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ABSTRACT 

Title UTILIZING MACHINE LEARNING PREDICTIVE ANALYTICS TO 
ENHANCE EARLY SEPSIS DIAGNOSIS IN CRITICAL CARE SETTING 

Author PARON DAOTHONG 
Degree MASTER OF ENGINEERING 
Academic Year 2024 
Thesis Advisor Dr. Wongwit Senavongse , Ph.D. 

  
This study develops machine learning and deep learning models to enhance early sepsis 

diagnosis in critical care using the eICU Collaborative Research Database, which includes over 
200,000 ICU admissions from hospitals across the United States. Sepsis remains a global health 
challenge, responsible for an estimated 49 million cases and 11 million deaths annually. Early detection 
is crucial but difficult due to the condition’s rapid progression and variable presentation.The research 
implements and compares several algorithms—Support Vector Machine, Logistic Regression, 
Random Forest, XGBoost, and Deep Neural Networks—using clinical features such as vital signs, 
bedside scores, and hemodynamic indicators. Both a core and a comprehensive feature set were 
used to assess the effect of data richness on performance. Models were evaluated on accuracy, 
AUROC, F1-score, recall, and specificity, with an emphasis on minimizing false negatives.XGBoost 
trained on the comprehensive dataset achieved the highest overall performance (AUROC: 0.88, F1-
score: 0.74), offering strong sensitivity and specificity. Meanwhile, a dual-input deep learning model 
achieved the highest recall (0.70), highlighting its suitability for early-warning systems where identifying 
all potential sepsis cases is critical.This research confirms the value of machine learning in leveraging 
electronic health records for predictive diagnostics. Practical considerations for clinical integration are 
also discussed, including model interpretability, deployment within ICU workflows, and risk-based 
alerting strategies. 

 
Keyword : Sepsis prediction, machine learning, deep learning, critical care, ICU, eICU database, 
XGBoost, clinical decision support, early diagnosis 
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CHAPTER 1 
INTRODUCTION 

Background 
Sepsis emerges as a severe medical condition when the immunity’s reaction to 

inflection leads to harm to ordinary tissues and organs. It is considered one of the most 
serious and life-threatening medical emergencies.(1) Recent epidemiological studies 
estimate that sepsis affects approximately 49 million individuals annually and is 
responsible for around 11 million deaths worldwide. A substantial number of these 
cases—nearly half—occur in children, particularly in the neonatal period, with an 
estimated 2.8 million deaths in the first month of life. Many of these deaths could potentially 
be avoided with timely diagnosis and appropriate clinical intervention. In many low-
resource settings, common causes of sepsis-related mortality include diarrheal and 
respiratory infections.(2,3)  

According to the definition from The Third International Consensus Definitions for 
Sepsis and Septic Shock (Sepsis-3)(4), Sepsis is defined as a life-threatening condition 
arising from a dysregulated immune response to infection, which may result in organ 
dysfunction. Therefore, prompt recognition and management are essential. Current 
clinical guidelines recommend using at least two screening criteria—such as qSOFA, 
SIRS, NEWS, or MEWS—in combination to enhance early detection of sepsis and septic 
shock.(5) In order to confirm sepsis, Despite the availability of laboratory diagnostics, 
delays in test results and interpretation can impact clinical decision-making. Even though 
laboratory tests, along with analyzed data from the hospital staff, can provide insightful 
information, most of them take time to diagnose affect the physician’s correctness in 
perceiving and prescribing. 

The purpose of this study is to develop and evaluate predictive models using 
machine learning techniques to support early sepsis detection in intensive care units by 
leveraging electronic medical record (EMR) data. The predictive machine learning model 
utilized in this research could assist physicians in diagnosing sepsis before its onset in 
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critical care patients, improve survival outcomes, and reduce both the incidence of septic 
shock and overall treatment costs. 

Objectives of the Study 
1. Develop the predictive machine learning model to early diagnosis sepsis 

in critical care patients. 
2. Analyze electronic health records in the dataset to discover variables 

potentially associated with sepsis occurrence. 

Significance of the Study 
Presently, the concept of using prediction model on sepsis is widespread among 

the researchers in medical data science field as it is a life-threatening disease which may 
be avoided through timely recognition and effective medical intervention. There are some 
studies the use of sepsis clinical prediction model as it could reduce patient mortality, the 
result show that the model performs well in some hospitals but not performs well in some 
hospitals, even when hospitals are using the same underlying system.(6,7) In 2019, 
PhysioNet, organized the annual George B. Moody PhysioNet Challenge in collaboration 
with Computing in Cardiology, create a challenge for participant to build early sepsis 
prediction based on patient clinical information. The result of the challenge shows that 
various computational methods forecast sepsis onset hours before clinical symptoms 
become evident, but transferring these models across various hospital infrastructures 
remains a significant hurdle as most of the model performs well in hospitals system from 
training set but not in the different hospital system in hidden test set.(8,9) 

In pursuit of advancing healthcare outcomes, this research embarked on a 
groundbreaking endeavor: utilizing electronic medical records (EMR) sourced from 
diverse hospital systems and countries. The objective was to harness this extensive data 
pool to construct an advanced machine learning model focused on identifying sepsis at 
an early stage in ICU settings. By aggregating information from various healthcare 
settings and geographical locations, this study sought to improve model consistency and 
predictive precision. The significance of this research lies in its potential to revolutionize 
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sepsis diagnosis, a condition often characterized by rapid deterioration and requiring 
prompt intervention. By leveraging the power of predictive analytics and machine 
learning, this innovative approach holds the promise of early detection, enabling timely 
and targeted medical interventions, ultimately saving lives, and improving the quality of 
care for critically ill patients across the globe. 

Research Scope 
The eICU-CRD (eICU Collaborative Research Database)(10,11) serves as a large-

scale ICU dataset containing anonymized health information covering more than 200,000 
intensive care admissions throughout U.S. hospitals during 2014–2015. It offers a wide 
array of patient information, such as patient demographics, physiological measurements, 
lab values, and therapeutic interventions. an overview of the primary variables available 
in the dataset is presented below: 

Table  1 Variable contain on the dataset 

No. Name Description 

1. Arterial Line MAP (mmHg) Mean arterial pressure via arterial line 
2. Bedside Glucose Glucose level measured at the bedside 
3. Best Eye Response Eye response score from the Glasgow Coma Scale (GCS) 
4. Best Motor Response Motor response score from the GCS 
5. Best Verbal Response Verbal response score from the GCS 
6. CI Cardiac index (cardiac output normalized by body surface area) 
7. CO Cardiac output (volume of blood pumped by  

the heart per minute) 
8. CPP Cerebral perfusion pressure 
9. CV/ PV Assessment Cardiovascular and peripheral vascular assessment 
10. CVP Central venous pressure 
11. CVP (mmHg) Central venous pressure value in mmHg 
12. Delirium Scale/Score Clinical scoring of delirium severity 
13. ECG (secs) Electrocardiogram duration or intervals 
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Table  1 (Continued) 

No. Name Description 

14. ECMO Extracorporeal membrane oxygenation in use 
15. Electrolyte Replacement Administration of electrolytes 

(e.g., potassium, magnesium) 
16. End Tidal CO2 CO₂ level measured at the end of exhalation  
17. Eye Opening Eye opening component of GCS 
18. Eye, Ear, Nose, Throat Assessment EENT physical assessment 
19. Fall Risk Assessment of patient risk for falling 
20. Gastrointestinal Assessment Assessment of GI system 
21. Genitourinary Assessment Assessment of GU system 
22. Glasgow coma score Assessment of consciousness using GCS scale (3-15) 
23. Heart Rate Heartbeats per minute 
24. IAP Intra-abdominal pressure 
25. ICP Intracranial pressure 
26. Impella Impella heart pump support device present 
27. Integumentary Assessment Skin and tissue integrity assessment 
28. Invasive BP Blood pressure measured directly via arterial line 
29. LVAD Left ventricular assist device present 
30.. Level of Assistance Required assistance level for mobility or care 
31. MAP (mmHg) Mean arterial pressure in mmHg 
32. Mental Status Assessment Assessment of alertness and cognition 
33. Motor Response Observed motor response (part of GCS) 
34. Musculoskeletal Assessment Assessment of muscles and skeletal function 
35. Neurological Assessment Overall neurologic system assessment 
36. Non-Invasive BP Blood pressure measured using a cuff  

(non-invasive method) 
37. O2 Admin Device Device used for oxygen administration  

(e.g., nasal cannula, mask) 
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Table  1 (Continued) 

No. Name Description 

38. O2 L/% Oxygen flow rate or percentage concentration 
39. O2 Saturation Oxygen saturation level in peripheral blood 
40. P.O. Ingestion of food or medication by mouth 
41. PA Pressure in the pulmonary artery 
42. PAOP Pressure measured during pulmonary artery 

occlusion (wedge pressure) 
43. PVR Resistance in the lung vasculature 
44 PVRI Indexed measure of pulmonary vascular resistance 
45 Pain Assessment Nursing assessment of pain level 
46 Pain Present Boolean indicator of pain presence 
47 Pain Score/Goal Patient pain score and/or targeted pain goal 
48 Patient s Comfort/Function 

(Pain) GOAL At Rest 
Comfort and functional pain goals at rest 

49 Pulse Heart rate measured manually or by pulse oximeter 
50 Pulse Ox  Mode Mode of pulse oximetry monitoring 
51 RASS Richmond Agitation-Sedation Scale 
52 Respiratory Assessment Clinical assessment of respiratory system 
53 Respiratory Rate Number of breaths per minute 
54 SEDATION SCORE Quantitative sedation level 
55 SV Stroke volume (amount of blood pumped per heartbeat) 
56 SVO2 Oxygen saturation in mixed venous blood 
57 SVR Resistance in systemic circulation 
58 SVRI Systemic vascular resistance index 
59 Score (Glasgow Coma Scale) Total Glasgow Coma Scale score 
60 Sedation Scale/Score/Goal Sedation level or goal as assessed by clinical staff 
61. SpO2 Peripheral oxygen saturation 
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Table  1 (Continued) 

No. Name Description 

62. Symptoms of Delirium Present Observation of delirium-related behaviors 
63. Temperature Patient’s core or peripheral body temperature 
64. Verbal Response Observed verbal response (part of GCS) 

Project plan 
The research is planned to start the process on 1st August 2023 and finish on 15 

January 2024 at the Biomedical Engineering Department at Srinakharinwirot University. 

Table  2 Grant Graph 

No. Task 
Month 
AUG-
DEC 

JAN-
APR 

MAY-
JUL 

AUG-
DEC 

JAN FEB MAR APR 

1. Literature review 
related work 

        

2. Plan and edit the 
research topic  

        

3. Collect the dataset         
4. Preprocessing 

dataset 
        

5. Working on thesis 
chapter 1-3 for 1st 
Presentation 

        

6. Develop the 
machine learning 
model 
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Table  2 (Continued) 

No. Task 
Month 
AUG-
DEC 

JAN-
APR 

MAY-
JUL 

AUG-
DEC 

JAN FEB MAR APR 

7. Analyze and conclude 
the 
research result 

        

8. Prepare the paper for 
the international 
conference 

        

9. Working on thesis 
chapter 4-5 for 2nd 
Presentation 

        

10. Present the research 
Project in the 
conference 

        

11. Edit and Summary the 
final thesis submission  

        



 

Chapter 2  
LITERATURE REVIEW 

Immune System 
Definition of Immunity  

Immunity refers to the body's intricate defense system that protects against 
harmful pathogens, infections, and diseases. It serves as a fundamental biological 
function, enabling organisms to recognize and neutralize foreign invaders while 
preserving the body’s ability to tolerate its own cells and molecules.(12) The immune system 
is broadly divided into innate immunity, offering rapid general defense, and adaptive 
immunity, which evolves over time to target specific pathogens for lasting immunity.(13) 

Mechanisms of Immunity 
The immune system functions as a sophisticated and highly coordinated 

network of cells and signaling molecules that detect, neutralize, and eliminate pathogenic 
threats.(14) It is broadly classified into innate and adaptive immunity, both of which are 
critical for sustaining health and preventing infections. 

Innate Immunity 

• Innate immunity serves as the body's immediate barrier against 
infection, acting quickly through generalized defense processes. 
This built-in defense system exists from birth and functions without 
needing earlier contact with pathogens.(15) It primarily relies on 
physical barriers, chemical secretions, and immune cells to 
identify and neutralize pathogenic invaders. 
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• Physical and Anatomical Barriers: The skin and mucous 
membranes serve as effective barriers between the internal and 
external environments, preventing pathogen entry. The 
epidermis’s outermost layer is primarily composed of 
keratinocytes, connected by desmosomes and surrounded by 
extracellular matrix components.(16) 

• Effector Cells and Soluble Mediators: Macrophages, dendritic 
cells, neutrophils, and natural killer cells are key immune cells that 
help identify and neutralize threats. They recognize pathogens 
using PRRs that bind to molecular structures like PAMPs, 
triggering an instant immune response.(17) 

Adaptive Immunity 

• Adaptive immunity is a specialized and highly efficient defense 
mechanism that provides long-term protection through 
immunological memory. Unlike innate immunity, which responds 
immediately in a broad manner, adaptive immunity targets 
specific antigens and depends on immune cell activation and 
proliferation for a robust response during repeated exposures.(18) 

• Lymphocytes such as B cells and T cells mediate adaptive 
immunity. B cells generate antibodies to neutralize pathogens, 
while T cells help destroy infected cells and coordinate immune 
defense mechanisms.(19) 
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• Immunological Memory: One of adaptive immunity’s defining traits 
is its capacity to recall previous pathogens. When re-
encountered, it reacts more rapidly and strongly. This principle 
underpins the effectiveness of vaccines in providing long-term 
immunity.(20) 

Enhancement of Immunity 
Immune activity is influenced by several elements such as diet, vaccines, 

personal habits, and the gut microbiome’s makeup. These factors significantly influence 
both innate and adaptive immune responses, thereby contributing to overall health and 
disease resistance.(21) 

Nutrition and Dietary Interventions 
• Optimal nutrition is essential for maintaining a robust immune 

system. A well-balanced diet provides vital micronutrients and 
bioactive compounds that support immune cell function and 
mitigate susceptibility to infections.(22) 

• Gut Microbiota: The gut’s microbial community significantly 
influences immune regulation. Early exposure to diverse microbes 
helps condition the immune system and may prevent chronic 
autoimmune conditions and allergies.(23) 

Vaccination and Immune Priming 

• Vaccines continue to be a highly effective method for 
strengthening immunity and lowering infection risks. By 
introducing harmless components of pathogens, vaccines 
stimulate the development of memory cells, Preparing the immune 
system to respond quickly and powerfully when exposed again.(19)  
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• Mechanisms of Vaccines help train the immune system to detect 
and respond more effectively to harmful microbes, lowering the 
risk of serious illness.(24) 

Microbiome and Immune Regulation 

• The gut microbiota is essential for immune balance, helping to 
regulate inflammation and communicate with immune cells. A 
well-balanced gut microbiome supports immune stability and 
helps protect the body from harmful microbes. (16) 

• Immune Modulation: Beneficial gut microbiota produces 
metabolites that regulate immune responses and mitigate 
excessive inflammation.(23) 

Sepsis and Septic shock 
Definition and Overview 
Sepsis is a severe condition that can lead to death from infection when it is not 

identified and treated in a timely manner. Its identification demands urgent attention. The 
progression of sepsis is influenced by various host and microbial elements, including age, 
genetics, health status, and environmental conditions. Sepsis is identified by an abnormal 
immune response to infection that leads to organ failure, setting it apart from ordinary 
infections. It's crucial to note that sepsis-induced organ dysfunction might be hidden, 
making its consideration imperative in any patient with an infection. Conversely, a new-
onset organ dysfunction could be the result of an unrecognized infection. Therefore, organ 
failure without a clear cause should prompt consideration of a possible hidden infection. 
Furthermore, Sepsis symptoms may vary depending on underlying conditions, recent 
treatments, or coexisting diseases. It's essential to recognize that specific infections can 
lead to localized organ dysfunction without triggering a dysregulated systemic host 
response.(4)  
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Sepsis is formally defined as a critical condition marked by a severe condition 
caused by abnormal immune responses leading to organ failure. The identification of 
organ dysfunction involves an acute change in the total Sequential Organ Failure 
Assessment (SOFA) score by at least 2 points attributable to the infection. In patients 
without known pre-existing organ dysfunction, the baseline SOFA score is assumed to be 
zero. Notably, a SOFA score of 2 or more reflects an overall mortality risk of approximately 
10% in a general hospital population with suspected infection. It is crucial to recognize 
that even patients with modest dysfunction can experience further deterioration, 
underscoring how serious this condition is and the urgency of immediate treatment when 
required.(25) 

 
In simpler terms, sepsis occurs when the body’s immune reaction to infection 

harms its own tissues and organs, putting life at risk. Swift identification of patients who 
may require extended ICU care or are at higher risk of death can be achieved at the 
bedside using the quick SOFA (qSOFA) criteria, which include alterations in mental status, 
systolic blood pressure less than 100 mm Hg, or a respiratory rate exceeding 22/min. 
Additionally, septic shock, a subset of sepsis, is characterized by profound circulatory 
and problems in how cells and metabolism function. Identification of patients with septic 
shock involves a clinical construct of sepsis with persistent hypotension necessitating 
vasopressors to maintain a mean arterial pressure of at least 65 mm Hg and a serum 
lactate level surpassing 2 mmol/L (18 mg/dL) despite adequate volume resuscitation. It is 
crucial to note that meeting these criteria results in a hospital mortality rate exceeding 
40%, underscoring the severity of septic shock and emphasizing the critical need for 
timely intervention.(26) 
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Epidemiology and Global Impact 
Sepsis and septic shock are significant global health concerns, impacting 

nearly 49 million individuals and causing about 11 million deaths globally in 2017, 
representing close to one-fifth of all deaths worldwide.(27) In 2017, the World Health 
Organization (WHO) identified sepsis as a major global health issue and called for 
improved strategies in prevention, early diagnosis, and effective management. 

Sepsis and Septic Shock Mortality and Morbidity 

• Sepsis-related deaths account for 20% of global mortality. 

• Septic shock mortality rates range from 40% to 60%, making it the 
deadliest stage of sepsis.(4) 

• Neonatal sepsis contributes to 2.9 million deaths globally per 
year, primarily in low-income settings.(27) 

Regional and Demographic Disparities 

• Sepsis and septic shock pose a greater challenge in low- and 
middle-income countries (LMICs) where healthcare infrastructure 
is often limited, high rates of infectious diseases, and inadequate 
sanitation.(28) Neonatal and maternal sepsis remain major 
contributors to mortality, particularly in regions with limited access 
to antibiotics and proper medical care.(29) 

• High-Income Countries (HICs): Older adults, 
immunocompromised individuals, and people with chronic 
diseases are at greater risk of developing sepsis. Hospital-
acquired infections are a leading cause.(30) 

• Low- and Middle-Income Countries (LMICs): Higher incidence of 
neonatal sepsis, malaria-related sepsis, and infections due to 
poor sanitation.(27) 

• Neonates and Infants: Approximately 3 million neonatal sepsis 
cases occur annually, with mortality rates exceeding 30% in 
resource-limited settings.(29) 
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Pathophysiology and Disease Progression 
Sepsis and septic shock arise from an abnormal immune response to 

infection, which triggers widespread inflammation, endothelial injury, blood clotting 
irregularities, and metabolic disturbances.(31) Sepsis pathophysiology reflects an unstable 
interplay between inflammatory and anti-inflammatory processes, where excessive 
immune activation can lead to multi-organ dysfunction syndrome (MODS). 

Mechanisms of Sepsis Progression 
1. Immune System Activation and Cytokine Storm 

• Pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) trigger Toll-
like receptors (TLRs), activating the innate immune system.(32) 

• Overproduction of inflammatory mediators like TNF-α, IL-1β, 
and IL-6 can trigger a cytokine storm, which contributes to 
extensive tissue injury and organ dysfunction.(33) 

2. Endothelial Dysfunction and Vascular Leakage 

• Sepsis induces endothelial barrier disruption, causing 
increased vascular permeability, capillary leak syndrome, and 
edema.(34) 

• Abnormal blood clotting mechanisms can cause disseminated 
intravascular coagulation (DIC), worsening small vessel 
blockages and limiting oxygen delivery to tissues.(35) 

3. Mitochondrial Dysfunction and Metabolic Failure 

• Impaired mitochondrial respiration results in decreased ATP 
production, shifting metabolism towards anaerobic glycolysis 
and lactic acidosis.(4) 

• Elevated levels of reactive oxygen species (ROS) contribute to 
cellular damage through oxidative stress mechanisms.(36) 
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4. Multi-Organ Dysfunction Syndrome (MODS) and Septic Shock 

• Persistent hypoxia, tissue damage, and inflammatory 
dysregulation lead to MODS, involving failure of the lungs, 
kidneys, heart, and brain, increasing mortality.(34) 

• In septic shock, excessive nitric oxide (NO) production causes 
profound vasodilation and refractory hypotension.(37) 

Risk Factors and Causes 
Sepsis and septic shock arise from diverse infections and patient-specific 

risk factors. Recognizing these contributors enables early intervention and targeted 
therapies. 

Common Causes of Sepsis and Septic Shock 

• Bacterial Infections: The leading cause, particularly involving 
gram-negative bacteria such as Escherichia coli and 
Pseudomonas aeruginosa, and gram-positive strains like 
Staphylococcus aureus and Streptococcus pneumoniae.(38) 

• Fungal Infections: Higher risk in immunocompromised individuals, 
particularly Candida species.(39) 

• Viral Infections: Sepsis can result from influenza, COVID-19 , and 
other viral infections(5) 

Key Risk Factors for Sepsis and Septic Shock 
1. Advanced Age 

• Individuals older than 65 are at significantly elevated risk due 
to age-related decline in immune function and existing health 
conditions.(40) 

2. Chronic Diseases 
• Underlying conditions like diabetes, liver cirrhosis, renal 

insufficiency, and heart disease compromise immune 
defenses and heighten vulnerability to infections.(41) 
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3. Immunosuppression 

• Cancer, HIV/AIDS, prolonged corticosteroid use, and post-
transplant immunosuppression significantly elevate sepsis 
risk.(33) 

4. Nosocomial Infections and Invasive Procedures 

• Infections acquired during hospitalization, including those 
linked to ventilators and central lines, are major contributors to 
sepsis incidence.(30) 

• Surgical procedures, central venous catheters, and 
mechanical ventilation introduce pathogens into the 
bloodstream, raising sepsis risk.(42) 

Signs and Symptoms of Sepsis and Septic Shock 
sepsis presents with a broad spectrum of symptoms due to its systemic 

nature, making early identification crucial for improving patient outcomes. (4) Symptoms 
range from mild to severe and progress rapidly, leading to multi-organ dysfunction 
syndrome (MODS) if left untreated.(27) 

Early Signs of Sepsis 
1. Fever or Hypothermia: An elevated body temperature 

(>38.3°C) or hypothermia (<36°C) is common due to immune 
system dysregulation.(4) 

2. Tachycardia, characterized by a heart rate over 90 beats per 

minute, often signals systemic inflammatory response.(43) 

3. Tachypnea, or a respiratory rate above 22 breaths per minute, 
suggests compensatory effort in response to metabolic 
imbalance.(5) 

4. Altered Mental Status: Confusion, disorientation, or lethargy 
suggest cerebral hypoperfusion and inflammation.(32) 
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Severe Symptoms Indicative of Septic Shock 
1. Persistent low blood pressure, defined as MAP under 65 mmHg 

even after fluid therapy, points to circulatory system collapse.(44) 
2. Lactic Acidosis: Elevated lactate levels above 2 mmol/L indicate 

inefficient oxygen use and tissue hypoperfusion.(4) 
3. Oliguria or Anuria: Decreased urine output (<0.5 mL/kg/hour) is 

indicative of acute kidney injury (AKI) due to hypoperfusion.(45)  
4. Cold, Clammy Skin: Poor peripheral perfusion results in cyanosis 

and mottling, particularly in the extremities.(41) 
Multi-Organ Dysfunction and Late-Stage Symptoms 

• Respiratory Failure: Progression to ARDS may necessitate 
mechanical ventilatory support due to severe lung impairment.(46) 

• Liver Dysfunction: Elevated bilirubin and transaminases, 
indicating hepatocellular injury.(35) 

• Coagulopathy and Disseminated Intravascular Coagulation (DIC): 
Elevated prothrombin time (PT), activated partial thromboplastin 
time (aPTT), and d-dimer indicate sepsis-induced clotting 
dysfunction.(47) 

Sepsis Criteria  
According to the recommendation from sepsis and septic shock 2021 

guideline(5) ,the screening method on sepsis should be use more than one criterion to 
confirm the sepsis on patient. The guideline recommends by meeting a minimum of two 
indicators from the criteria below:  
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qSOFA 

• qSOFA serves as a primary screening approach for sepsis, often 
applied in conjunction with other criteria. To suspect sepsis with 
qSOFA is using the following list, a score above 2 indicates a 
strong suspicion of sepsis in the patient. 

Table  3 qSOFA (Quick SOFA) Criteria 

No. Criteria 

1. Respiratory rate >= 22/min 
2. Altered mentation 
3. Systolic blood pressure <=100 mm Hg 

 
SIRS (Systemic Inflammatory Response Syndrome) 

• SIRS provides an alternative method for identifying sepsis through 
the checklist below, sepsis is likely if the total score exceeds 2. 

Table  4 SIRS (Systemic Inflammatory Response Syndrome) Criteria 

No. Criteria 
1. Temperature >38°C or <36°C 
2. Heart rate >90/min 
3. Respiratory rate >20/min or Paco2 <32 mm Hg (4.3 kPa) 
4. White blood cell count >12 000/mm3 or <4000/mm3 or >10% immature bands 
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National Early Warning Score (NEWS) 

• NEWS is another criterion that is applied to help detect potential 
sepsis cases in clinical settings. By using NEWS check list as 
following, a NEWS score of 5 or higher indicates a possible 
sepsis-related infection in the patient. 

 

Figure  1 NEWS score 
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Modified Early Warning Score (MEWS) 

• MEWS is one of the clinical scoring tools used to identify patients 
potentially at risk for sepsis, with MEWS scores of 5 or more may 
indicate a suspected sepsis infection. 

 

Figure  2 MEWS score 

Machine learning 
Machine learning in healthcare has gained increasing attention due to its 

transformative potential. Researchers explore whether machine learning enhances patient 
care, with factors like hospital settings and data quality influencing model performance.(48) 

A primary application of machine learning in healthcare is predictive modeling, 
used to assess patient health conditions and improve treatment plans. Studies evaluating 
machine learning's real-world performance in critical care settings in the United States 
indicate that these models can effectively handle clinical situations. However, 
performance varies based on hospital size and resource availability. Some models 
perform well in larger hospitals with more structured data, while in smaller hospitals, 
performance may degrade due to factors such as inconsistent data collection and 
resource limitations.(49) 

Machine learning is widely applied in healthcare for image processing, disease 
diagnosis, and patient monitoring. Algorithms like deep convolutional networks, support 
vector machines (SVMs) and random forest algorithms are commonly employed in 
medical diagnosis and clinical outcome prediction.(50–52)  
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However, implementation challenges persist across diverse healthcare systems. 
Hospital-related factors, such as the availability of structured data, clinician acceptance 
of AI-based recommendations, and regulatory constraints, contribute to variations in 
model performance.(53) 

 
In this study, I propose using well-established machine learning algorithms that 

are frequently applied in healthcare. These algorithms have demonstrated strong 
performance in areas such as disease prediction, patient monitoring, and medical 
imaging. The table below summarizes their definitions and common applications in 
medical research. 

Table  5 Definition of algorithms and models in this study 

No. Name of algorithm and model Definition 

1  Deep Learning Deep learning, a branch of machine 
learning, utilizes layered neural 
networks to model intricate patterns 
and relationships in data. n healthcare, 
deep learning is extensively applied in 
medical imaging, diagnostic support, 
and the development of individualized 
treatment strategies. It excels in tasks 
like tumor detection, medical image 
segmentation, and electronic health 
record analysis.(54) 

 

  



  22 

Table  5 (Continued) 

No. Name of algorithm and model Definition 

2 Linear Support Vector Machine (LinearSVM) Linear Support Vector Machine (SVM) is 
designed for datasets where classes can be 
separated by a straight hyperplane. It is 
particularly effective for binary classification 
tasks with clear class boundaries.(55). 

3 Logistic Regression (LR) Logistic regression is a classification model 
that uses several independent parameters to 
predict a binary-dependent outcome. It is a 
highly effective technique for identifying the 
relationship between data or cues or a 
particular occurrence.(56) 

4 Random Forest (RF) Random Forest is an ensemble learning 
method that aggregates predictions from 
multiple decision trees to enhance model 
accuracy and reduce overfitting. It is widely 
used for both classification and regression 
tasks.(57) 

5  eXtreme Gradient Boost (XGBoost) XGBoost is an optimized gradient-boosting 
framework that uses decision trees to improve 
predictive accuracy. Known for its speed and 
performance, it supports regression, 
classification, and ranking tasks, and includes 
regularization to reduce overfitting.(58) 
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Related work 
Several previous studies have pursued similar objectives to this research. A 

summary of related literature, including datasets and machine learning models used, is 
presented in the following table.  

Table  6 Related work 

Study Dataset Algorithms and Model 

Sudarsan Sadasivuni 
et al. 

Research 
dataset 

ANN, LinearSVM, LR, RF,  

Sadik Aref et al. The Physionet  
challenge 
2019 

XGBoost 

S. Babu et al The Physionet  
challenge 
2019  
and MIMIC-III 

XGBoost, MLP, GB, LDA 

Xiao Lu et al. MIMIC-III  
and  
MIMIC-IV 

Gradient Boosting Decision Tree (GBDT), XGBoost, RF, 
LightGB, Support Vector Machine (SVM) 

Divya Bhaskaracharya 
et al. 

The Physionet  
Challenge 
2019 

LR, Naïve Bayes classifier, KNN, XGBoost, RF 

Benjamin Roussel et 
al. 

The Physionet 
 Challenge 
2019 

RNN 

 



 

CHAPTER 3 
RESEARCH METHODOLOGY 

Data Source 
This study uses the eICU Collaborative Research Database (eICU-CRD) (10,11), a 

large-scale, deidentified critical care dataset comprising more than 200,000 ICU 
admissions from multiple centers across the United States between 2014 and 2015. It 
contains rich clinical data including vital signs, care plans, illness severity scores, 
diagnoses, and treatments. The data was collected through the Philips eICU telehealth 
program, which supports real-time remote monitoring of ICU patients. 

Data Preparation 
This section describes the preprocessing steps applied to the dataset to ensure 

consistency, manage missing values, and prepare the data for analysis. The key steps 
include patient identification, sepsis labeling, handling of missing data, feature 
aggregation, and dataset construction. 

Patient Identification and Cohort Segmentation 
Each patient in the dataset is uniquely identified using PatientUnitStayID. This 

identifier ensures that data remains patient-specific and prevents redundancy or 
duplication. By structuring the dataset in this manner, patient records are maintained as 
distinct units, thereby preserving data integrity and preventing data leakage during model 
development. 
  



  25 

Sepsis labeling 
The dataset includes predefined labels indicating whether a patient has been 

diagnosed with sepsis. Based on this labeling, patients are classified into two distinct 
groups: 

• Sepsis group: Patients who meet the criteria for sepsis based on the 
dataset’s predefined labels. 

 

• Non-sepsis group: Patients who do not meet the criteria for sepsis. 
This approach ensures consistency in patient classification and eliminates 

the need for additional manual labeling based on external criteria. 
Handling missing data 

Missing data is managed using a structured two-step approach to ensure the 
reliability of the dataset while retaining informative features: 

 
1. Feature Elimination: Features exhibiting excessive missingness, 

specifically over 60–80%, were excluded from the dataset to maintain 
data quality. This threshold is chosen to balance data retention with 
feature completeness, ensuring that excessively sparse features do 
not negatively impact analysis. 

 
2. Missing Value Imputation: For the remaining features, missing values 

are systematically replaced with zero (0). This approach standardizes 
the dataset while minimizing potential biases introduced by other 
imputation methods. 

 
This strategy ensures that the dataset remains comprehensive while 

mitigating the influence of incomplete data. 
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Feature Engineering and Aggregation 
To facilitate analysis and enhance model performance, key statistical metrics 

are computed for each feature at the patient level. These statistical summaries transform 
raw time-series data into structured representations, improving interpretability and 
reducing dimensionality. The computed metrics include: 

• Mean: The average value over the recorded period. 

• Mode: The value that appears most often in the patient’s data. 

• Median: A central value that better represents skewed data 
distributions. 

• Maximum: The highest observed value for each patient. 
By aggregating data in this manner, patient-level characteristics can be more 

effectively analyzed in subsequent modeling steps. 
Dataset Construction 

Following preprocessing and feature engineering, two datasets are created 
to support different aspects of the analysis: 

1. Comprehensive Feature Dataset: This dataset includes all retained 
features following missing data handling and feature aggregation. It 
provides a complete representation of patient data. 

2. Core Feature Dataset: This dataset consists of the six features with 
the highest data availability, ensuring a streamlined and reliable 
subset for focused predictive modeling. 

The construction of these datasets allows for both broad exploratory analysis 
and targeted model development, ensuring flexibility in the research methodology. 
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Experiment 
This section describes the experimental setup used to develop and evaluate 

predictive models for sepsis detection. The process consists of dataset partitioning, 
model training, hyperparameter tuning, validation, and final performance assessment. The 
workflow for model development is illustrated in Figure 3. 

 

Figure  3 Model development 
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Dataset Splitting 
To ensure a robust evaluation process, the dataset is randomly partitioned 

into three subsets: 

• Test Set (20%) – Reserved for final model evaluation. 

• Development Set (80%) – Used for training and validation. 
The development set is further divided into: 

• Training Set (80%) – Used for model training. 

• Validation Set (20%) – Used for hyperparameter tuning and 
performance validation. 

This splitting strategy ensures that the test data remains completely 
independent from the training and validation process, preventing data leakage and 
overfitting. 

Machine Learning Model Training 
For traditional machine learning models, a 10-fold cross-validation approach 

is employed to optimize hyperparameters and improve model performance. The process 
is as follows: 

1. Hyperparameter Tuning 

• Training data is split evenly into ten parts.. 

• Each part takes a turn as validation data, with the others used for 
training. 

• The model is trained repeatedly with varying data splits, and 
tuning is guided by performance outcomes. 

2. Final Model Training 

• The best-performing hyperparameters are selected. 

• The final model is retrained on the complete training data with the 
selected parameters. 

  



  29 

The following machine learning algorithms are each trained separately using 
both datasets (Comprehensive and Core Feature datasets): 

• Linear Support Vector Machine (Linear SVM) – Trained with both 
datasets 

• Logistic Regression (LR) – Trained with both datasets 

• Random Forest (RF) – Trained with both datasets 

• eXtreme Gradient Boosting (XGBoost) – Trained with both datasets 
Each model's performance is evaluated based on the validation set, and the 

best-performing model proceeds to final testing. 
Deep Learning Model Training 

Unlike traditional models, deep learning networks are trained directly without 
k-fold cross-validation. To assess how different different feature sets, three deep learning 
models are developed: 

1. Model A – Trained using the Comprehensive Feature Dataset. 
2. Model B – Trained using the Core Feature Dataset. 
3. Model C – Trained using a combination of both datasets, 

 incorporating a broader feature set. 
Each deep learning model undergoes training and fine-tuning with 

optimization techniques such as learning rate adjustments and dropout regularization. 
The final model is selected based on validation performance. 
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Figure  4 Deep Learning Model C 

Model Development Workflow 
Figure 3 illustrates the full model development pipeline, from preprocessing 

through training, validation, and testing. 
Steps in Model Development: Acquiring and Preprocessing Data: 
Data Acquisition and Preprocessing 

• The data undergoes collection, cleaning, and preprocessing, as 
outlined earlier. 
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Dataset Splitting 

• The dataset was split into three subsets: training, validation, and 
testing. 

Model Training 

• Machine learning models were tuned using 10-fold cross-
validation to determine the best-performing hyperparameters. 

• Each deep learning model was trained independently on distinct 
dataset configurations. 

Hyperparameter Tuning 
To optimize model performance, all algorithms underwent structured 
hyperparameter tuning using grid search and validation AUC as the 
primary evaluation metric. This approach ensured robust model 
selection, particularly in the context of class imbalance and clinical 
sensitivity. 
The following hyperparameters and value ranges were explored: 

• Support Vector Machine (SVM): 

• kernel: (linear, rbf) 

• C: (0.1, 1, 10) 

• gamma: (scale, auto) 

• class weight: (None, balanced) 

• Random Forest (RF): 

• n_estimators: (100, 200) 

• max_depth: (10, 20, None) 

• min_samples_split: (2, 5) 

• XGBoost: 

• max_depth: (3, 5, 7, 9) 

• learning_rate: (0.01, 0.05, 0.1, 0.2) 

• subsample: (0.6, 0.8, 1.0) 
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• colsample_bytree: (0.6, 0.8, 1.0) 

• Logistic Regression (LR): 

• penalty: (l2, elasticnet) 

• C: (0.001, 0.01, 0.1, 1, 10, 100) 

• solver: (liblinear, saga) 

• l1_ratio: (0.1, 0.5, 0.7, 1.0) 

• Deep Learning Models: 

• dropout: (0.3–0.5) 

• learning rate: (0.001, 0.01, 0.0001) 

• hidden layers: (2–4) 

• neurons per layer: (32–256) 

• Optimizer: Adam 
Model Evaluation and Selection 

• Validation results were used to select the best-performing model. 

• Final evaluation was conducted using the holdout test set to 
ensure objective performance measurement. 

Performance Assessment 

• The final model is evaluated using key performance metrics, 
including accuracy, precision, recall, F1-score, and AUC-ROC. 
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Performance metrics 
Model performance was evaluated using standard metrics such as accuracy, 

precision, recall (sensitivity), F1-score, specificity, and area under the ROC curve 
(AUROC). 

Confusion matrix 

• The confusion matrix summarizes classification results by 
showing correct and incorrect predictions per class, helping 
identify where the model confuses one class for another.(59) 

 

Figure  5 Confusion matrix 

• P: Positive, N: Negative 

• TP: True Positive, FP: False Positive 

• FN: False Negative, TN: True Negative 
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Accuracy 

• Accuracy measures the proportion of correct predictions out of all 
predictions made by the model. Commonly, Accuracy is used in 
balanced dataset. For the unbalanced dataset accuracy should 
not be use(59). From Figure 2, accuracy can be calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 

Precision 

• Precision is suited for the cases where the study required 
confidence in positive outcomes. As Precision assesses the 
proportion of true positive predictions among all positive 
predictions made. From Figure 2, precision can calculate as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Sensitivity or Recall 

• Recall is especially important for imbalanced datasets and 
measures the proportion of actual positives correctly identified. 
Sensitivity or Recall also known as True Positive Rate (TPR). From 
Figure 2, Sensitivity or Recall can calculate as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 

• F1-Score is the combination of precision and recall, used to 
maintain a balance between precision and recall. Frequently use 
in imbalance dataset. F1-Score can be calculated as: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 

 
  



  35 

Specificity 

• Specificity measures the proportion of actual negatives that are 
correctly identified by the model. Specificity is also known as True 
Negative Rate (TNR). From Figure 2 Sensitivity can calculate as: 

• 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Area Under the Receiver Operating Characteristic (AUROC) 

• AUROC is calculated as the area under the ROC curve. The ROC 
curve illustrates how sensitivity and false positive rate change 
across thresholds, helping visualize classifier performance. 

• False Positive rate (FNR) can be calculated as: 

• 𝐹𝑁𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  

 

Figure  6 Receiver Operating Characteristic Curve (ROC Curve)



 

CHAPTER 4 

RESULT 

Feature Selection 
The original dataset included 64 clinical features collected from ICU patients, 

ranging from vital signs and laboratory values to neurological and sedation scores. To 
ensure model readiness and clinical relevance, a structured feature selection process 
was conducted based on data type, completeness, and modeling utility. 

Initial Filtering 

• Non-numeric fields (e.g., free-text clinical notes or descriptions) were 
excluded, as they were incompatible with the numerical inputs 
required for machine learning. 

• The identifier column (“Unnamed: 0”), which served only as a patient 
reference ID, was removed from analysis. 

Reduction Based on Data Availability 

• Many features with a high percentage of missing values were 
removed to improve data reliability and reduce imputation bias. 

 

• However, some features with substantial missingness—such as 
Score (Glasgow Coma Scale)—were still included. This decision was 
made to improve the model’s generalizability across hospitals that 
may differ in how they collect and record clinical data. Including 
features with variable availability helps the model adapt to different 
data environments and supports its use in more diverse clinical 
settings. 

 

Final Feature Set 

• A total of 21 numeric features were selected for model development. 
These include vital signs, blood pressure components, respiratory 
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metrics, and ICU-specific scores. Some variables—such as invasive 
blood pressure and non-invasive blood pressure—are composed of 
three distinct subcomponents: systolic, diastolic, and mean arterial 
pressure. Each of these components was treated as a separate input 
feature. While this increased the number of inputs and allowed for 
more granular modeling of cardiovascular dynamics, it also 
contributed to higher missingness for those variables when any 
individual subcomponent was absent. 

• The final list of features, presented in the exact order used during 
modeling, includes: 

• Temperature (°C) 

• Heart Rate 

• Non-Invasive BP Systolic 

• Non-Invasive BP Mean 

• Non-Invasive BP Diastolic 

• Respiratory Rate 

• O₂ Saturation 

• GCS Total 

• O₂ L/% 

• Pain Goal 

• Pain Score 

• Bedside Glucose 

• Sedation Goal 

• Sedation Score 

• Invasive BP Systolic 

• Invasive BP Mean 

• Invasive BP Diastolic 

• CVP 
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• P.O. Value 

• Delirium Score 

• Score (Glasgow Coma Scale) 
Figure 7 shows the percentage of missing data for each candidate feature in both 

sepsis and non-sepsis groups. While many features with excessive missingness were 
removed, some—such as Score (Glasgow Coma Scale) and Delirium Score—were 
retained despite missing values exceeding 90%. This decision was made to support the 
model’s generalizability across hospitals, as different institutions may collect different 
subsets of data. Including these sparse but clinically relevant features allows the model 
to operate in environments with incomplete data, increasing its real-world applicability. 

Conversely, features such as urine output, FiO₂, and arterial pH, which had missingness 
levels above 80% and low predictive contribution, were excluded. 

 

Figure  7 Missing data percentages by feature  

Dataset Limitations 
While the dataset provided a rich source of ICU patient data for model 

development, several limitations were identified that could impact the model’s 
performance and generalizability. 
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High Rate of Missing Data 
A number of features had substantial missing values, with some exceeding 

90%. Although many of these were excluded, a few were retained to support broader 
applicability across hospitals with varying data availability. The use of imputation, 
particularly zero-filling—may introduce noise and limit clinical precision. 

Lack of Key Laboratory Markers 
Important clinical indicators for early sepsis detection, such as white blood 

cell count and lactate, were not present in the dataset. Their absence likely reflects 
variability in measurement frequency or availability across ICU systems. Although related 
vital signs and scoring metrics were included, the lack of standard lab values limits the 
model’s alignment with clinical diagnostic criteria. 

Single Dataset Source 
All data were derived from the eICU Collaborative Research Database. 

Despite being multicenter, this dataset follows a standardized format, which may not fully 
represent the variability in documentation and workflows seen across all clinical 
institutions. 

Class Imbalance 
The dataset may exhibit an imbalance between sepsis and non-sepsis cases. If not fully 

addressed during training, this could skew the model toward the majority class, 

potentially lowering sensitivity for detecting sepsis cases. 

Class Imbalance Handling 
Sepsis was underrepresented compared to non-sepsis cases in the dataset, 

introducing a class imbalance challenge. To address this, several mitigation strategies 
were applied across different model types: 

• Stratified sampling was used during train-test splits and cross-
validation to maintain class proportions. 

• The class_weight='balanced' parameter was enabled in models 
such as Support Vector Machine and Logistic Regression, 



  40 

automatically adjusting the loss function to penalize 
misclassification of the minority class. 

• While tree-based models like XGBoost did not use 
scale_pos_weight in this implementation, model evaluation relied 
on AUC rather than accuracy, reducing the impact of imbalance. 

• In deep learning models, class imbalance was indirectly 
addressed by using AUC as the primary evaluation metric and a 
custom early stopping strategy that prioritized high validation 
AUC performance. 

These techniques collectively helped reduce false negatives and improve 
recall, which are critical priorities for early sepsis detection in clinical settings. 

Static Features Over Temporal Data 
The model used summary statistics (e.g., mean, max) rather than time-series 

inputs. As a result, it may miss dynamic patterns and temporal trends critical to early 
sepsis recognition. 

Excluded Non-Numeric Features 
Clinical text data and categorical information—such as medication names or 

physician notes—were excluded due to their non-numeric format. This limits the model’s 
ability to incorporate qualitative insights that may hold diagnostic value 
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Performance Evaluation 
Confusion Matrix Analysis 

 

Figure  8 Combined Confusion Matrix for SVM Model 

Support Vector Machine (SVM) 

• Comprehensive Dataset (SVM_21) 

• TN = 6138, FP = 638 

• FN = 1902, TP = 2361 
The use of a comprehensive dataset improves recall by reducing FN and 

increasing TP, although it slightly increases FP. This version shows better balance. 

• Core Dataset (SVM_06) 

• TN = 6402, FP = 374 

• FN = 2575, TP = 1688 
This model demonstrates high specificity, accurately identifying non-sepsis 

cases. However, it suffers from a high false negative rate, indicating that a substantial 
number of sepsis cases were missing. 
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Figure  9 Combined Confusion Matrix for Logistic Regression Model 

Logistic Regression (LR) 

• Comprehensive Dataset (LR_21) 

• TN = 5845, FP = 931 

• FN = 1546, TP = 2717 
Logistic regression benefits significantly from the comprehensive dataset, 

with a clear increase in TP and reduction in FN. However, this comes at the cost of more 
false alarms (higher FP). 

• Core Dataset (LR_06) 

• TN = 6016, FP = 760 

• FN = 2032, TP = 2231 
The model shows modest performance, with a fairly even trade-off between 

false positives and false negatives. The high FN count still makes it risky in critical settings. 
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Figure  10 Combined Confusion Matrix for Random Forest Model 

Random Forest (RF) 

• Comprehensive Dataset (RF_21) 

• TN = 6171, FP = 605 

• FN = 1739, TP = 2524 
Performance improves with the comprehensive dataset, particularly in 

reducing FN and increasing TP, though slightly more non-sepsis cases are misclassified 
as sepsis. 

• Core Dataset (RF_06) 

• TN = 6319, FP = 457 

• FN = 2182, TP = 2081 
RF trained on core features shows strong specificity but still misses a 

considerable number of sepsis cases. 
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Figure  11 Combined Confusion Matrix for XGBoost Model 

XGBoost (XGB) 

• Comprehensive Dataset (XGB_21) 

• TN = 6110, FP = 666 

• FN = 1365, TP = 2898 
This model achieved the best performance among traditional algorithms. With 

the lowest FN and highest TP, it presents a strong case for use in real-time clinical sepsis 
screening. 

• Core Dataset (XGB_06) 

• TN = 6160, FP = 616 

• FN = 1680, TP = 2583 
Among traditional models, XGBoost shows the most balanced performance, 

even with fewer features. It maintains low FN and relatively high TP. 
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Figure  12 Combined Confusion Matrix for Deep Learning Model 

Deep Learning Models 

• Model A (Comprehensive Dataset) 

• TN = 5621, FP = 1155 

• FN = 1509, TP = 2754 
Deep learning Model A captures more sepsis cases than most traditional 

models but at the cost of increased false positives. The FN is moderate and significantly 
better than some of the machine learning counterparts. 

• Model B (Core Dataset) 

• TN = 6110, FP = 666 

• FN = 1365, TP = 2898 
Surprisingly, Model B mirrors the performance of XGBoost with the same 

dataset. It shows high effectiveness despite fewer features. 
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• Model C (Combined Dataset) 

• TN = 5236, FP = 1540 

• FN = 1296, TP = 2967 
Model C, which uses both datasets together (dual input), achieves the lowest 

false negative count (FN = 1296) and the highest number of true positives (TP = 2967) 
among all models. This suggests that combining datasets significantly enhances recall, 
which is essential for sepsis prediction. 

 
Deep Learning Model C achieved the lowest number of false negatives 

among all models, making it the most effective for sepsis detection where recall is critical. 
XGBoost trained on the comprehensive dataset (Model A) showed the best 

overall balance between false positives and false negatives, making it the most reliable 
model across both classes. 

Support Vector Machine trained on the core dataset (Model B) had the lowest 
false positives but the highest false negatives, showing a conservative classification style 
that may miss sepsis cases. 

Across all models, performance improved when trained on the 
comprehensive dataset. Deep learning models performed best when both datasets were 
combined, as seen in the strong recall and true positive rate of Model C. 
  



  47 

Model Performance Metrics 

Table  7 Model Performance Comparison 

Model 
Accuracy Precision Recall 

F1-
Score 

Specificity AUROC 

Support Vector Machine 
(Model A) 

0.77 0.79 0.55 0.65 0.91 0.73 

Support Vector Machine 
(Model B) 

0.73 0.82 0.40 0.53 0.95 0.67 

Logistic Regression  
(Model A) 

0.78 0.75 0.64 0.69 0.86 0.75 

Logistic Regression 
(Model B) 

0.75 0.75 0.52 0.62 0.89 0.71 

Random Forest (Model A) 0.79 0.81 0.59 0.68 0.91 0.75 
Random Forest (Model B) 0.76 0.82 0.49 0.61 0.93 0.71 
XGBoost (Model A) 0.82 0.81 0.68 0.74 0.90 0.88 
XGBoost (Model B) 0.79 0.81 0.61 0.69 0.91 0.85 
Deep Learning (Model A) 0.76 0.71 0.65 0.67 0.83 0.83 
Deep Learning (Model B) 0.67 0.56 0.70 0.63 0.65 0.75 
Deep Learning (Model C) 0.74 0.66 0.70 0.68 0.77 0.82 

Performance Analysis 
Among all models, XGBoost trained on the comprehensive dataset (Model A) 

achieved the highest performance, with: 

• Accuracy: 0.82 

• F1-score: 0.74 

• AUROC: 0.88 
This indicates that XGBoost provides both high precision and recall, making 

it a strong candidate for sepsis prediction in practice. 
Deep Learning Model C, trained with combined datasets, achieved the 

highest recall (0.70) among all models, along with a strong AUROC of 0.82. This suggests 
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that while deep learning may produce more false positives, it is less likely to miss sepsis 
cases—a crucial consideration in clinical applications. 

The Support Vector Machine (Model B) and Random Forest (Model B) models 
trained on the core dataset had high specificity (0.95 and 0.93, respectively) but 
significantly lower recall (0.40 and 0.49), making them less suitable for detecting sepsis 
reliably. 

Logistic Regression showed moderate and consistent performance, with 
improvements seen in Model A over Model B, aligning with other models’ trends: the 
comprehensive dataset generally yields better overall results. 



 

CHAPTER 5 

SUMMARY DISCUSSION AND SUGGESTION 

Summary 
This study shows that both traditional machine learning and deep learning 

models can be effective for sepsis prediction, particularly when trained on rich, 
comprehensive datasets. Among all models evaluated, XGBoost and Deep Learning 
Model C emerged as the most promising. However, performance varies depending on 
the metric of interest—highlighting the need for careful selection based on the intended 
clinical use case. With further refinement and validation, these models have the potential 
to contribute meaningfully to early sepsis detection and improved patient outcomes in 
critical care settings. 

Interpretation of Results 
The experimental results demonstrate that predictive model performance varies 

significantly depending on both the algorithm used and the dataset on which it was 
trained. Overall, models trained on the comprehensive dataset consistently outperformed 
those trained on the core dataset, particularly in terms of recall and AUROC. 

Among traditional machine learning methods, XGBoost trained on the 
comprehensive dataset (Model A) achieved the best performance across nearly all 
metrics. With an accuracy of 0.82, F1-score of 0.74, and AUROC of 0.88, it offered a strong 
balance between sensitivity and specificity. 

In contrast, while Support Vector Machine (Model B) achieved the highest 
specificity (0.95), its recall was relatively low (0.40)—indicating a higher risk of missing 
sepsis cases. This underscores the importance of emphasizing recall and false negative 
rate (FNR) in clinical applications, where missing a sepsis diagnosis can have life-
threatening consequences. 

Deep learning models showed particularly strong performance in terms of recall. 
Notably, Model C, which utilized both datasets in a dual-input format, achieved the highest 
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recall (0.70) while maintaining a solid AUROC (0.82). This model also produced the lowest 
number of false negatives, which is a critical success indicator for early sepsis detection 
in intensive care settings. 

Dataset Influence on Model Performance 
The findings highlight the clear impact of dataset complexity on model accuracy 

and reliability. The comprehensive dataset, which includes a greater number of features 
and richer clinical information, enabled models to detect sepsis more accurately. All 
models trained on the comprehensive dataset showed consistent improvements in both 
recall and F1-score compared to their counterparts trained on the core dataset. 

Interestingly, XGBoost and deep learning models were able to effectively 
leverage the added complexity without overfitting. In contrast, simpler models like Support 
Vector Machine showed limited benefit or even performance degradation when exposed 
to the expanded feature set. 

The strong performance of Model C supports the hypothesis that combining 
feature-rich and high-coverage data inputs enhances a model’s ability to generalize 
across varied ICU patient profiles and hospital systems. 

Clinical Implications 
In a clinical context, predictive models for sepsis must prioritize early detection 

(high recall) without overwhelming clinicians with false alarms (high precision and 
specificity). From this perspective: 

Deep Learning Model C is ideal for deployment in early-warning systems, 
where detecting every possible sepsis case is critical—even at the cost of more false 
positives. 

XGBoost Model A may be more appropriate in settings that require more 
balanced decision-making, offering a strong trade-off between identifying sepsis and 
maintaining diagnostic accuracy. 

These findings suggest that hybrid deployment strategies could be beneficial—
such as using deep learning to trigger initial alerts and XGBoost as a secondary filter to 
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confirm and prioritize alerts. This approach may reduce alarm fatigue while maintaining 
clinical sensitivity. 

For successful deployment, models must be integrated into existing clinical 
infrastructure: 

Workflow Integration:  
The system should operate within electronic health records (EHRs) or ICU 

dashboards, running continuously in the background and generating risk scores in real 
time. Alerts should be triggered automatically when predefined risk thresholds are 
exceeded. 

Outcome Impact:  
Earlier detection enabled by these models could facilitate more timely 

interventions, reduce ICU length of stay, and potentially lower mortality rates. These 
outcomes should be evaluated in prospective studies or simulated clinical workflows. 

Regulatory Considerations:  
Clinical AI tools must meet regulatory standards such as those outlined by 

the FDA for Software as a Medical Device (SaMD). Requirements include rigorous external 
validation, explainability (e.g., SHAP or LIME support), and reproducibility before 
implementation in critical care settings. 

With thoughtful integration and validation, these predictive models have the 
potential to significantly enhance ICU triage and early sepsis recognition in real-world 
clinical environments. 
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Model Deployment Considerations 
To translate these predictive models into real-world clinical practice, several 

deployment strategies can be considered. The goal is to integrate early sepsis detection 
into existing hospital workflows without overburdening clinical staff or generating 
excessive false alarms. 

Integration with Electronic Health Records (EHRs): 
The model can be embedded within hospital EHR systems to run 

continuously in the background, analyzing incoming patient data in real-time. When 
predefined risk thresholds are exceeded, the system can automatically trigger alerts to 
notify physicians or nurses for further assessment. 

Tiered Alerting Systems: 
A tiered system could be implemented to manage alarm fatigue. For example, 

a deep learning model (e.g., Model C) can be used as a broad screening tool to maximize 
sensitivity, while XGBoost (Model A) can serve as a secondary filter to confirm and 
prioritize alerts, improving precision. 

Visualization and Explanation: 
To build clinician trust, visual explanations (e.g., SHAP plots, feature 

contributions) should accompany predictions, highlighting which features contributed 
most to the risk score. 

Threshold Customization by Unit: 
Risk score thresholds can be adjusted depending on the ICU type (e.g., 

surgical vs. medical) or patient population to align with department-specific practices and 
acceptable risk tolerances. 

Real-Time Simulation Testing: 
Before full implementation, the model should be tested in a live clinical 

simulation environment to evaluate real-time performance, response workflows, and any 
unintended consequences. 

By deploying the model with thoughtful integration and layered validation, 
hospitals can use it to enhance early sepsis detection, improve triage, and potentially 
reduce ICU mortality.  
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Limitations 
While the study provides promising results, several limitations must be 

acknowledged: 
Generalizability: 

All models were trained on data from the eICU Collaborative Research 
Database. Although this dataset is multicenter, it follows a standardized structure that may 
not reflect the variability found in real-world hospital systems. Differences in clinical 
workflows, documentation practices, and variable definitions could affect model 
performance when applied elsewhere. Without external validation, generalizability 
remains uncertain. 

Class Imbalance: 
Sepsis is relatively rare in the dataset, resulting in a class imbalance that can 

bias models toward the majority (non-sepsis) class. Although metrics like F1-score and 
AUROC were used and class weighting was applied during training, the imbalance was 
not fully mitigated and may impact sensitivity. 

Temporal Features: 
This study relied on statistical summaries (e.g., mean, median, max) rather 

than time-series data. This limits the model’s ability to capture the dynamic progression 
of clinical signs, which is often critical for early sepsis detection. Time-aware models could 
offer improved performance. 

Limited Interpretability: 
Especially in deep learning models, interpretability remains a challenge. 

Without model explanation tools such as SHAP or LIME, it can be difficult for clinicians to 
trust or understand how predictions are made, posing a barrier to clinical adoption. 

Lack of External Validation: 
The models have not been evaluated on independent external datasets (e.g., 

MIMIC-IV, HiRID). This limits confidence in their real-world applicability and regulatory 
readiness. External benchmarking is essential for confirming model robustness across 
diverse healthcare settings. 
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Recommendations for Future Work 
Based on the findings and limitations, several directions for future research are 

recommended: 
External Validation: 

Validate the trained models using independent ICU datasets such as MIMIC-
IV or HiRID. This step is critical for confirming model generalizability, identifying overfitting, 
and supporting regulatory and clinical acceptance across diverse healthcare 
environments. 

Interpretability and Explanation Tools: 
Apply model-agnostic interpretability frameworks such as SHAP (SHapley 

Additive exPlanations) or LIME to visualize how input features influence predictions. These 
tools are essential for clinician trust and explainable AI deployment in safety-critical 
settings. 

Model Ensembling: 
Investigate ensemble approaches that combine high-recall deep learning 

models with high-precision models like XGBoost. Such hybrid strategies can improve the 
overall diagnostic balance by reducing false negatives while maintaining specificity. 

Incorporation of Temporal Models: 
Explore sequence-based architectures like LSTM, GRU, or transformer 

models to better capture dynamic patient condition trajectories. This could enhance 
model sensitivity to subtle changes over time, particularly useful in early-stage sepsis 
detection. 

Real-Time Simulation and Clinical Integration: 
Deploy and test models in simulated clinical workflows to evaluate integration 

feasibility, response timing, and system latency. These simulations can uncover 
implementation challenges and refine alert strategies before real-world deployment. 
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Statistical Significance Testing: 
While comparative model metrics were reported (e.g., AUROC, F1-score), no 

formal statistical testing was performed to assess whether these differences were 
significant. Future studies should use paired statistical tests (e.g., Wilcoxon signed-rank 
or DeLong test) on cross-validation folds to confirm whether observed performance gaps 
are statistically meaningful. 
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Table  8 Missing Data Comparison  

No. Name 
Missing Data (Percentage) 

Sepsis Non-Sepsis Overall 

1 Temperature 1.78 3.66 3.44 
2 Heart Rate 5.33 4.85 4.9 
3 Non-Invasive BP 5.56 5.47 5.48 
4 Respiratory Rate 7.45 8.64 8.5 
5 O2 Saturation 17.25 14.03 14.41 
6 Glasgow coma score 22.66 23.62 23.51 
7 O2 L/% 59.33 63.69 63.18 
8 Pain Score/Goal 64.77 58.81 59.51 
9 Bedside Glucose 72.22 71.93 71.97 
10 O2 Admin Device 78.2 82.31 81.83 
11 Sedation Scale/Score/Goal 80.21 75.27 75.85 
12 Invasive BP 81.24 76.44 77 
13 CVP 82.27 91.79 90.68 
14 P.O. 86.36 88.02 87.83 
15 Delirium Scale/Score 86.81 85.34 85.51 
16 Best Motor Response 89.58 92.72 92.35 
17 Best Verbal Response 89.59 92.72 92.36 
18 Best Eye Response 91.24 95.12 94.67 
19 Pain Assessment 92.97 90.69 90.96 
20 Score (Glasgow Coma Scale) 93.67 96.5 96.17 
21 Fall Risk 93.76 94.24 94.19 
22 Respiratory Assessment 93.8 92.44 92.6 
23 CV/ PV Assessment 93.8 92.45 92.6 
24 Neurological Assessment 93.8 92.47 92.62 
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Table  8 (Continued) 

No. Name 
Missing Data (Percentage) 

Sepsis Non-Sepsis Overall 

25 Gastrointestinal Assessment 93.82 92.51 92.66 
26 Genitourinary Assessment 93.82 92.55 92.7 
27 Musculoskeletal Assessment 93.83 92.59 92.73 
28 Mental Status Assessment 93.84 92.55 92.7 
29 Integumentary Assessment 93.84 92.57 92.72 
30 Pulse Ox  Mode 93.85 92.51 92.67 
31 Eye, Ear, Nose, Throat Assessment 93.85 92.61 92.75 
32 Level of Assistance 93.92 92.71 92.85 
33 SEDATION SCORE 93.93 95.48 95.29 
34 Eye Opening 93.95 93 93.12 
35 Pulse 94.02 95.24 95.1 
36 Electrolyte Replacement 94.39 96.58 96.33 
37 Patient s Comfort/Function (Pain) GOAL At Rest 94.51 93.11 93.27 
38 Symptoms of Delirium Present 94.77 94.81 94.8 
39 Motor Response 95.09 94.15 94.26 
40 Verbal Response 95.09 94.15 94.26 
41 RASS 95.73 96.95 96.81 
42 MAP (mmHg) 95.74 95.45 95.48 
43 End Tidal CO2 96.13 96.61 96.56 
44 Arterial Line MAP (mmHg) 97.54 96.81 96.89 
45 ECG (secs) 98.17 97.96 97.98 
46 SpO2 98.21 98.22 98.22 
47 CVP (mmHg) 98.3 98.87 98.8 
48 Pain Present 98.38 97.26 97.39 
49 CI 98.87 96.32 96.61 
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Table  8 (Continued) 

No. Name 
Missing Data (Percentage) 

Sepsis Non-Sepsis Overall 

50 SV 99.32 98.23 98.36 
51 CO 99.35 97.54 97.75 
52 SVR 99.7 97.03 97.34 
53 SVO2 99.72 98.45 98.6 
54 PA 99.78 96.2 96.62 
55 SVRI 99.85 98.77 98.89 
56 PVR 99.88 99.36 99.42 
57 PAOP 99.91 99.62 99.66 
58 ICP 99.93 99.38 99.44 
59 PVRI 99.95 99.72 99.74 
60 CPP 99.96 99.54 99.59 
61 IAP 99.96 99.95 99.95 
62 ECMO 

 
100 

 

63 Impella 
 

100 
 

64 LVAD 
 

100 
 

 

 



 

VITA 
 

VITA 
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