07  606.79  591.28  

Guangdong 349.08  346.20  353.91  361.62  365.44  361.54  333.72  323.43  315.49  306.61  303.35  

Hainan 85.22  90.07  92.82  95.73  88.40  87.09  80.93  77.79  73.29  72.49  70.51  

Average 285.86  286.65  285.45  284.44  276.50  268.94  255.62  244.24  234.06  227.30  222.11  

Central 
 
 
 
 
 

Shanxi 166.56  169.74  169.64  168.01  166.73  161.51  157.18  154.50  153.17  150.53  148.54  
Jilin 284.82  295.13  305.10  312.17  313.24  310.96  303.47  298.75  295.33  290.92  287.45  
Heilong 
jiang 

394.86  403.01  411.44  411.75  410.95  409.35  398.65  363.99  363.42  374.30  370.88  

Anhui 456.33  465.45  465.21  463.64  450.17  439.90  431.32  418.72  409.12  401.90  395.70  
Jiangxi 224.13  225.93  224.56  225.33  221.84  214.77  199.07  184.51  173.60  173.57  173.49  
Henan 838.30  856.65  863.26  870.48  867.97  852.35  831.21  801.33  781.22  752.69  723.61  

Hubei 464.76  459.44  457.40  441.90  433.30  419.75  394.97  368.85  360.50  355.45  348.10  

Hunan 357.26  360.04  359.57  358.59  356.69  354.94  351.80  334.69  327.84  342.22  308.68  
Average 398.38  404.42  407.03  406.48  402.61  395.44  383.46  365.67  358.03  355.20  344.56  

West Inner Mongolia 267.06  286.50  312.42  325.99  331.80  328.68  317.79  311.95  301.40  340.07  330.15  

Guangxi 318.64  327.24  333.08  336.89  344.56  335.21  323.32  320.46  316.04  315.86  311.66  
Chongqing 130.58  133.06  134.26  134.54  133.00  132.48  129.67  126.28  124.56  124.12  123.69  

Sichuan 357.66  356.52  355.84  356.54  355.59  347.53  333.93  322.06  307.16  303.47  299.43  

Guizhou 128.05  128.53  132.59  135.32  136.34  129.26  124.37  112.26  108.32  104.72  101.46  

Yunnan 319.79  332.80  344.56  351.79  355.63  354.69  303.10  290.37  284.83  271.89  266.35  

Shaanxi 294.06  301.79  291.42  294.60  296.33  295.97  292.99  269.65  268.79  266.77  261.07  

Gansu 220.32  233.38  243.59  250.78  248.98  221.09  206.96  198.78  196.17  196.70  199.97  

Qinghai 16.46  17.52  17.67  18.22  17.29  17.42  16.59  14.73  13.77  13.35  12.83  

Ningxia 59.05  60.64  59.28  59.85  60.26  59.95  57.46  57.68  57.81  57.63  58.68  

Xinjiang 332.22  356.81  422.30  437.05  439.36  433.07  448.02  445.83  429.73  425.63  439.73  

Average 222.17  230.44  240.64  245.60  247.19  241.40  232.20  224.55  218.96  220.02  218.64  

The data shows that Henan Province has the highest agricultural carbon 
emissions at 821.73, markedly exceeding other provinces. Shandong Province comes 
next, with agricultural carbon emissions reaching 701.41. Hebei and Anhui Provinces 
rank high with carbon emissions of 518.61 and 436.13, respectively. The high carbon 
emissions in these provinces might be closely linked to their extensive agricultural 
production, diverse crops, and frequent farming activities. 
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Moreover, the agricultural carbon emissions in Jiangsu Province and 
Guangdong Province were 438.26 and 338.22, respectively, indicating a moderate level 
of carbon emissions. This suggests that agricultural production is more active in these 
regions, yet carbon emission control measures might be more effective. Moreover, 
Heilongjiang Province, Hubei Province, Inner Mongolia Autonomous Region, and 
Xinjiang Uygur Autonomous Region have carbon emissions of 392.06, 409.49, 313.98, 
and 419.07, respectively, also indicating the significant contribution of their agricultural 
activities to carbon emissions. 

Other provinces with moderate carbon emissions include Jilin, 
Shanxi, Guangxi Zhuang Autonomous Region, Sichuan, Hunan, Jiangxi, Fujian, Yunnan, 
Shaanxi, and Gansu. The carbon emissions of these provinces are 299.76, 160.56, 
325.72, 335.98, 346.57, 203.71, 206.47, 315.98, 284.86, and 219.70, respectively, 
suggesting that agricultural production in these areas is relatively active and that carbon 
emission control measures are starting to show results. 

Provinces with low carbon emissions are primarily located in 
highly urbanized areas with minimal agricultural production. For instance, the 
agricultural carbon emissions in Beijing, Tianjin, and Shanghai are 16.10, 30.04, and 
25.04, respectively, significantly lower than those in other provinces. Carbon emissions 
in Hainan Province, Chongqing Municipality, Guizhou Province, Qinghai Province, and 
Ningxia Hui Autonomous Region are also relatively low, standing at 83.12, 129.66, 
121.93, 15.99, and 58.94, respectively. 

Overall, provinces with high carbon emissions are 
primarily found in major agricultural production areas and key grain - producing regions, 
where agricultural activities contribute significantly to carbon emissions. Provinces with 
medium carbon emissions are more dispersed, showing active agricultural operations 
and initial success in carbon emission control measures. Provinces with low carbon 
emissions are mostly highly urbanized areas with limited - scale agricultural production. 
Each province should implement effective carbon emission reduction measures based 
on its own actual conditions to advance the green and low-carbon development of 
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agriculture. By enhancing agricultural production methods and applying low-carbon 
technologies, each region can effectively control carbon emissions while maintaining 
agricultural productivity. This analysis offers a crucial reference for further research and 
the development of regional carbon emission control policies. 

(2) Trend of Regional Average Agricultural Carbon Emissions and Its Time-
Series Dynamic Evolution Characteristics 

This study, using data from 2012 to 2022, thoroughly examines the 
spatiotemporal evolution of agricultural carbon emissions across China's regions and 
carefully contrasts the notable differences and trends between the national level and the 
eastern, central, and western regions. As illustrated in the statistical data of Figure 6, 
during this time, total agricultural carbon emissions in different regions all showed a 
downward trend, though the extent and rate of decline differed considerably. At the 
national level, agricultural carbon emissions fell from 2.925 million tons in 2012 to 25,340 
tons in 2022, averaging an annual reduction of 1.8%. Despite fluctuations in 2013-2014, 
emissions have steadily declined since 2015, highlighting the notable progress in 
China's agricultural low-carbon transition. The eastern region experienced the most 
significant reduction in carbon emissions, averaging a yearly decrease of 2.6%. The 
central region displayed a typical inverted U-shaped curve, reaching its peak around 
2015 before gradually declining. The western region, although starting with a lower initial 
value, also exhibited an inverted U-shaped trajectory, peaking around 2016 and 
declining to about 2.2 million tons of carbon dioxide equivalent by 2022. A systematic 
analysis of regional differences reveals that China's agricultural carbon emissions show 
a complex dynamic spatial pattern. The central region has consistently exhibited high 
carbon emission intensity, largely due to the prevalence of large-scale farming models, 
the ongoing use of traditional agricultural methods, and the swift expansion of 
agricultural mechanisation. This underscores the significant challenges encountered by 
the central region in its emissions reduction initiatives, while also offering valuable 
insights for enhancing reduction strategies in this area. The eastern region has achieved 
significant results in carbon emission reduction by utilizing scientific and technological 
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innovations, detailed management practices, and the improvement and optimization of 
industrial structures. This experience offers valuable reference for other regions. The 
western region adopts a distinctive development trajectory. The rise in carbon emissions 
from 2012 to 2016 might be linked to the expansion of agriculture driven by the Western 
Development Policy. The decline since 2016 suggests that the region is progressing 
toward sustainable development and has ramped up efforts in ecological conservation. 
It is especially noteworthy that the trend in national agricultural greenhouse gas 
emissions reveals a distinct consistency between the eastern and central regions, 
highlighting the crucial role and central position these two regions hold in executing 
national agricultural emission reduction policies. 

 
Figure 6 Regional Average Agricultural Carbon Emissions 

A systematic analysis of the spatial distribution and temporal 
characteristics of China's agricultural carbon emissions, utilizing nuclear density 
estimation methods, shows that from 2012 to 2022, carbon emissions nationwide and in 
the eastern, central, and western regions displayed notable spatial disparities and 
dynamic variations. The study findings suggest that China's agricultural carbon 
emissions show clear phased evolutionary trends and regional variations. 

From a macro perspective, although national agricultural carbon 
emissions have fluctuated and declined, the centre of gravity of the kernel density curve 
has continuously shifted leftward, showing that the cumulative impacts of carbon 
reduction policies are becoming more apparent, especially after 2016. This indicates 
that national-level emission reduction measures have started to show results. The 
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change in the peak position from a double peak to a single peak suggests that the gap 
in carbon emissions among different regions is decreasing, illustrating the coordinated 
impact of national carbon emission control policies. The continuous extension of the left 
tail also indicates that the proportion of low-carbon emission years is rising, reflecting 
the long-term nature of implementing these relevant policies and measures. 

Carbon emissions in the eastern region have shown a 
declining trend, with a single-peak kernel density distribution and a notable left-tail 
extension. This clearly illustrates the remarkable progress achieved by the eastern 
region in technological innovation for energy conservation and emissions reduction, 
along with the optimization and upgrading of its industrial structure. This situation not 
only underscores the eastern region's early lead in modern agricultural transformation 
but also offers other regions a viable example for reaching green and low-carbon 
development goals. 

The carbon emissions in the central region show a clear 
inverted U-shaped development trend, illustrating the dynamic equilibrium between 
agricultural growth and ecological conservation. By examining the shifts in the centre of 
gravity and the changes in the peak amplitude of the nuclear density curve, one can 
thoroughly discuss the phased changes faced by the central region during the 
expansion of agricultural production scale and the innovation of emission reduction 
technologies. This highlights the intricate contradictions encountered by the central 
region, a crucial national grain-producing area, in balancing food security and carbon 
peaking goals. 

Carbon emissions in the western region show a 
significant level of stability. Although the centre of gravity of the kernel density curve 
exhibits slight fluctuations, it stays in a single-peak state. This reflects, to some extent, 
the backward state of agricultural development and the potential for emission reduction. 
The small protrusion on the left tail indicates that this area is progressively advancing 
towards modern agricultural development, provided that low-carbon targets are met. 
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This study employs a systematic analytical approach 
to conduct a comprehensive survey of the spatiotemporal evolution patterns of 
agricultural carbon emissions nationwide and in the eastern, central, and western 
regions. It focuses on analyzing the spatial differences and temporal trends in these 
emissions. The survey results indicate that the total volume of agricultural carbon 
emissions across the country is gradually declining, with regional disparities slowly 
diminishing. The eastern region retains its advantage in carbon reduction, the central 
region achieves notable emission cuts via structural reforms, and the western region 
sustains a relatively low and stable emission level. 

 
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 Kernel Density Estimations of National and Regional Agricultural Carbon 
Emissions 
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3.4.The Spatial-Temporal Characteristics of digital economy development and 
agricultural carbon emissions  

Figure 8 shows the growth of China's rural digital economy from 2012 to 2022 
and its connection to agricultural carbon emissions. Statistical data indicates that the 
rural digital technology application index rose from 0.06 in the base period to 0.22, 
marking a growth rate of 367%. Meanwhile, the agricultural sector's total carbon 
emissions fell from roughly 295 million tons of CO2 equivalent to about 250 million tons, 
marking a 14.8% decrease. This implies that the swift expansion of the digital economy 
could substantially suppress agricultural carbon emissions, underscoring its 
significance in promoting low-carbon agriculture. 

 
 
 
 
 
 
 
 
 
data sources : Table 3 and Table 5 

Figure 8 Temporal Trends of Agricultural Carbon Emissions and Rural Digital Economy 
Level 

As illustrated in Figure 9-10, distinct spatial heterogeneity features are 
observed across different regions. Provinces like Beijing, Qinghai, and Ningxia exhibit 

carbon emissions under 50×10⁴ tonnes of CO₂e, potentially due to their smaller 
agricultural scales or significant carbon reduction impacts. In contrast, Henan (723.61), 
Shandong (591.28), and Xinjiang (439.73) display notably high emissions, suggesting 
that agricultural production is heavily concentrated in these regions. Provinces like 
Jiangsu, Heilongjiang, and Guangdong exhibit medium-high to high emission levels 
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(150–450 × 10⁴ tonnes of CO₂e). This difference in distribution illustrates that the stage of 
regional economic development and the level of technological application significantly 
influence carbon emission characteristics. This situation underscores the need for 
developing targeted emission reduction strategies that account for local emission 
patterns. 

 
 
 
 
 
 
 
 
 
 

Figure 9 Spatial Distribution of Agricultural Carbon Emissions (2022) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 Spatial Distribution of Agricultural Carbon Emissions (2022) 
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3.5. Model Construction 
Model construction forms a vital basis for ensuring the success of empirical 

research. The first three chapters offer an initial examination of the research background, 
theory, and current features of agricultural carbon emissions and the digital economy. 
This section details the model, variables, and data for testing the research hypotheses, 
divided into three parts: model construction, variable selection, data sources, and 
variable descriptive statistics. 

3.5.1 Benchmark Regression Model 
To investigate the impact of the digital economy on agricultural carbon 

emissions, we formulated the fixed effects model, drawing on the methodology 
established by Chen and Li (2024): 
                                    𝑇𝐴𝐶 = ∂0 + ∂1ADIG𝑖𝑡 + ∂2X𝑖𝑡 + 𝛿𝑖𝑡 + 𝜏it+μ𝑖𝑡                      

In equation (9) ,  𝑇𝐴𝐶  represents total agricultural carbon emissions; 
𝐴𝐷𝐼𝐺𝑖𝑡 represents the level of digital economic development;  𝑋𝑖𝑡 represents the relevant 
control variables; 𝜕0 is a constant term; 𝛿𝑖𝑡 represents region effects and 𝜏𝑖𝑡  represents 
time effects, and 𝜇𝑖𝑡 represents the random disturbance term. 

3.5.2 Mediation Effect Model 
To further explore the mediating mechanisms, the following models are 

constructed based on the baseline regression framework, drawing on the research of 
(Wen, Z. 2014). 

𝑇𝐴𝐶 = 𝛾0 + 𝛾1ADIG𝑖𝑡 + 𝛾2𝑀𝑖𝑡 + 𝛾3𝑋𝑖𝑡 + 𝛿𝑖𝑡 + 𝜏𝑖𝑡 + 𝜇𝑖𝑡               

     𝑀𝑖𝑡 = 𝛽0 + 𝛽1ADIG𝑖𝑡 + 𝛽2𝑋𝑖𝑡 + 𝛿𝑖𝑡 + 𝜏𝑖𝑡 + 𝜇𝑖𝑡                                      

In equations (10) and (11), M𝑖𝑡  denotes the mediating variables, which 
include the scale effect, financial effect, and technological innovation effect, 
represented by the land transfer rate, agricultural loans, and agricultural science and 
technology patents, respectively. β, γ indicates the parameter estimates of the variables. 

3.5.3 Variable Selection 
(1) Explanatory Variable 

(10) 

(11) 

(9) 
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This study, based on the theoretical framework established by Dan 
Wang (2024), has developed a comprehensive evaluation system for rural digital 
economic development (Table 1), utilizing the entropy method for weighting and scoring.  

 (2) Explained variable 
Carbon emissions from six carbon source categories are computed 

(Table 2), with their total representing overall agricultural carbon emissions. 
(3) Mediating Variables 

The mediating variables include scale effects, financial effects , and 
technological innovation effects , following the studies of Kelly et al. (2021). These are 
proxied by land transfer rate (ltr), agricultural loans(flb), and per capita agricultural 
technology patents(flb), respectively. 

(4) Control Variables 
The model incorporates several key control variables as moderating 

factors, including: urbanisation level (URB), represented by the ratio of urban population 
to total population; agricultural structure ratio (AIS), denoting the share of agricultural 
output in the primary sector; agricultural labor productivity (ALP), reflecting the total 
output per unit of labor in the primary sector; rural electricity consumption (ELEC), 
measured through agricultural electricity usage; and agricultural disaster frequency 
(ADR), indicated by the proportion of disaster-affected farmland area relative to total 
farmland area. All variables are expressed as natural logarithm. 

3.5.4 Data Sources 
 
 
 
 

 

 
 

 
Figure 11 Data Source 
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3.5.5 Descriptive Statistics 
As shown in Chapter 3.4, this study established a balanced panel dataset 

comprising 330 observations based on the collected basic data, covering data from 30 
provinces in mainland China from 2012 to 2022. Due to the limited sample size, the data 
has certain limitations. 
Table 6 Variable Descriptive Statistics 
Variable Obs Mean Std. Dev. Min Max 
lntac 330 5.273 1.055 2.457 6.769 
lnadig 330 0.120 0.083 0.028 0.539 
lnurb 330 0.472 0.072 0.307 0.642 
lnelec 330 4.917 1.27 1.495 7.606 
lnais 330 0.422 0.055 0.31 0.542 
lnalp 330 10.904 0.512 9.400 12.127 
lnadr 330 0.119 0.089 0.004 0.528 

As shown in Table 6, from 2012 to 2022, the average agricultural carbon 
emissions were 5.273 (SD = 1.055), varying between 2.457 and 6.769. This indicates 
significant regional differences, potentially influenced by economic development and 
technology adoption. The average digital economy index was 0.12 (SD = 0.083), 
ranging from 0.028 to 0.539, reflecting generally low levels of rural digitalization but 
showing notable advancements in certain areas and substantial room for further growth. 

The primary findings are displayed in Table 6, the correlation matrix. 
The data suggest a notable negative correlation between the rural digital economy and 
agricultural carbon emissions, yet this correlation falls short of statistical significance, 
indicating a relatively weak direct connection between the two.  

It is crucial to recognize that correlation coefficients solely 
capture linear relationships between variables and do not consider other aspects like 
control variables, industry traits, time series impacts, or model optimization components. 
Depending exclusively on direct correlation tests as a theoretical foundation clearly 
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diverges from the study's core. Subsequent empirical analyses will employ statistical 
methods to test and comprehensively assess the aforementioned theoretical hypotheses. 
Table 7 Pairwise correlations 

Variables (1) (2) (3) (4) (5) (6) (7) 

(1) lntac 1.000       
        
(2) lnadig -0.073 1.000      
 (0.185)       
(3) lnurb -0.503* 0.588* 1.000     
 (0.000) (0.000)      
(4) lnelec 0.527* 0.471* 0.213* 1.000    
 (0.000) (0.000) (0.000)     
(5) lnais 0.258* -0.277* -0.386* -0.078 1.000   
 (0.000) (0.000) (0.000) (0.155)    
(6) lnalp -0.132* 0.581* 0.691* 0.278* -0.261* 1.000  
 (0.017) (0.000) (0.000) (0.000) (0.000)   
(7) lnadr 0.031 -0.327* -0.234* -0.277* 0.056 -0.369* 1.000 
 (0.581) (0.000) (0.000) (0.000) (0.310) (0.000)  

*** p<0.01, ** p<0.05, * p<0.1 
To examine whether model variables show multicollinearity 

problems, the variance inflation factor (VIF) is employed for a systematic analysis. 
Statistical data indicate that the average VIF value for each variable is merely 1.72, 
significantly lower than the conventional warning threshold of 5. This suggests that in the 
regression model developed in this study, these independent variables lack significant 
multicollinearity traits, thus offering a relatively robust econometric basis for subsequent 
empirical analysis.  
 



 
 

CHAPTER 4 
RESULTS 

4.1 Analysis of the Benchmark Regression Results 
Following variable selection through stepwise regression, the detailed data are 

presented in Table 8. Empirical evidence indicates that the development level of the 
'digital economy' significantly reduces agricultural carbon emissions (P < 0.01), 
underscoring its vital role in mitigating agricultural emissions. This conclusion highlights 
the core mechanism by which the digital economy promotes agricultural low-carbon 
transformation through technological innovation, offering empirical evidence for 
Hypothesis H1 and affirming that the digital economy directly reduces agricultural 
carbon emissions. 

The regression results of Model (6) show that the correlation coefficient 
between the digital economy and agricultural carbon emissions is -0.527, indicating that 
the impact of the digital economy on agricultural carbon emissions might be mediated 
by other potential intermediaries. Further testing showed that rural electricity 
consumption (lnelec) has a significant positive correlation in all models, with the highest 
regression coefficient of 0.975 in Model (6), indicating strong explanatory power. This 
study examines the fundamental mechanisms connecting the increase in rural electricity 
consumption to the growth of agricultural carbon emissions. The study reveals that 
although rural regions have advanced somewhat in adopting clean energy, fossil fuels 
still dominate, serving as the main factor behind rising agricultural carbon emissions. 
With the continuous increase in electricity demand, the efficiency of resource utilization 
is encountering significant challenges. Improving agricultural production efficiency and 
promoting rural transition to green and low-carbon development requires reliance on 
technological innovation and policy guidance to expedite the establishment of a rural 
green development system consistent with sustainable development needs. 

Empirical studies indicate that the rural digital economy significantly 
reduces agricultural carbon emissions, with this impact remaining stable even after 
variable adjustments. This offers a theoretical foundation for further investigation into the 
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underlying mechanisms. Additionally, various important factors, including rural electricity 
consumption patterns, urbanisation development levels, and agricultural labor 
productivity, directly affect agricultural carbon emissions. This highlights the necessity of 
creating a cross-sectoral collaborative governance framework, taking into account 
aspects like economic structural transformation and upgrading, energy structure 
renovation, scientific and technological innovation support, and ecological and 
environmental protection. In this situation, it is crucial to develop practical and targeted 
policies to drive progress. 
Table 8 Stepwise regression results  
 (1) (2) (3) (4) (5) (6) 
VARIABLES lntac lntac lntac lntac lntac lntac 
lnadig -1.299*** -1.056*** -0.819*** -0.811*** -0.567*** -0.527*** 
 (0.105) (0.132) (0.137) (0.137) (0.137) (0.137) 
lnurb  -0.748*** -1.358*** -1.362*** 0.975** 1.070** 
  (0.252) (0.275) (0.275) (0.479) (0.478) 
lnelec   0.062*** 0.061*** 0.057*** 0.059*** 
   (0.013) (0.013) (0.012) (0.012) 
lnais    -0.328 -0.434 -0.443 
    (0.382) (0.362) (0.360) 
lnalp     -0.208*** -0.205*** 
     (0.036) (0.036) 
lnadr      0.166** 
      (0.075) 
Constant 5.430*** 5.754*** 5.710*** 5.853*** 7.047*** 6.947*** 
 (0.0137) (0.110) (0.107) (0.197) (0.278) (0.280) 
N 330 330 330 330 330 330 
R2 0.338 0.357 0.403 0.405 0.466 0.475 
Number of id 30 30 30 30 30 30 

*** p<0.01, ** p<0.05, * p<0.1 
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4.2 Robustness test 
(1) Replacement of Dependent Variable 

 To enhance the reliability of the empirical findings, this study performed a 
robustness test by incorporating agricultural carbon emission intensity (log-transformed) 
as an additional independent variable into the model. The data in Table 3 (Model 1) 
show that, even with the dependent variable replaced, it continues to have a significant 
negative effect on agricultural carbon emissions, thus effectively confirming the scientific 
and rational basis of the benchmark regression conclusions. 
Table 9 Robustness test results 

 
Replaced the Explained 
Variable 
Model(1) 

Replaced the Explanatory 
Variable 
Mode(2)                                        

Excluding municipalities 
 
Model(3) 

VARIABLES lnace lntac lntac 
lnadig -0.294** -0.030** -0.297*** 
 (-2.365) (-2.471) (-3.160) 
lnurb -0.854 1.048** -0.113 
 (-1.633) (2.158) (-0.30) 
lnelec 0.012 0.071*** 0.026 
 (0.963) (5.961) (1.570) 
lnais -3.698*** -0.542 -0.103 
 (-9.532) (-1.489) (-0.350) 
lnalp -0.617*** -0.252*** -0.124*** 
 (-16.999) (-7.316) (-4.620) 
lnadr 0.187** 0.230*** 0.066 
 (2.332) (3.009) (1.360) 
_cons 13.582*** 7.405*** 6.881*** 
 (48.285) (28.285) (30.990) 
N 330 330 286 
R2 0.898 0.460 0.995 
F 433.452 41.669  

*** p<0.01, ** p<0.05, * p<0.1 
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(2) Replacement of Explanatory Variable 
To assess the level of digital economic development, we employ principal 

component analysis, as recommended by Nie et al. (2024) and other scholars, to derive 
an index reflecting digital economy development across regions. The results in Table 9 
(Model 2). After replacing the core explanatory variable, it continues to show a 
significant negative effect, further supporting the benchmark regression results. 

(3) Exclude municipalities directly under central government  
Recognizing Beijing, Shanghai, Tianjin, and Chongqing, we exclude these 

municipalities to mitigate potential administrative biases in the benchmark regression 
outcomes. We rerun the regression after removing these municipalities from the sample. 
The results, presented in Table 9 (Model 3), are consistent with those of the benchmark 
regression, strengthening the study's overall conclusions. 

 4.3 Endogeneity Test 
To avoid potential biases caused by endogeneity issues, this study employs the 

instrumental variables method for empirical analysis. The fixed-line telephone 
penetration rate per 10,000 people in each provincial-level administrative region in 1984 
is selected as the core instrumental variable to measure the level of regional digital 
economic development. This selection is based on the following theoretical rationale: the 
digitalisation process in rural areas is closely linked to the promotion of fixed-line 
telephones, and the telephone coverage rate in 1984 reflects the cumulative status of 
local historical information infrastructure, which in turn influences the current scale of 
internet access, meeting the basic requirements for instrumental variable relevance. 
Additionally, the per capita telephone ownership rate in 1984 has a negligible impact on 
agricultural carbon emissions during the sample period, aligning with the primary criteria 
for instrumental variable exogeneity. Given that this study employs multi-period, cross-
regional balanced panel data, directly incorporating this static indicator into a fixed-
effects model could potentially induce measurement error issues in econometrics. To 
address this, we follow the methodology of Nunn and Qian (2014) and the number of 
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telephones per 10,000 people in 1984 as an instrumental variable for the level of digital 
economic development. 
Table 10 Endogeneity test results 
 The first stage The second stage 
VARIABLES lnadig lntac 

iv 0.000***  
 (6.020)  
lnadig  -4.117** 
  (-2.370) 
lnurb 0.096 -10.127*** 
 (1.230) (-10.970) 
lnelec -0.026*** -0.628*** 
 (-9.550) (14.030) 
lnais 0.141** 1.040 
 (-2.290) (1.560) 
lnalp 0.036*** 0.776*** 
 (4.18) (6.910) 
lnadr -0.017 1.285*** 
 (-0.430) (3.080) 
Constant -0.420*** -1.593 
 (-4.170) (-1.250) 
N 330 330 
R2 0.842 0.996 

Anderson canon. corr. LM statistic 33.33***  

Cragg-Donald Wald F statistic 36.29***  
Sargan statistic(P)  0.000 

*** p<0.01, ** p<0.05, * p<0.1 
Empirical analysis reveals that the Anderson-Cannon correlation LM test 

statistic is 33.33, highly significant. The Cramer-Donald-Wald F test statistic is 36.29, far 
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surpassing the critical value of 10, clearly indicating the model's strong identification 
ability and stability. The Sargan test produces a p-value of 0.000, confirming the 
reliability of the instrumental variables and effectively eliminating biases from weak 
instruments. Even after accounting for endogeneity, It still have a significant and robust 
inhibitory impact on agricultural carbon emission intensity. 

4.4 Heterogeneity Analysis 
(1) Regional Heterogeneity Analysis 

Table 11 Heterogeneity analysis results (1) 

 East Central West 
VARIABLES lntac lntac lntac 

lnadig -0.264*** -1.193** -1.227** 
 (-2.670) (-2.430) (-2.090) 
lnurb 5.168*** 0.067 2.006** 
 (5.080) (0.170) (2.080) 
lnelec 0.038*** -0.000 0.054 
 (3.710) (-0.010) (1.270) 
lnais 0.845 -0.018 -0.186 
 (1.470) (-0.050) (-0.390) 
lnalp -0.053 -0.092** -0.216*** 
 (-0.790) (-2.490) (-3.200) 
lnadr 0.074 -0.080 0.105 
 (0.850) (-1.230) (1.070) 
Constant 2.458*** 6.938*** 6.521*** 
 (3.090) (21.730) (15.130) 
N 132 88 121 
R2 0.997 0.994 0.995 

*** p<0.01, ** p<0.05, * p<0.1 
China is a vast nation characterized by substantial spatial heterogeneity in 

both its natural geography and economic development. This structural disparity leads to 
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distinct regional variations in the impact of the digital economy on agricultural carbon 
emissions across different areas. This enables a thorough examination of the 
mechanisms and underlying logic by which the digital economy drives changes in 
agricultural carbon emissions across these regions. 

As illustrated in Table 11, the influence of the digital economy on 
agricultural carbon emissions across China's eastern, central, and western regions 
demonstrates notable spatial variations. In the eastern region, the development index 
reaches -0.264, suggesting a negative correlation, yet its influence remains limited. This 
could be due to the advanced level of agricultural modernisation and limited structural 
changes in the eastern region, which impede the unrestricted allocation of agricultural 
resources in the short term, thus diminishing the practical impact of digital economic 
growth. In contrast, the coefficient in the central region attains the highest value of -
1.193, suggesting a stronger negative correlation. During the agricultural transformation 
phase, the digital economy cuts carbon emissions by enhancing resource allocation 
and innovating production methods. Related studies indicate that the correlation 
coefficient in the western region is -1.227, suggesting a substantial promotional impact 
on reducing agricultural carbon emissions. This phenomenon is mainly attributed to the 
ongoing enhancement of the regional agricultural structure. The integration of digital 
technology with traditional agriculture updates production methods and creates new 
business models, offering rural labor diverse employment opportunities while 
significantly cutting down on the use of chemical inputs like fertilizers. 

The influence of the digital economy on agricultural carbon 
emissions shows clear spatial differences, with central and western areas displaying 
greater sensitivity and adaptability to the digital economy. 

(2) Distinction of Major Grain Production Areas 
The demarcation of grain production functional zones significantly affects 

agricultural carbon emissions, showing marked regional variations in crop planting 
structures, production methods, and pesticide use. These differences directly affect the 
spatial distribution patterns and evolutionary trajectories. This study uses provincial 
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grain production function classifications to divide the nation's 30 provinces into two 
distinct sub-sample groups. The first group mainly comprises major grain-producing 
regions, such as Anhui, Hunan, Hubei, Henan, Heilongjiang, Hebei, Jiangxi, Jiangsu, 
Jilin, Liaoning, Inner Mongolia, Sichuan, and Shandong. The second category consists 
of the remaining provinces that are not key grain-producing areas. This study aims to 
uncover the fundamental logical relationship between the digital economy and the 
advancement of low-carbon agricultural development by comparing the distinct 
characteristics of these regions, while also analyzing the specific implementation 
mechanisms involved. 
Table 12 Heterogeneity analysis results(2) 
 Major grain_areas Non major grain_areas 
VARIABLES lntac lntac 

lnadig -0.681*** -0.371 
 (-3.860) (-1.500) 
lnurb -0.470 2.595*** 
 (-1.210) (3.070) 
lnelec 0.085*** 0.051*** 
 (3.950) (2.820) 
lnais 0.213 -0.653 
 (0.610) (-1.160) 
lnalp -0.101*** -0.300*** 
 (-3.280) (-4.490) 
lnadr -0.071 0.326*** 
 (-1.210) (2.990) 
Constant 6.835*** 6.877*** 
 (21.370) (14.460) 
N 132 198 
R2 0.986 0.992 

*** p<0.01, ** p<0.05, * p<0.1 

The results reveal a significant negative correlation between digital 
economic and agricultural carbon emissions in major grain production areas at the 1% 
level, suggesting that digital economy growth effectively mitigates emissions and 
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supports environmental sustainability. In contrast, in non-grain production areas, while a 
negative relationship persists, it lacks statistical significance. This is likely due to the 
limited scale of agricultural production, lower digitalization levels, and traditional industry 
structures, which impede the effective integration of digital technologies and constrain 
their potential to reduce agricultural carbon emissions. 

4.5 Analysis of intermediation effects 
The digital economy affects agricultural carbon emissions via multiple channels, 

such as scale effects, financial impacts, and technological innovation. The empirical 
research results (Table 13) show that these effects are all statistically significant, 
highlighting their key role as primary mediating variables in explaining the mechanism. 

Studies indicate that it significantly reduces carbon emissions, with a 
regression coefficient of -0.356, statistically significant at the 5% level. This suggests 
that the digital economy impacts agricultural carbon emissions on a scale, with 
information networks and transaction platforms acting as the main mediating factors. 
These factors substantially lower transaction costs, encouraging small-scale farmers to 
optimize resource allocation and boost production efficiency. Digital technology fosters 
the advancement of efficient models like precision agriculture and supply chain 
collaboration, overcoming the traditional constraints of geography that have long 
hindered large-scale agricultural development. 

Empirical research findings reveal that the regression results for 
variables (4) and (5) yield an estimated value of -0.372, statistically significant at the 5% 
level. This implies that digital finance curbs carbon emissions by enhancing financial 
intermediation mechanisms. Digital finance greatly improves the accessibility of financial 
services in rural areas due to its inclusive nature. Innovative mobile payment tools, like 
WeChat Pay, have significantly enhanced the convenience and reach of financial 
services for farmers. 

Empirical analysis (6 and 7) reveals that the regression coefficient for 
technological innovation is -0.427, significant at the 1% level, demonstrating the crucial 
role of technological innovation in the emissions reduction process. Digital technology 
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promotes innovation and accelerates information dissemination, facilitating the efficient 
promotion of modern agricultural technologies. The substantial enhancement in the 
efficiency of utilizing seeds, pesticides, fertilizers, and irrigation equipment has boosted 
agricultural productivity, offering vital support for attaining sustainable development 
objectives. 
Table 13 Results of the Mediation Effect Regression Analysis 
 Benchmark 

model 
Scale Effects Financial Effects 

Technological Innovation 
Effects 

 Lntac 
(1) 

Ltr 
(2) 

lntac 
(3) 

lnflb  
(4) 

Lntac 
(5) 

Ptech 
 (6) 

lntac  
(7) 

lnadig -0.527*** 58.355*** -0.356** 3.053*** -0.372** 1.344*** -0.427*** 
 (-3.853) (6.771) (-2.460) (6.971) (-2.549) (3.471) (-3.121) 
M   -0.003***  -0.051***  -0.075*** 
   (-3.212)  (-2.819)  (-3.709) 
lnurb 1.070** 179.304*** 1.596*** 3.522** 1.249*** 5.169*** 1.457*** 
 (2.241) (5.965) (3.205) (2.306) (2.623) (3.828) (3.042) 
lnelec 0.059*** -1.418* 0.055*** 0.042 0.061*** -0.012 0.058*** 
 (4.843) (-1.842) (4.548) (1.079) (5.067) (-0.340) (4.872) 
lnais -0.443 -25.213 -0.516 1.233 -0.380 -1.432 -0.550 
 (-1.229) (-1.112) (-1.453) (1.071) (-1.065) (-1.407) (-1.554) 
lnalp -0.205*** -7.524*** -0.227*** 0.504*** -0.180*** 0.127 -0.196*** 
 (-5.792) (-3.371) (-6.392) (4.447) (-4.965) (1.266) (-5.627) 
lnadr 0.166** 1.092 0.169** -0.396 0.146* -0.658*** 0.117 
 (2.206) (0.230) (2.283) (-1.644) (1.952) (-3.092) (1.559) 
_cons 6.947*** 41.712** 7.069*** -0.860 6.903*** -2.544*** 6.756*** 
 (24.827) (2.368) (25.420) (-0.961) (24.922) (-3.216) (24.242) 
N 330 330 330 330 330 330 330 
R2 0.475 0.437 0.493 0.708 0.489 0.543 0.498 
F 44.308 38.104 40.656 119.076 40.012 58.128 41.590 

***p<0.01, **p<0.05, *p<0.10     

 



 
 

CHAPTER 5 
CONCLISION, POLICY RECOMMENDATIONS AND OUTLOOK 

5.1 Conclusion 
This study seeks to advance the low-carbon transformation of Chinese 

agriculture. Using empirical data, it systematically examines the mechanisms by which 
the development status and spatial distribution of the digital economy affect agricultural 
carbon emissions. Grounded in the EKC theory, low-carbon economics, green 
development principles, and technological innovation theory, an integrated framework is 
developed to examine the inherent links between the digital economy's evolution and 
agricultural carbon emissions. Comprehensively analyzing the mechanisms of their 
interactive effects from three perspectives: scale effects, financial support effects, and 
technological advancement effects. Grounded in the aforementioned theoretical 
frameworks, empirical analysis the influence, leading to the following key findings: 

(1) The study shows that China's digital economy displays a pronounced 
'strong east, weak west' spatial distribution pattern, with the eastern region consistently 
leading and significantly outpacing the central and western regions in development 
levels. Although the central and western regions have shown strong development 
potential in recent years, their growth rates are still relatively low compared to those of 
the eastern region. 

(2) The nationwide total agricultural carbon emissions have exhibited a 
steady downward trend. Regionally, the central area has the highest carbon emissions, 
followed by the eastern region, while the western region records comparatively lower 
emissions. At the provincial level, regions with high carbon emissions are mainly found 
in the core production zones of major grain crops, showing clear spatial distribution 
patterns. 

(3) Empirical research shows that the swift expansion of the digital economy 
significantly suppresses agricultural carbon emission intensity. This conclusion stays 
strong even after addressing endogeneity with instrumental variables, incorporating 
additional control variables, excluding municipal samples, and performing multi-level 



  66 

robustness tests. Further analysis shows that the emission reduction effects of the digital 
economy display clear spatial heterogeneity. In economically underdeveloped regions, 
moderately developed areas, and major grain-producing zones, the emission reduction 
impacts of the digital economy are especially notable. However, economically 
developed regions or non-grain-producing areas show no significant impact. 

(4) For transmission mechanisms, it has notably reduced agricultural carbon 
intensity through various channels. These include the optimal allocation of land 
resources under economies of scale, technological innovations boosting agricultural 
service efficiency, and financial innovation tools enhancing the inclusive financial 
service system. In this process, new agricultural operators have played a key role in 
guiding small-scale farmers to adopt green production methods, effectively reducing the 
intensity of regional agricultural carbon emissions. 

5.2 Policy Recommendations 
The swift advancement of the digital economy has infused innovative energy 

and a bright future into the low-carbon transformation of agriculture. This study performs 
an in-depth analysis of the development status, underlying mechanisms, and regional 
differences of the agricultural digital economy based on empirical research. From the 
perspectives of infrastructure development, technological innovation, regional 
cooperation, and institutional framework enhancement, policy recommendations are 
suggested: 

(1) Enhance the construction of rural digital infrastructure. 
Although the digital economy has improved carbon emission 

management in agriculture, the sluggish development of rural digital infrastructure still 
poses a significant limitation. Overcoming this obstacle requires boosting targeted 
investment, prioritizing infrastructure upgrades in remote regions, and broadening 
financing options for rural projects to tackle key issues like aging equipment, funding 
gaps, and operational difficulties. Moreover, it is essential to strive for complete 
coverage of 5G communication, IoT technology, and gigabit broadband networks in 
rural regions. Enhance data transmission speeds and service stability ensuring efficient 
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flow and proper allocation of production factors between urban and rural regions. 
Additionally, we must actively advance the digital and intelligent transformation of 
agricultural infrastructure, focusing on the research, development, and application of 
smart irrigation systems, smart grids, satellite remote sensing, Beidou navigation, and 
smart agricultural machinery to offer strong technological support for the sustainable 
growth of green agriculture. 

(2) Execution of Regional Digital Economy Strategies 
Heterogeneity analysis shows that the influence of the digital economy 

on agricultural carbon emissions is more significant in moderately developed regions, 
underdeveloped areas, and major grain-producing zones. Owing to substantial 
variations in agricultural ecological environments across regions, differentiated policy 
adjustments are crucial. In underdeveloped areas, it is essential to actively arrange 
focused science outreach and educational initiatives to improve farmers' 
comprehension of digital technologies and encourage their use in large-scale farming, 
thus fostering the establishment and growth of low-carbon agricultural practices. Non-
major grain-producing areas can harness local resource advantages to develop and 
promote innovative low-carbon agricultural technologies, utilize the spillover effects of 
digital economy advancements to further improve emission reduction results, and 
enhance talent recruitment and retention strategies in underdeveloped regions. This 
involves enhancing incentive mechanisms and career advancement routes to offer 
continuous human resource support for green development driven by digital means. 

(3) Encourage the Innovation and Application of Digital Technologies in 
Agricultural Production 

Improving the use of digital technologies is vital for reducing carbon 
emissions in agriculture. During the pre-production phase, technologies like IoT, AI, and 
blockchain can aid in setting up strong monitoring systems for data collection, 
transmission, and application, reducing risks and enhancing efficiency and quality. 
During the production phase, digital upgrades of agricultural machinery and equipment, 
including precision farming, drone-based pesticide spraying, and intelligent fertilization, 
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can greatly improve production accuracy and sustainability while lowering labor 
intensity. After production, strong traceability systems need to be established to ensure 
transparency in food sourcing, enhancing consumer confidence. Moreover, constructing 
intelligent logistics networks can cut down on post-harvest loss and waste, facilitating 
the digitalization and environmental sustainability of agricultural product distribution. 

(4) Strengthen Institutional Support for Digital Inclusive Finance in Green 
Agriculture 

Building an effective digital inclusive finance system is vital for reducing 
the financial barriers to agricultural digitization. On the one hand, commercial banks and 
rural credit cooperatives should be encouraged to create customized digital lending 
products that provide focused financial assistance. On the other hand, a thorough 
digital agricultural credit assessment framework and varied credit guarantee 
mechanisms need to be set up to facilitate financial access. At the same time, regulatory 
frameworks for digital finance need to be strengthened to reduce potential risks. By 
building a multi-layered, integrated financial service network, access to financial 
resources for agricultural producers can be significantly enhanced. 

(5) Develop a Coordinated Governance Framework Merging Digital and 
Carbon Reduction Policies 

At the national level, top-level design is essential to align green 
agricultural development with digital economy strategies and address fragmented policy 
implementation. It is advisable to integrate responsibilities across agriculture, 
environment, industry, and finance departments to collaboratively advance the issuance 
of an "Agricultural Digital Carbon Reduction Action Plan." This plan should encompass 
systematic policy guidance, standard-setting, and performance assessment. 
Simultaneously, a governance framework needs to be established, covering carbon 
labeling for agricultural products, a detailed carbon footprint database, and 
standardized carbon accounting methods, thereby providing the institutional basis for 
reaching dual carbon objectives in agriculture. 
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5.3 OUTLOOK 
This study still has several limitations, which merit further exploration: 

(1) Data Limitations and Opportunities for Refinement 
This research relies primarily on macro-level provincial panel data, 

without incorporating micro-level household data, which constrains the ability to capture 
individual heterogeneity. Furthermore, the analysis focuses solely on carbon emissions 
from crop farming, excluding emissions from other agricultural sub-sectors such as 
livestock production. Future studies should consider integrating micro-level data, 
including household surveys, supply chain tracking, or satellite remote sensing, to better 
understand how farms of different sizes differ in their adoption of digital technologies 
and low-carbon practices.  

(2) Geographical Scope for Further Expansion 
This study investigates in the context of provinces. However, it does not 

account for dynamics at the urban or city-cluster level, which may constrain the depth 
and precision of the analysis. As urban agglomerations continue to play an increasingly 
significant role in regional development, future research could focus on city-level 
investigations to yield more nuanced insights. 

(3) Limited Exploration of Alternative Mechanisms 
This study does not examine alternative or indirect mechanisms. Future 

work should delve deeper into these indirect pathways to better understand the 
multifaceted nature of digital transitions. Such analyses could provide valuable 
guidance for formulating localized and differentiated policy interventions. 

In sum, future research should adopt interdisciplinary perspectives 
that integrate technological, institutional, spatial, and behavioral factors using diverse 
methodologies. Doing so will help to advance theoretical understanding and generate 
empirical evidence that enhances the greening and decarbonization of agriculture. 
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