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ABSTRACT 

Title TIME SERIES FORECAST OF CALL ARRIVALS USING 
MACHINE LEARNING METHODS 

Author PEERAWIT SURASAI 
Degree MASTER OF SCIENCE 
Academic Year 2023 
Thesis Advisor  Vera Sa-Ing , Ph.D. 

  
This study focuses on enhancing workforce management in the Citizen 

Service Request (CSR) Call Center dataset of the government of Cincinnati, Ohio, by 
improving the accuracy of call arrival forecasts. Recognizing the pivotal role of precise 
call arrival predictions in optimizing call center operations, this the study conducts 
experiments by utilizing a range of forecasting models, including statistical, machine 
learning, and neural network approaches. Feature engineering was proposed 
to broaden the scope of features for forecasting. The top-performing models are 
evaluated based on key metrics such as Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), Root Mean Square Error (RMSE), and R-Squared 
(R²) forecasting performance. The experimental results highlighted the comparative 
performance of various models, such as SARIMAX, Light Gradient Boosting Machine 
(Light GBM), Gradient Boosting Regressor (GBR), eXtreme Gradient Boosting 
(XGBoost), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and 
Gated Recurrent Unit (GRU). Among these, Support Vector Regression (SVR) leads in 
accuracy with an MAE of 25.13, an MAPE of 6.15%, an RMSE of 34.46, and an R² of 
90.56%. The features of abandon rate, answer speed, service level calls, and the 1st 
and 5th lags, were identified as the most importance feature in this research. These 
findings provide valuable insights for the improvement of workforce management 
strategies in call center operations, emphasizing the effectiveness of machine learning 
algorithms in achieving more accurate call arrival forecasts. 
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CHAPTER 1 
INTRODUCTION 

 

1.1 Background 
Workforce Management (WFM) is a strategic approach that organizations 

employ to optimize the efficiency and productivity of their workforce. It encompasses 
various key components, including workforce planning, scheduling, time and 
attendance management, task assignment, performance management, and training and 
development. Workforce planning involves forecasting future needs and identifying 
talent gaps, while scheduling ensures that the right employees, with the right skills, are 
in the right place at the right time. Time and attendance management tracks working 
hours and ensures compliance with labor regulations. Task assignment optimizes 
productivity by matching employees to tasks based on skills and availability. 
Performance management aligns individual performance with organizational goals, and 
training and development enhance workforce skills. Technology, such as workforce 
management software, plays a crucial role in automating and streamlining these 
processes. The overarching goal of Workforce Management is to create a dynamic and 
agile workforce that can adapt to changing business needs, ultimately contributing to 
enhanced operational performance and organizational success. 

A Call Center Operation is a specialized business unit designed to handle large 
volumes of incoming and outgoing customer communications, typically via telephone, 
email, or chat. These operations play a pivotal role in customer service, technical 
support, sales, and various other functions, serving as a primary point of contact 
between an organization and its customers. Call centers employ a team of agents who 
are trained to address customer inquiries, resolve issues, and provide assistance. 
Efficient call center operations involve workforce management for optimal staffing levels, 
robust training programs to equip agents with the necessary skills, and the 
implementation of technology, such as interactive voice response (IVR) systems and 



  

customer relationship management (CRM) software, to streamline processes. Key 
performance indicators like average handling time, first-call resolution, and customer 
satisfaction are often used to gauge and improve the effectiveness of call center 
operations. The success of a call center is not only measured by its ability to handle 
inquiries effectively but also by its contribution to customer loyalty and overall 
organizational success. 

Forecasting in a call center is a critical component of effective workforce 
management, aiming to predict and plan for future customer interaction volumes. It 
involves a comprehensive analysis of historical data, trends, and various factors 
influencing call volumes to make accurate predictions. By examining past call patterns 
and considering external variables such as marketing initiatives or economic factors, 
organizations can anticipate peak times and plan staffing levels accordingly. Regular 
monitoring and adjustment are essential for ensuring that forecasts remain aligned with 
real-time data and changing conditions. Accurate forecasting contributes to improved 
customer service by minimizing wait times, reducing the likelihood of abandoned calls, 
and enhancing overall operational efficiency. 

In this study, diverse groups of forecasting models have been selected to 
enhance workforce management without relying on expensive software. Traditional time 
series models, such as SARIMAX, leverage statistical methods to capture complex 
patterns. Machine learning models, including Support Vector Regression (SVR) and 
LightGBM, harness the power of algorithms to predict non-linear relationships and 
handle large datasets efficiently. Ensemble models like Gradient Boosting Regressor 
and XGBoost combine multiple weak learners to create robust predictive models. 
Additionally, deep learning models, namely Recurrent Neural Network (RNN), Gated 
Recurrent Unit (GRU), and Long Short-Term Memory (LSTM), specialize in capturing 
dependencies and patterns over time. Notably, these chosen models are informed by 
insights from a former study on Call Center Time Series Forecasting, adding practical 
relevance and empirical grounding to the experiment. By exploring this comprehensive 



  

range of forecasting techniques, the study aims to identify the most effective and cost-
efficient solution for optimizing workforce management in call center operations. 

In evaluating the performance of the selected forecasting models, this study 
employs several key metrics, namely Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2). These 
metrics serve as quantitative measures to assess the accuracy and reliability of the 
models in predicting workforce management outcomes. MAE represents the average 
magnitude of errors between predicted and actual values, providing insight into the 
forecasting precision. RMSE measures the square root of the average squared 
differences between predicted and actual values, offering a comprehensive assessment 
of prediction errors. MAPE calculates the average percentage difference between 
predicted and actual values, providing a relative measure of forecasting accuracy. R2, 
or the coefficient of determination, assesses the proportion of the variance in the 
dependent variable that is predictable from the independent variables, indicating the 
overall goodness of fit of the models. The utilization of these metrics enhances the 
study's ability to systematically evaluate and compare the forecasting performance of 
the diverse model groups in the context of call center workforce management. 

The structure of this paper is outlined as follows: Chapter 2 provides literature 
review on research related to forecasting in call centers using machine learning 
methods. The methodology employed is detailed in Chapter 3. Subsequently, Chapter 4 
presents the experimental results, while Chapter 5 engages in discussions and offers 
conclusions based on the findings. 
 

1.2 Objectives of the study 
The objectives of the study are as follows; 
1.2.1 To use machine learning approaches based on regression techniques to 

forecast the call volume. 
1.2.2 To study which feature influences call arrival predictions. 



  

1.2.3 To understand seasonality patterns and trends in call volume, which can 
assist businesses in modifying their staffing and resource allocation plans appropriately. 

1.2.4 To experiment how well various machine learning models perform when 
forecasting call volume. 

 

1.3 Benefits of the study 
The application of machine learning models for time series call volume 

forecasting has various advantages; 
1.3.1 Enhanced Accuracy: Effective machine learning models are able to 

examine vast volumes of data and spot patterns that human analysts might overlook. 
Predictions of call volumes may therefore be less likely to underestimate or exaggerate. 

1.3.2 Better Resource Planning: Accurate forecasting can help companies 
prepare for the amount of staff they will need, such as managers, call center agents, 
and other resources. This can save costs while maintaining service level agreements by 
avoiding either overstaffing or understaffing (SLAs). 

1.3.3 Improving Customer Satisfaction: Wait times can be reduced and first call 
resolution rates can be increased with the help of accurate forecasting. 

1.3.4 Reduced Costs: By accurately projecting call volumes, organizations can 
maximize staffing and other resources, reducing costs related to overstaffing or 
understaffing and decreasing the need for overtime. 

 

1.4 Scope and limitations 
1.4.1 Only daily data points are used to process the forecast. 
1.4.2 The available models include XGBoost, RNN, GRU, LSTM, SARIMAX, 

SVR, LightGBM, Gradient Boosting Regressor, and XGBoost. 
1.4.3 To avoid overfitting and enhance the generalization performance of RNNs, 

GRUs, and LSTMs, the available model architectures for RNNs, GRUs, and LSTMs are 
restricted to 32, 64, 128, 256, and 512 nodes, with a maximum epoch of 200 



  

1.4.4 The tree-based model and correlation analysis are the only methods used 
in this work to determine feature importance. 

1.5 Procedure of the research 
1.5.1 Examine the workforce management and customer service organizational 

structures, together with any pertinent metrics. 
1.5.2 Examine prior studies on forecasting, different time series models, 

machine learning, and their applications. 
1.5.3 Compile call volume data, including historical figures, seasonal patterns, 

and associated indicators. 
1.5.4 Examine the data to look for any trends or patterns in the number of calls 

made during the day, hour, month, and year. 
1.5.5 Verify that the data is appropriately formatted for machine learning and 

improve it by handling any outliers or missing values. 
1.5.6 Using the selected algorithm or algorithms and the ready data, create the 

machine learning models. 
1.5.7 Evaluate the performance of the machine learning model by comparing it 

to previous call volume and models. 
 
 
 
 
 
 
 
 



  

CHAPTER 2 
LITERATURE REVIEW 

2.1 Workforce Management and Call Center 
Workforce Management (WFM) is a process used by call centers to maximize 

agent productivity. Meeting service level agreements requires completing a variety of 
responsibilities, including call volume predictions, agent scheduling, performance 
monitoring, and real-time changes. A well-implemented WFM process can lead to 
increased customer satisfaction, decreased operating costs, and increased agent 
productivity  (Koole & Li, 2023).  This article gives an overview of workforce planning for 
call centers and highlights its significance for call center operations optimization. 
Workforce planning and its essential elements—forecasting, scheduling, and real-time 
management—are defined at the outset of the article. 

The significance of precise forecasting for call center workforce planning and 
gives a summary of popular forecasting techniques like regression and time series 
analysis. Along with emphasizing the value of high-quality data for forecasting, the 
article offers advice on how to make data better. 

 

Figure  1 WFM process (Koole & Li, 2023) 

A call center's performance can be evaluated using a number of critical 
metrics. The following list of frequently used metrics includes definitions for each. 
(Takwi, 2021) 



  

2.1.1 Service Level: The proportion of calls that are returned within a 
predetermined window of time. A service level of 80/20, for instance, indicates that 80% 
of calls are returned in less than 20 seconds. Since service level has a direct impact on 
customer satisfaction, it is an important metric. 

2.1.2 Average Handle Time (AHT): The mean duration of an agent's call 
handling, encompassing talk, hold, and any post-call tasks. AHT is a crucial indicator of 
agent productivity and efficiency. 

Talk Time: The amount of time an agent actively converses with a customer, 
answering their questions, resolving their problems, or giving them information.  

Hold Time: The duration of a customer's call, if any, while they are placed on 
hold. 

Wrap Time: The period of time following the conclusion of the call in which the 
agent finishes up tasks like updating files, recording the discussion, or getting ready for 
the next call. 

2.1.3 Abandonment Rate: The proportion of calls that clients hang up on before 
getting through to a representative. Excessive rates of abandonment may indicate 
extended wait periods or inadequate staffing. 

2.1.4 First Call Resolution (FCR): The proportion of calls that get resolved 
without the need for escalation or follow-up calls on the first try. FCR is a crucial 
indicator for gauging client happiness and lowering call volumes. 

2.1.5 Utilization rate : The percentage of time that agent is actually having a 
consersation with client, inputting the details of calls, and coordinations.  

2.1.6 Average Speed of Answer (ASA): The average response time of an agent 
when they receive a call. An important metric for evaluating wait times and customer 
satisfaction is ASA. 

2.1.7 Call Quality: is a metric that is subjectively used to evaluate how well 
customers and agents interact. Call quality can be measured by listening to calls to 
make sure that scripts and procedures are followed, or by using customer satisfaction 
surveys. 



  

Effective workforce management is crucial for contact centers to maintain 
effectiveness and provide high quality customer service. In this context accurate call 
volume forecasting plays a role and time series models have proven to be tools, for this 
purpose. By analyzing data on call volumes and identifying patterns and trends these 
models can generate precise forecasts of future call volumes. This empowers contact 
centers to optimize their staffing levels and allocate resources efficiently. 

One of the advantages of time series models is their ability to handle stationary 
and non-linear patterns in call volume data. This is especially crucial for contact centers 
because call arrivals can fluctuate over time owing to seasonality, holidays, and other 
special events. By recognizing these patterns and incorporating them into their 
forecasts time series models provide contact centers with a accurate understanding of 
call volume trends. Consequently, they can make informed decisions regarding staffing 
and resource allocation. 

Depending on the type of data, the research question, and the analytical 
approach used, several steps in the data analysis process may be followed. 
Nonetheless, in general, the following primary processes can be separated out of data 
analysis: 

Data Collection: The initial stage of the framework is gathering pertinent 
information from multiple sources. These data may originate from a number of sources, 
including databases, sensors, web crawlers, and social media platforms. They may also 
be structured or unstructured. 

Data Preprocessing: To make sure the data is clear, consistent, and prepared 
for analysis, preprocessing is required after it has been gathered. This entails doing 
things like eliminating outliers, filling in the blanks, and eliminating duplicate records. 

Data Exploration: Examining the data to discover more about its characteristics 
and to search for any trends or connections is the next step. Tasks that may be involved 
include statistical analysis, exploratory data analysis, and data visualization. 

Feature Selection: The next stage is to choose the most pertinent features or 
variables for the analysis after the data has been thoroughly examined. This entails 



  

choosing the features that have the greatest predictive power and are most pertinent to 
the current issue. 

Model Selection: The next stage after feature selection is to choose a suitable 
model or algorithm for data analysis. One could use a deep learning model, a machine 
learning algorithm, or a statistical model. 

Training: To discover the connections between the input features and the 
output variable, the selected model needs to be trained using the available data. 

Evaluation: After the model has been trained, it must be tested on an alternative 
validation dataset in order to assess its performance and make any required parameter 
modifications. 

2.2 Time Series and Machine Learning Models 
Forecasting is a practice in industries to make predictions about future trends 

and outcomes based on historical data. A collection of data on a variable that are 
logged over an extended period of time is called a time series. What distinguishes time 
series data from other forms of data is the temporal order of the data that are gathered 
at intervals. The various machine learning have been applied to model the in time series 
analysis to forecast call arrivals. 

2.2.1 Autoregressive Integrated Moving Average (ARIMA) 
ARIMA (Box & Jenkins, 1976) was initially proposed by Box and Jenkins in 

1976. This model has been extensively employed for forecasting purposes over the 
years. It incorporates autoregressive differencing and moving components to capture 
the dependencies and trends within a time series. 

The model is made up of three major parts: autoregression (AR), integration 
(I), and moving average (MA). ARIMA  as following formula: 

 

𝑌𝑡 = 𝑐 + ∅1𝑌𝑡−1 +  ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝜃1𝜀𝑡−1 +  𝜃2𝜀𝑡−2

+ ⋯ + 𝜃𝑞𝜀𝑡−𝑞 +  𝜀𝑡  

 
Here's what each term represents: 



  

• 𝑌𝑡 : Observation at time t. 
• 𝑐: A constant term (intercept). 
• ∅1, ∅2,…, ∅𝑝: It considers the relationship between the observation and its 

preceding p observations, as part of the component. 
• 𝜃1, 𝜃2,…, 𝜃𝑞: The moving average component involves parameters 𝜃𝑞 that 

contribute to modeling aspects related to averaging. These show an association 
between the observation's error term and the q prior error terms. 

• 𝜀𝑡  : he error term at time t is denoted as t. 
Three elements can be used to describe the model. 
 

Component (p) or Autoregressive (AR) 

  𝑍𝑡  = 𝑐 + ∅1𝑍𝑡−1 +  ∅2𝑍𝑡−2 + ⋯ + ∅𝑝𝑍𝑡−𝑝  
When 𝑍𝑡 represents the observation at time t it signifies that the current 

value of “available” is modeled based on its values. The number of values considered 
for modeling the current value is determined by the autoregression order denoted as 
(p). 

Component (d) or Integrated (I): The d is a representation of the amount of 
differencing needed to make the time series stationary. If d =1, the 1st difference in the 
series ((𝑍1 −  𝑍𝑡−1) is used. If d =2, take the second difference, and so on.  

Component (q) or Moving Average (MA): The modeling of the data error 
term is the main goal of this component. 

𝑍𝑡 = 𝑐 +  𝜃1𝜀𝑡−1 +  𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 +  𝜀𝑡  

The discrepancy between the variable's actual and expected values as 
determined by the autoregressive and integration components is represented by the 
error term. The error term is represented by the moving average component as a linear 
combination of previous error terms. The order of the moving average (q) dictates how 
many prior error terms were used for modeling the present error term. 

With the use of ARIMA models, one can analyze time series data and determine 
the proper values for p, d, and q based on particular data characteristics. Values for p, 
d, and q are frequently determined through parameter tuning. 



  

2.2.2 Seasonal ARIMA (SARIMA) 
SARIMA, or Seasonal Autoregressive Integrated Moving Average, is used to 

make predictions, about values based on observations and their associated errors. Its 
goal is to determine which set of parameters, taking into account both short- and long-
term trends and fluctuations, most effectively captures the inherent patterns within time 
series data: 

 

𝑌𝑡 = 𝑐 + ∅1𝑌𝑡−1 +  ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝜃1𝜀𝑡−1 +  𝜃2𝜀𝑡−2

+ ⋯ + 𝜃𝑞𝜀𝑡−𝑞 +  𝜀𝑡 + 
 
            + ∅1

𝑠𝑌𝑡−𝑠 +  ∅1
𝑠𝑌𝑡−2𝑠 + ⋯ +   ∅𝑃

𝑠 𝑌𝑡−𝑃𝑠 +  𝜃1
𝑠𝜀𝑡−1𝑠

+  𝜃2
𝑠𝜀𝑡−2𝑠 + ⋯ +  𝜃𝑄

𝑠 𝜀𝑡−𝑄𝑠 +  𝜀𝑡−𝑠  
 

• The non-seasonal model parameters p, d, and q stand for the moving 
average, differencing, and autoregressive components. 

• All three parameters—P, D, and Q—are comparable excluding the 
seasonal component. 

• s stands for the seasonal cycle's duration. 

• ∅1
𝑠, ∅2

𝑠 , … , ∅𝑃
𝑠  are the seasonal autoregressive parameters 

representing the relationship between 𝑌𝑡 and its lagged values at 
seasonality s. 

•  𝜀𝑡−𝑠, 𝜀𝑡−2𝑠, … ,  𝜀𝑡−𝑄𝑠  are the white noise error terms at seasonal 
lags. 

• 𝜃1
𝑠, 𝜃2

𝑠, … , 𝜃𝑄
𝑠    are the seasonal moving average parameters 

representing the relationship between 𝑌𝑡 and the white noise error terms 
at seasonal lags. 

The SARIMA model predicts future values based on previous observations 
and their errors. The objective is to determine the optimal set of these parameters that 



  

accounts for both short- and long-term trends while capturing the inherent patterns in 
the time series data. 

For time series data with recurring patterns, like sales data that exhibits a 
seasonal trend all year long, SARIMA makes forecasting easier. By choosing the right 
set of parameters depending on the features of the particular dataset under study, the 
model's efficacy is ascertained. 

There is research on the application of SARIMA models to forecast 
emergency services call volume (Tunnicliffe Wilson, 2016). The authors collected call 
volume data from an Indian metropolitan area over a ten-year period. They then used 
several SARIMA models to forecast call volume for the following year. Researchers have 
explored the application of SARIMA models to predicting call volumes for emergency 
services. Their findings indicate that SA RIMA models provide predictions for call 
volume successfully capturing how holidays and other events impact phone usage. 

 
2.2.3 Seasonal ARIMA (SARIMAX)  
SARIMAX, an extension of SARIMA known as Seasonal AutoRegressive 

Integrated Moving Average with Exogenous Factors," allows for incorporating variables 
into the modeling process. The factors listed here are examples of exogenous variables 
that could have an impact on the time series under study. Three elements that are 
comparable to SARIMA make up the SARIMAX model; 

Seasonal Component (S): Like SARIMA, the three components of the 
SARIMAX model take seasonality in the data into consideration. This method involves 
recognizing and reproducing repeating cycles or patterns across time. 

Components of AutoRegressive (AR) and Moving Average (MA): There are 
two components, auto-regressive (AR) and moving average (MA) that represent the 
dependencies in a time series. Whereas the MA component models the relationship 
between the observation and the residual errors of earlier observations, the AR 
component illustrates the relationship between the observation and its prior values. 



  

Exogenous Variables (X): In addition to this SARIMA includes a feature 
called variables (X). These are external variables that have the potential to affect the 
time series but are not included in it. For example, variables in sales forecasting could 
be things like holidays or advertising budget. These variables improve the model's 
ability to describe and capture changes in the time series. 

The formula used to include variables, in the model is as follows: This 
formula shows how each variable impacts the time series. 

 

𝑌𝑡 = 𝑐 + ∅1𝑌𝑡−1 +  ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝜃1𝜀𝑡−1 +  𝜃2𝜀𝑡−2

+ ⋯ + 𝜃𝑞𝜀𝑡−𝑞 +  𝜀𝑡 + 

            + ∅1
𝑠𝑌𝑡−𝑠 +  ∅1

𝑠𝑌𝑡−2𝑠 + ⋯ +   ∅𝑃
𝑠 𝑌𝑡−𝑃𝑠 +  𝜃1

𝑠𝜀𝑡−1𝑠

+  𝜃2
𝑠𝜀𝑡−2𝑠 + ⋯ +  𝜃𝑄

𝑠 𝜀𝑡−𝑄𝑠 +  𝜀𝑡−𝑠 +   𝛽1𝑋1,𝑡

+  𝛽2𝑋2,𝑡 + ⋯ +  𝛽𝑘𝑋𝑘,𝑡    
 
The differenced and stationary time series are represented by Y_t, and the 

exogenous variables are represented by 𝑋1,𝑡 , 𝑋2,𝑡, … , 𝑋𝑘,𝑡. The coefficients 𝛽1 +  𝛽2 +

⋯ + 𝛽𝑘   , which represent the impact of each exogenous variable on the time series, are 
estimated during the model fitting process. 

SARIMAX model is represented mathematically as SARIMAX (p,d,q) 
(P,D,Q)s, where P,D,Q represents seasonal AR, differencing, and MA orders with a 
seasonality of ss, and p,d,q represents non-seasonal AR, differencing, and MA orders. 

In essence, SARIMAX is an effective time series forecasting tool that 
produces a more thorough and precise prediction by taking into account both the 
temporal structure of the data and the possible influence of outside factors. Determining 
appropriate values for the model's parameters and identifying pertinent exogenous 
variables present a challenge. 

 
2.2.4 Support Vector Regression (SVR) 

A machine learning technique called Support Vector Regression (SVR) was 
created especially for handling regression tasks involving complex and non-linear 



  

relationships between the target variable and the input features. In contrast to linear 
regression, support vector regression (SVR) uses a kernel trick to map the input features 
into a higher-dimensional space, which makes it possible to identify the best hyperplane 
for accurately representing the underlying relationships (see Figure 2). 

 

 

Figure  2 Visualization of hyperplane of SVR (Singh et al., 2020) 

Important components of SVR include selecting the kernel function (such as 
linear, polynomial, sigmoid, or radial basis function) and putting in place an epsilon 
insensitive loss function. This loss function does not severely penalize SVR when there is 
a degree of deviation from the predicted value. As a result, SVR shows resilience to 
noise and anomalies in the data. The following briefly describes the essential elements 
of SVR: 

Kernel Function : SVR creates a dimensional space from input features by 
applying a kernel function. Linear, polynomial, sigmoid, and Radial Basis Function (RBF) 
are typical examples of kernel functions. The kind of data being used and the intricacy 
of the relationship being modeled are two factors that factor into choosing the right 
kernel function. 



  

Loss Function (Epsilon-Insensitive Loss): There is no penalty for a certain 
amount of deviation (epsilon) from the forecasted value in this loss function. It aids in 
managing data and anomalies. 

The goal of SVR is to identify a hyperplane that maximizes the margin inside 
an epsilon insensitive tube while not perfectly fitting the data. The goal is to reduce loss 
as much as possible while permitting some error. Optimizing the weight vector is 
required for this. 

 
2.2.5 Light GBM (Light Gradient Boosting Machine) 
A model called Light Gradient Boosting Machine, or Light GBM, is intended 

to effectively train big datasets. It is designed especially for gradient boosting and is a 
member of the learning algorithm family. Light GBM differs from other tree-growing 
methods in that it follows a leaf-based approach rather than a depth-first one. This 
method lowers the model's complexity. 

Light GBM converts data into features for time series forecasting, such as 
lag values and external influences. The next step involves building a series of decision 
trees iteratively, with each one intended to correct errors made by the group. This 
methodology enables Light GBM to effectively capture patterns and handle non-linear 
relationships in time series data. The popular parameters in this model are following; 

num_leaves: This parameter controls the maximum number of leaves in one 
tree. Increasing num_leaves tend to make the model more complex, allowing it to 
capture more intricate patterns in the data. However, a higher value also increases the 
risk of overfitting. 

learning_rate: Learning rate determines the step size at each iteration while 
moving toward a minimum of the loss function. A smaller learning rate requires more 
iterations but can lead to better convergence. It is a crucial hyperparameter that 
balances the trade-off between model training time and accuracy. 

n_estimators: This parameter sets the number of boosting rounds or the 
number of trees to be built. Increasing n_estimators generally improve model 



  

performance, but there is a point beyond which further trees may not significantly 
contribute to better results. However, more trees also mean longer training times. 

reg_alpha: Regularization term on weights (L1 regularization). It adds a 
penalty term for the complexity of the model. Higher values of reg_alpha increase the 
regularization strength, helping to prevent overfitting by discouraging the model from 
assigning excessive importance to any single feature. 

Light GBM's ability to handle large datasets is one of its key advantages, 
which makes it especially useful in situations involving sizable amounts of time series 
data. Its flexibility in handling missing values and support for distributed computing 
further improve its scalability and speed. 

Light GBM performance is greatly influenced by hyperparameter tuning, 
with parameters such as learning rate, maximum tree depth, and number of leaves 
having a significant impact on the model's accuracy. (Saksonita et al., 2022) cites Light 
GBM as a reliable and efficient option for semiconductor cleanroom forecasting. The 
study emphasizes Light GBM's effectiveness in predicting outlier particles in this 
specific environment, proving its suitability as a reliable forecasting tool. 

 
2.2.6 Gradient Boosting Regression (GBR)  
Another popular ensemble learning method for time series forecasting is 

gradient boosting regression (GBR). Usually, the process starts with establishing a 
prediction, which is the target variable's average. Then, by training them using the 
negative gradient of the loss functions predictions for the current model, the algorithm 
creates learners frequently using shallow decision trees. To account for the differences 
between the predicted values, residuals are computed, and the weak learners 
prediction is modified and incorporated into the current model. This process is 
repeated, with each weak learner concentrating on fixing mistakes in the previously 
constructed ensemble. 

In time series forecasting tasks, GBR is utilized as a prediction technique for 
observations. It entails segmenting the data into target values, which stand in for 



  

upcoming observations, and features like lagged values, or external factors. When it 
comes to identifying non-linear relationships in data and effectively managing missing 
information, GBR is especially useful in preparing data for forecasting. Nevertheless, 
optimizing GBR performance necessitates meticulous adjustment of hyperparameters, 
particularly when handling extensive datasets that might require substantial processing 
power. 

Table 1 Comparative summary highlighting the key differences among Light GBM, 
Gradient Boosting Regressor, and XGBoost. 

Feature Light GBM Gradient Boosting Regressor XGBoost 

Algorithm Type Gradient Boosting Gradient Boosting Gradient Boosting 
Tree Building Approach Leaf-wise (Best-First) Level-wise (Depth-First) Depth-wise (Depth-First) 
Handling Categorical 

Data 
Native Support Requires Encoding Requires Encoding 

Parallel Training Yes, supports parallel and 
distributed training 

No Yes, supports parallel training 

Memory Usage Lower memory 
consumption 

Higher memory consumption Moderate memory consumption 

Regularization Regularization is available 
(lambda and gamma) 

Regularization options (alpha 
and lambda) 

Regularization options (alpha 
and lambda) 

Handling Missing Values Native support for missing 
values 

Requires pre-processing for 
missing values 

Native support for missing 
values 

Speed Generally faster due to 
leaf-wise approach 

Slower due to level-wise 
approach 

Comparable speed, optimized 
for efficiency 

Scalability Highly scalable, efficient 
on large datasets 

Less scalable compared to 
Light GBM 

Scalable, efficient for large 
datasets 

Use Cases Efficient for large datasets, 
handles categorical 

features well 

Broad use cases, suitable for 
regression problems 

Broad use cases, suitable for 
classification and regression 

problems 

 
2.2.7 XGBoost (eXtreme Gradient Boosting) 
When it comes to tasks like regression, classification, and even time series 

forecasting, XGBoost is a highly effective and popular machine learning algorithm. In 
order to produce a final prediction that is both dependable and accurate, XGBoost 



  

functions as a learning technique that integrates the predictions from several weak 
models, most often decision trees. 

The secret to the algorithms' performance is their capacity to manage 
relationships in the data while retaining a high degree of predictive accuracy. Boost 
converts data into features that include lag values and pertinent external factors in the 
context of time series forecasting. After that, a series of decision trees are built, each 
tree repairing the mistakes made by the previous ensemble. 

XGBoost includes practical features that add to its efficacy. One feature is 
regularization, which discourages the use of excessively complicated models and so 
prevents overfitting. The algorithm also provides a loss function so that users can 
customize the model to fit their own goals. XGBoost is known for its ability to handle 
missing values effectively and identify patterns in time series data. Optimizing Boosts 
performance requires parameter tuning, where factors like learning rate, tree depth, and 
boosting rounds significantly impact the models' accuracy. Due to its versatility and 
reliability Boost is a good choice for time series forecasting tasks as it delivers precise 
predictions across various scenarios. 

The comparison among Light GBM, Gradient Boosting Regressor, and 
XGBoost in Table 1 reveals distinctive features that make each algorithm suitable for 
specific scenarios. Light GBM, utilizing a leaf-wise tree-building approach, stands out 
for its lower memory consumption and efficient handling of large datasets, making it an 
excellent choice for scenarios with extensive data. Its native support for categorical data 
and parallel/distributed training further enhances its scalability. On the other hand, 
Gradient Boosting Regressor, with its level-wise tree-building approach, may be 
comparatively slower and less memory-efficient but is versatile across regression 
problems. XGBoost, striking a balance between the two, combines efficient memory 
usage with native support for missing values, making it suitable for various use cases, 
including both classification and regression tasks. The choice among these algorithms 
ultimately depends on the specific characteristics of the dataset and the nature of the 
prediction problem at hand. 



  

2.2.8 Recurrent Neural Network (RNN): 
Artificial neural networks that process sequential data by preserving an 

internal state or memory are known as recurrent neural networks, or RNNs. In contrast to 
feedforward neural networks, which process input data in a single pass, RNNs are 
capable of handling sequences of arbitrary length and maintaining information over 
time. 

Two representations of a recurrent neural network (RNN) are shown in 
Figure 3; the left representation is an unrolled version, while the right representation is a 
loop. Within the network, the closed-loop representation indicates the recurrence of 
connections. The unrolled version, on the other hand, shows how data moves 
sequentially through various time steps. Each step's input is denoted by "x," the 
network's internal state by "S," and the weights of the connections are defined by the 
matrices "V," "W," and "U". The final output of the network is represented by the letter "o." 
Understanding how information is logically and sequentially processed over a series of 
time steps is made easier with the help of this unfolding visualization. 

 

Figure  3  A recurrent neural network's (RNN) two versions: the unrolled 
version on the right and the closed-loop version on the left (Baldon, 2019) 

According to (Werbos, 1988), Paul Werbos is regarded as the father of 
backpropagation through time (BPTT). His research is regarded as the most thorough 
source of information on recurrent neural networks (RNNs). An additional noteworthy 
study by (Graves & Schmidhuber, 2005) makes a case for the efficacy of RNNs in 



  

speech recognition. Since then, RNNs have been used in many different fields, 
including natural language processing, picture captioning, and time series forecasting. 

RNNs handle time series forecasting as though it were a series of times-
corresponding data points. Every step of the sequence is processed separately by the 
model, which updates its state based on the information gathered from previous steps 
and the current input. 

Nevertheless, the vanishing gradient problem presents a difficulty for 
conventional RNNs. This issue limits their capacity to accurately identify long-term 
dependencies. Advanced RNNs have been developed, such as the Gated Recurrent 
Unit (GRU) and Long Short Term Memory (LSTM), to get around this restriction. These 
versions overcome the limitations of RNNs and improve their ability to identify and 
leverage long-term dependencies. 

 
2.2.9 GRU (Gated Recurrent Unit)  
The GRU, a type of network (RNN) is widely used for tasks like predicting 

call arrival volume in sequence modeling and forecasting. It's a variant of RNN that 
addresses the vanishing gradient problem through gating techniques. In Figure 4 ( on 
the right) you can see the model architecture. An overview of the GRU model's elements 
is provided below: 

• Hidden State: The GRU stores data from previous time steps in a hidden state 
that corresponds to the model's memory. 

• Update Gate: The update gate controls how much old data should be. How 
much new information should be incorporated into the hidden state. 

• Reset Gate: The reset gate determines how much of the state to ignore when 
calculating the current hidden state. It allows the reset or deletion of data. 

• Candidate Activation: At each time step the candidate activation calculates a 
hidden state by combining information from the hidden state and the current 
input. 



  

• Final Hidden State: is determined by using the update gate to blend the hidden 
state with the candidate activation. This represents updated memory or 
information, for that time step. 

 

 

Figure  4 LSTM and GRU model architecture (Phi, 2018) 

GRU models have shown performance in tasks like predicting call arrival 
volume in time series forecasting. One practical application of GRU models is optimizing 
call center staffing based on accurate call arrival predictions. By ensuring the number of 
agents during peak times wait times can be reduced. Customer satisfaction can be 
increased. 

 
2.2.10 LSTM (Long Short-Term Memory)  
Long-term dependencies in sequential data, like time series data, can be 

captured using long-term support graph networks, or LSTMs. They are appropriate for 
modeling patterns because they have the capacity to selectively remember or forget 
information over extended periods of time. In this research paper a new type of neural 
network (RNN) architecture was proposed by (Hochreiter & Schmidhuber, 1997). This 
innovative architecture incorporated memory cells and gating mechanisms, which 



  

addressed the problem of vanishing gradients commonly encountered in RNNs. These 
elements were introduced first, and they made LSTM (long-short-term memory) RNNs 
possible. The LSTM architecture consists of four elements as depicted in Figure 4 on the 
left: 

• Forget gate: The forget gate controls the flow of information from the 
previous hidden state to the current hidden state. It determines which 
past information is still relevant and should be retained while filtering out 
data. 

• Input gate: The input gate controls how much new information is 
incorporated into the cell state from the current input. It decides which 
aspects of the current input are relevant and should be incorporated into 
the cell state. 

• Cell state update: To update the cell state, the cell state update 
combines information from the forget gate, input gate, and current input. 
The cell state is the LSTM's core memory component, and it maintains 
long-term dependencies in sequential data. 

• Output gate: At the current time step, the output gate determines which 
information from the cell state is used to produce the output. It 
determines how much information about the cell state is exposed to the 
network's subsequent layers. 

A deep learning model is proposed by (Kanthanathan et al., 2020) to 
forecast the workload in contact centers. A recurrent neural network (RNN) trained on 
call data serves as the foundation for the model. The RNN can learn pattern of time in 
call data and then use this information to predict future workload. The suggested model 
was tested using call data from a large contact center. The model achieved MAE of 1.2 
calls per hour when compared to other forecasting models. According to the 
researchers, the proposed approach is an invaluable resource for contact centers 
looking to improve their prediction abilities. The model is accurate, helpful, and 
adaptable to various data sets. 



  

2.3 Time Series Cross-Validation 
To overcome the particular difficulties that time-ordered datasets provide in 

machine learning evaluation, TimeSeriesSplit is a kind of time series cross-validation. 
Time series cross-validation is an important way to handle the challenges of 

time-ordered data in machine learning. It uses methods like TimeSeriesSplit to make 
sure we thoroughly evaluate the model. Unlike regular cross-validation that randomly 
splits data, time series cross-validation, especially with TimeSeriesSplit, carefully divides 
the dataset into parts one after the other as shown in Figure 5. In this method, each part 
is used for both training and testing in different rounds. The training part includes past 
data, and the testing part has data from later times. For example, if we have 100 pieces 
of data and set n_splits to 5, the model goes through training and evaluation five times. 
In each round, it moves step by step through the time sequence, keeping the order 
intact. 

 

Figure  5 Time Series Cross Validation 

This method is useful in time series analysis because it keeps the model from 
learning about upcoming data while it is being trained. This makes it possible to 
evaluate its predictive performance in a realistic manner. Sci Kit Learn's TimeSeriesSplit 
library implementation allows users to define the number of splits (folds) according to 
the unique properties of their time series data. Time series data must be cross-validated 
in order to accurately assess a model's ability to generalize over time to hitherto 



  

unidentified patterns and identify potential issues such as overfitting to specific trends in 
the data. 

2.4 Error Metrics 
In order to assess the accuracy of forecasting models, error metrics are 

necessary. These metrics quantify the variation between the expected and actual values 
in a time series. In time series analysis, a model's accuracy is determined by how well it 
can uncover hidden patterns and trends within the data. Several error metrics are used 
to assess a forecasting model's performance. Among the most often used error metrics 
are mean absolute error (MAPE), mean squared error (MSE), root mean square error 
(RMSE), and mean absolute percentage error (MAPE). 

𝑁 represents the total amount of value in the time series, 
𝐴𝑖 represents the actual value at time i, 
𝐹𝑖 represents the forecasted value at time i, 

Σ is represents the total of the squared discrepancies between the actual and 
anticipated values, and | 𝑖 = 1 to N | denotes the summation over all values of 𝑖 from 1 
to N. 

 
2.4.1 Mean Absolute Error (MAE) 

One popular error metric used in time series forecasting is mean absolute 
error (MAE). the time series' average absolute difference between the values of the 
forecast (𝐹𝑖)  and actual (𝐴𝑖)  values. Divide the total number of samples (N) by the 
absolute differences for each time point to get the MAE. The average size of the model's 
prediction error is measured by the MAE, which is expressed in the same units as the 
time series data. In general, a model with a lower MAE value is more dependable, 
whereas a larger MAE number indicates less accuracy. 

 

𝑀𝐴𝐸 =
1

𝑁
∑ | 𝐴𝑖 − 𝐹𝑖  |

𝑁

𝑖=1
 

 



  

2.4.2 Mean Squared Error (MSE) 
Another statistic that's frequently used in time series forecasting is mean 

squared error (MSE). The formula for each value in a time series represents the average 
of the squared differences between anticipated (𝐹𝑖) and actual (𝐴𝑖)  values. To calculate 
MSE, square the difference between each time point, add the squared differences, and 
then divide the total number of samples (N). 

Large errors or data outliers are more likely to occur in the MSE than in the 
MAE since it squares the errors. Expressed in time series data squared units, the MSE 
calculates the average scale of the squared errors in the model's forecasts. An MSE of 
less than or equal to a model's accuracy indicates that it is more accurate.The formula 
for Mean Squared Error (MSE) is as follows: 

𝑀𝑆𝐸 =  
1

𝑁
∑𝑖=1

𝑁 (𝐴𝑖 −  𝐹𝑖)2 

 
 
2.4.3 Root Mean Squared Error (RMSE) 

In time series forecasting, another commonly used error metric is the Root 
Mean Squared Error (RMSE). This equation represents a square root of the average of 
the squared differences between the anticipated (𝐹𝑖)  and actual (𝐴𝑖) values. To 
compute RMSE, you square the difference for each time point, sum up these squared 
differences, take the average, and then calculate the square root of that average. Larger 
errors are penalized more than smaller errors by the RMSE since the differences are 
squared. The Root Mean Squared Error (RMSE) can be computed using the formula 
below: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑𝑖=1

𝑁 (𝐴𝑖 −  𝐹𝑖)2 

 



  

2.4.4 Mean Absolute Percentage Error (MAPE) 
In time series forecasting, mean absolute percentage error (MAPE) is 

another popular error metric. The average percentage difference in a time series 
between anticipated (𝐹𝑖)  and actual (𝐴𝑖) values. To compute MAPE, you calculate the 
absolute percentage difference for each time point, sum up these absolute percentage 
differences, and then divide by the total number of samples (N). The final value is 
expressed as a percentage by multiplying it by 100. A useful metric for comparing 
forecasting model performance across different time series, particularly when the actual 
values' magnitudes differ significantly, is the mean absolute percentage error (MAPE) of 
the model. This formula can be used to determine MAPE: 

𝑀𝐴𝑃𝐸 =  
100

𝑁
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖
|

𝑁

𝑖=1
 

 
Note that the MAPE is less appropriate for time series with large seasonal 

changes or outliers since it tends to overstate large errors and can produce endless or 
undefined results when the actual values are zero. 

 
2.4.5 R-squared 

The coefficient of determination, also known as R-squared (R2), expresses 
how closely the forecasts made by the model match the actual values. The following 
formula is used to calculate it: 

𝑅2 = 1 −  
∑ (𝐴𝑖 − 𝐹𝑖)2𝑁

𝑖=1

∑ (𝐴𝑖 − 𝐴)2𝑁
𝑖=1

 

 
Where 𝐴  denotes the average of the actual values. 𝑅2  is a number 

between 0 and 1, with 0 indicating that the model explains no data variability and 1 
indicating that it fits perfectly. It indicates how well the independent variable predicts the 
dependent variable's variance, with greater values suggesting greater model efficiency. 



  

2.5 Related Research 
2.5.1 Review of ML and AutoML Solutions to Forecast Time-Series Data 

(Alsharef et al., 2022) 
Automated machine learning (AutoML) and machine learning (ML) 

techniques are commonly used to forecast time-series data. This paper looks closely at 
these methods. Both conventional machine learning models and AutoML systems—
which help with model selection and hyperparameter tuning—are examined in this 
study. 

In summary, the importance of analyzing time-series data has grown 
significantly in the last ten years due to the increase in large datasets in various fields. 
The review discusses different methods for time-series modeling, focusing on linear 
modeling, deep learning (DL), and Automated Machine Learning (AutoML). Linear 
models are simple but may not be very accurate in predicting outcomes. DL requires 
expertise and patience in designing models and optimizing parameters. AutoML, which 
can automatically identify and optimize machine learning models, shows promise but is 
still evolving for time-series applications. The article introduces various methods, 
including AutoML frameworks, for predicting time-series data, offering a comparison. 
The study acknowledges limitations, such as the lack of an empirical study on the 
effectiveness of different methods. The next step involves conducting experiments to 
compare different machine learning and AutoML techniques to address the challenges 
in modeling time-series data effectively. 

 
2.5.2 Study on the Continuous Quality Improvement of Telecommunication 

Call Centers Based on Data Mining (Shu-guang et al., 2007) 
The study focuses on using data mining techniques to continuously improve 

the caliber of contact centers for telecom services. The study offers a model that 
identifies the crucial elements affecting call center quality through feature selection, data 
pretreatment, and model construction. Data from a telecom provider is used to validate 
the model. 



  

The paper introduces service quality metrics, explores continuous 
improvement models using data mining, and focuses on specific areas like Interactive 
Voice Response (IVR) efficiency and agent performance metrics. It also presents a 
model for analyzing and controlling Average Speed of Answer (ASA) using data mining 
and Statistical Process Control (SPC). The results demonstrate that the suggested 
framework is capable of identifying and improving the significant factors influencing call 
center quality. Telecommunications companies can use data mining techniques to 
continuously improve their call center operations, according to the study. 

 
2.5.3 Time Series Forecast of Call Volume in Call Centre using Statistical 

and Machine Learning Methods (Baldon, 2019)  
This study explores the field of time series analysis with a particular 

emphasis on call load time series modeling and forecasting in contact centers. A time 
series is a set of data points collected sequentially, examined for temporal correlations, 
and modeled to identify trends and seasonality. In real-world settings, predicting future 
values is essential, particularly in contact centers where staff scheduling optimization 
depends on managing call load. For forecasting, contact centers have typically used 
basic statistical models or handwritten forecasts. The thesis presents machine learning 
as an alternative to the widely used SARIMA model in call centers. Specifically, it 
provides LSTM and Seasonal ANN models. The Normalized Mean Squared Error 
(NMSE) and the Symmetric Mean Absolute Percentage Error (SMAPE), which evaluates 
the models' level of accuracy. Three datasets from Teleopti are used in the studies that 
make up this study. The findings show that SARIMA outperforms Seasonal ANN and 
LSTM with less data points for daily-scale forecasting on all three datasets. On the other 
hand, Seasonal ANN and LSTM perform better on an hourly basis and demonstrate 
resilience across a 160-point forecasting horizon. However, SARIMA shows no 
relationship at all between the quantity of data points and model quality, whereas 
Seasonal ANN and LSTM both show improvement as sample size increases. This 
investigation highlights how machine learning can improve call load forecasting, 



  

especially when it comes to handling the complex temporal patterns found in call center 
data. 

2.5.4 Forecasting Call and Chat Volumes at Online Helplines for Mental 
Health (de Boer et al., 2023) 

The aim of this study is to examine how online mental health helplines can 
predict the total number of calls and chats they will receive by using statistical 
forecasting models. Over the course of a year, the researchers gathered data from a 
comprehensive online helpline, and then they used a variety of forecasting models to 
predict the volume of calls and chats that will be received in the next month. In this 
study, forecasting methods including exponential smoothing, seasonal ARIMA, ARIMA, 
and simple linear regression were applied. Forecasting model performance is assessed 
using the MAPE. The gap between expected and actual values is represented by the 
percentage value known as MAPE. The seasonal ARIMA model is superior to all others 
in predicting. The model achieved a MAPE of less than 10%, significantly lower than the 
LSTM's MAPE, which exceeded 15%. As indicated by the study, statistical forecasting 
models can effectively predict the volume of calls and online chats for mental health 
helplines. This predictive capability enables improved planning for staffing levels and 
resource allocation in helpline operations. 

 
 
 
 
 
 
 
 
 

 
 



  

CHAPTER 3  
METHODOLOGY 

This chapter describes the methodology and data analysis tools used in this 
study on the following topics: 

1. Data understanding 
2. Exploratory data analysis and visualization 
3. ACF and PACF interpretation 
4. Data preparation and feature engineering 
5. Data pre-processing 
6. Statistical and Machine Learning System 
7. Feature Importance 

3.1 Data Understanding 
(Services, 2023) contains information on Citizen Service Request (CSR) call 

center calls in Cincinnati, Ohio. The dataset includes information on the caller's type of 
service request, the time and date of the call, the location of the service request for help, 
and the request's status. 

 

Figure  6 Monthly call trend of the Citizen Service Request (CSR) dataset from 
2014 – 2021 



  

Table 2 shows 856,405 rows representing 23 data points from 2015 to 2022. 
The data is updated daily and is able to filtered by date, location, status, and service 
request type.  Figure 6 depicts the monthly trend to demonstrate the fluctuation. The 
dataset presents useful insights into the types of issues that Cincinnati citizens face, as 
well as the level of service offered by the CSR call center. 

Table 2 Description of the Citizen Service Request (CSR) 

Column Name Description Filters 

AGENTDISPID The disposition of the call and how it was completed 
when an agent has completed their call 

- 

CALLSTARTDT Date and time when the incoming call occurred - 

CALLACTIONID A code for internal actions that occurred as the call 
completed 

- 

CALLACTIONREASONID A code providing additional details for the 
CallActionId for the internal actions that occurred 

- 

CALLID Unique to a leg of the call. This along with SeqNum 
together form a primary Key. 

- 

CALLTYPEID The code for if a call is incoming or outgoing. 1 = 
and incoming regular call and 2 = outbound virtual 
call 

  

CONNCLEARDT The date and time when the call was completed - 

DNIS The number that the caller dialed when it was picked 
up at the DPS call center 

- 

QUEUEENDDT The date and time when the caller entered the 
queue (i.e. the call started) 

- 

SEQNUM The unique ID for each incoming call. - 

 



  

Table 2 (Continued) 

Column Name Description Filters 

SERVICE_ID The service id code identifies the recipient of the 
call. 106 is an incoming DPS call with Call Type = 
Regular Call. 107 is an incoming DPS call with Call 
Type = Virtual Call. 

- 

STATION The physical station that the representative 
answered the call. 

- 

WORKGROUP_ID Internal designations for what group the taker of a 
call belongs to. All DPS calls will be code 19. 

- 

WRAPENDDT The date and time stamp when the representative 
has completed their after-call work. 

- 

QUEUESTARTDT The date and time when the caller entered the 
queue (i.e. the caller is on hold) 

- 

PREVIEWENDDT The date and time stamp of the preview getting 
accepted by the call representative. 

- 

PREVIEWSTARTDT The date and time stamp of the preview appearing 
on the call representative’s computer. 

- 

ANSWERDT If Call Type = Virtual Call, then this field is the 
date/time stamp of when the customer answered the 
return call from DPS. Otherwise this field will be null. 

- 

ANSWER_SPEED_SECS The total time in seconds it took for the call 
representative to answer the phone. This field is only 
applicable for regular calls. 

- 

TALK_TIME_SECS The total amount of time in seconds the call lasted. IF Call Type = Regular Call THEN 
QueueEndDt - QueueStartDt, 

ELSEIF Call Type = Virtual Call 
THEN ConnClearDt - Answerdt 

WRAP_TIME_SECS Wrap time is the time spent by a representative 
doing after call work once a call has been 
completed. This field is the total time in seconds that 
a representative did after call work. 

WrapEndDt - ConnClearDt 

 

 

 



  

Table 2 (Continued) 

Column Name Description Filters 

SERVICE_LEVEL This Y/N field identifies if the call representative 
answered the phone call in 93 seconds or less. The 3 
seconds accounts for any recorded messages that 
are given before the call enters the queue. DPS has a 
self-chosen key performance indicator that 90% of 
calls should be answered within 90 seconds. 

DPS has a self-chosen key 
performance indicator that 90% 

of calls should be answered 
within 90 seconds. 

ABANDONED An abandoned call is a call that is ended before any 
conversation has occurred. This field is a Y/N 
attribute on if an incoming call to the DPS call center 
was abandoned. 

This is found using the 
calculation: IF USER_ID is NULL 

AND CallActionId = 5 AND 
AnswerSpeed <> 0 THEN 'Y' 

ELSE 'N'. 

CALL_TYPE There are two possible incoming call types -regular 
call and virtual call. When an individual call into the 
DPS call center, they are given an option to wait on 
hold for a representative or they can choose to have 
a call center representative call them back on their 
turn in the queue. A regular call is classified as a call 
where the individual waited on hold while a virtual call 
is classified as a call where the individual chose to 
have the call center call them back. 

While a virtual call is technically 
an outbound call, the data is 
reflecting information from an 
original incoming call that was 

returned and therefore counts as 
an incoming call. 

UNIQUE_ID SeqNum + Callid   

ANSWERED This attribute shows whether the call was answered. If 
the call = "Not Answered" that 
means there was a technical error and the 
call was dropped before a representative 
could answer the phone. 

  

 
 
 
 
 



  

3.2 Exploratory data analysis and visualization 
 

 

Figure  7 Total call per day visualization 

From 2014 to 2022, the department's call arrivals follow a yearly pattern. Every 
July or Summer, the volume was higher than in other months. The number of calls 
ranged from 86 to 710, with an overall average of 403. Missing values are linearly 
interpolated in 2018. In early 2020, there was a drop trend, which could have been 
caused by a factor affecting call arrivals at the time. 

 

 

Figure  8 Boxplot of total call per year before outliers handling 

The total calls in summer 2015, the second year of service, are highly fluctuated 
from the original values of over 1,400 calls. Figure 8 shows significant outlier calls from 
2015 to 2020, which can be handled by setting minimum and maximum bounds, as well 



  

as zero values, which are repeated every weekend and holiday. Figure 9 depicts the 
results of the histogram of total daily calls. 

 

 

Figure  9 Total daily call histogram after outliers handling 

3.3 Data Preparation and Feature Engineering 
Accurate and efficient time series model development involves stages such as 

data preparation and feature engineering. Because they set the stage for the models' 
success, these actions are crucial. 

The process of preparing data for analysis entails cleaning and preprocessing 
it. Duplicate and missing value removal, handling outliers, and smoothing or altering the 
data as needed are all included in this. Because utilizing data during training can 
produce erroneous findings, preparation of the data is crucial. 

The process of choosing and creating features that will be used to train the 
model is known as feature engineering. Finding patterns and trends in the data, as well 
as choosing relevant time series components including trend, seasonality, and cyclical 
patterns, are all part of this process. It also entails extracting features from sources that 
could have an impact on the target variable. Feature engineering plays a critical role in 
developing a model that enables precise future value prediction based on historical 
data. 

• Data Cleaning: Model accuracy can be harmed by missing values, 
outliers, and other anomalies in time series data. As a result, cleaning 
the data before feeding it to the model is critical. Data smoothing, outlier 



  

identification and removal, and imputation of missing values are a few 
popular methods for data cleaning. 

• Data Normalization: To compare and combine time series effectively it 
is often necessary to normalize the data. This involves converting the 
data into a scale such, as min-max scaling or  z score normalization. 

• Time Feature: retrieving data on the day of the week, month, year, etc. 
Timestamps on data can be used to find trends and seasonality-related 
patterns in the data. 

• Lag Features: are model features that are derived from prior time series 
observations. For example, we can utilize the values at times t-1, t-2, t-3, 
and so on as features if we wish to forecast the time series value at time 
t. 

• Rolling Statistics: Rolling statistics are all about computing summary 
statistics, such mean or standard deviation, over a sliding window of 
observations. This can help to capture data seasonality and trends. 

• Fourier Transform: By decomposing a time series into its frequency 
components the Fourier Transform enables us to recognize cyclic 
patterns in data and eliminate any unwanted noise. 

• Wavelet Transform: An additional technique for dissecting a time series 
into its basic frequency components is the wavelet transform. It works 
well when examining non-stationary time series that show variations in 
variance or mean over time. 

• Recurrent Neural Networks (RNNs): specifically built to handle 
sequential data, such as time series, are called RNNs.. Their ability to 
grasp relationships between past and future values makes them 
valuable, for both data preparation and feature engineering purposes. 



  

3.4 Data Preprocessing 
Data preprocessing is a stage in getting a time series data set ready for 

modeling. In time series modeling, the objective of data preprocessing is to produce a 
valuable, well-organized data collection that can be utilized to improve forecasting 
models that are exact and accurate. The following are a few typical techniques for 
preparing data used in time series prediction: 

• Resampling: The time series data needs to be converted to a certain time 
period, like weekly, monthly, annual, or daily. Data analysis can be made 
easier and noise in the data can be reduced via resampling. 

• Encoding: This involves translating category variables into numerical 
values that the model can use. One-hot encoding and label encoding are 
two popular encoding methods. 

• Dimensionality Reduction: This entails maintaining the most important 
features in the dataset while minimizing the number of features. Two 
methods for lowering dimensionality are Singular Value Decomposition 
(SVD) and Principal Component Analysis (PCA). 

• Missing Values: This covers handling missing data. Imputation and 
deletion are two common methods. 

The ARIMA and SARIMA models for time series forecasting require extra data 
processing processes in addition to cleaning, preprocessing, and time series 
decomposition. The method includes checking for stationarity to make sure the data is 
stationary, differencing the data if needed, evaluating the ACF and PACF diagrams for 
the ARIMA model's order, fitting the SARIMA or ARIMA model to the data, and utilizing 
diagnosis to test the model's performance. 

Unlike other forecasting methods, deep learning models require specific data 
preparation. This involves formatting the data for the model, splitting it into training and 
testing sets, and then designing and training a deep learning model with appropriate 
parameters. Finally, the model's performance is evaluated on the testing data. Notably, 



  

the specific data processing steps and techniques used will vary depending on the 
individual forecasting problem and the chosen model. 

 

3.5 ACF and PACF 
 

 

Figure  10 Example of ACF and PACF plot 

Identifying the ideal ARIMA model for time series forecasting involves analyzing 
two key graphs: ACF (Autocorrelation Function) and PACF (Partial Autocorrelation 
Function) in Figure 10. ACF reveals the correlation between a time series and its past 
values, while PACF shows the correlation after considering past correlations. Significant 
patterns in these graphs help identify the order of the ARIMA model: 

• Sharp initial spike followed by gradual decline in ACF: Indicates the 
need for differencing of order k. 

• PACF shows a spike at lag k and then no more spikes, indicating an AR 
model of order k. 

• Gradual decline in both ACF and PACF: Points towards an ARMA 
model. 

• Spikes at the same lag in both graphs: Suggests a seasonal model like 
SARIMA. 



  

Interpreting ACF and PACF requires expertise and involves considering factors 
beyond just the graphs, such as domain knowledge, data availability, and model fit, to 
ultimately choose the best ARIMA model order. 

3.6 Feature Importance 
The unveiling the most impactful features in a time series is crucial to 

understanding its underlying forces and making informed decisions. This process, 
known as feature importance, helps identify and rank the variables that contribute most 
significantly to the target variable's variation over time. Here are some key methods: 

3.6.1 Correlation Analysis: Throughout the time series, investigate the 
relationships between other features and the target feature. More influence over the 
result is indicated by a stronger correlation. 

3.6.2 Lag Analysis: Analyze how each feature and the target variable relate to 
one another over various time periods. This can show important temporal trends and 
unearth delayed effects. 

3.6.3 Decomposition: Break down the time series into its constituent parts, 
including seasonality, trend, and residual noise. Examine how each feature contributes 
to these elements to learn about its relationship to particular patterns. 

3.6.4 Feature Importance Algorithms: Use algorithms for machine learning such 
as gradient boosting models, random forests, and decision trees. With regard to 
estimating the target variable, these algorithms automatically evaluate each feature's 
value, offering insightful information on how important it is. 

A measure known as "Gain," reflecting the contribution of each feature to the 
model's performance, is employed by XGBoost to evaluate feature significance in the 
context of time series forecasting. The Gain represents the increase in model 
performance resulting from splits based on a specific feature and is computed for each 
feature during the construction of decision trees within the ensemble. The accumulated 
gains across all trees provide an overall assessment of each feature's influence. 
Features with higher aggregated gains are considered more influential in determining 
the model's performance. XGBoost enables users to examine these scores, facilitating 



  

the identification of crucial features in the forecasting model. This feature importance 
analysis proves valuable for tasks like feature selection, model interpretation, and 
comprehending the factors impacting the model's predictions. Users can customize 
parameters to tailor feature importance estimates to specific evaluation metrics or 
importance types. 

3.6.5 Recursive Feature Elimination (RFE): RFE is an effective strategy that 
gradually eliminates the least important elements from a model until the target number is 
retained. A more concentrated and effective study is made possible by this approach, 
which aids in identifying the most significant aspects in a time series. 

3.6.6 Domain Knowledge: Integrating domain knowledge plays a key role in 
interpreting the significance of specific features. Experts familiar with the specific 
domain can offer valuable insights into the real-world significance of various variables, 
enriching the understanding of the time series data. 

3.7 Machine Learning 
The data flow in this study is depicted in Figure 12 and describes as follows; 

• Pre-processing involved transforming raw data from 856,430 calls into a 
daily format. The series was refined by trimming both the initial and 
concluding segments to eliminate outliers. The resulting dataset spans from 
July 31, 2014, to October 14, 2022, covering a total of 2,135 days, with 
holidays excluded as depicted in Figure 12 of the dataframe. 

• Daily summaries of call data are generated by calculating the total number of 

calls, abandoned calls, and answered calls, as well as the average service 

level. Additionally, average values for relevant metrics like answer speed, 

talk time, and wrap time are computed. Finally, abandonment and answer 

rates are derived from the respective call counts. 

• Data for weekdays (Monday to Friday) is used for this analysis, as days with 
no calls (holidays and days off) are excluded. 



  

 

Figure  11 The data flow diagram of the experiment. 

 

Figure  12 Preprocessed dataframe. 



  

• Normalize or Standardize: Ensure all data shares the same scale for 
consistent analysis. 

• Leverage Time Series Generator: Utilize a dedicated time series generator 
tool to efficiently split the data into training (70%) and testing (30%) sets. 

• Employ the 30% testing set to train and modify the data for further analysis 
across different algorithms. 

• Time Series Cross-Validation: Implement time series cross-validation with 
three folds (n_splits = 3) to assess model performance on various data splits. 

• Performance Evaluation: Utilize diverse metrics such as MAE, RMSE, MAPE, 
R² to thoroughly evaluate the performance of different models. 

• Continuous Improvement: Iterate through feature engineering and 
hyperparameter tuning to optimize model performance and uncover better 
options. 
 

3.7.1 Training set and Test set 
The dataset is split into two sets: training (70%) and testing (30%). The 

training set, encompassing 1,708 days, is used to build a prediction model, while the 
test set, consisting of 427 days, serves to evaluate the model's performance. 

 
3.7.2 Data decomposition 

 Data decomposition, a cornerstone of data analysis, delves into the heart 
of a dataset by meticulously separating it into its fundamental components: trend, 
seasonality, and residual noise. This process unveils hidden patterns and grants us a 
deeper understanding of the data's temporal variations. Analysts can gain valuable 
insights by isolating distinct elements, leading to more accurate modeling and 
predictions. The original data is represented by the top graph in Figure 13. In the 
second graph, we can see a downward trend. The pattern did not clearly show 
seasonality. 

 



  

 

Figure  13 Yearly (365 days) decomposition 

3.8 Feature Engineering 
This research leverages time and lag features to grant the model the power to 

discern the intricate relationships between TOTAL_CALL and other features, ultimately 
revealing the key factors that contribute to accurate prediction. These features capture 
the essential temporal patterns and dependencies, significantly enhancing the model's 
grasp of the data and its predictive capabilities. 

 
3.8.1 Time Features 

To improve the model's forecasting capabilities, particularly for time series 
data like call volume or service performance, various time features are incorporated into 
the dataset. These features capture specific temporal aspects of each data entry, 
enabling the model to learn and leverage temporal patterns for improved prediction. 

• Temporal Features: DAY_OF_WEEK, MONTH_DAY, YEAR_DAY, WEEK_YEAR 
:  These features directly extracted from the 'DATE' column provide contextual 
information about the day of the week, month, year, and week of the year for 
each entry. 



  

• Seasonal Features: Binary indicators represent the seasons (FALL, SPRING, 
SUMMER, WINTER). Each feature is assigned 1 if the entry falls within the 
corresponding season and 0 otherwise. 

• Monthly Features: Similarly, binary features represent each month of the year 
(JAN, FEB, ..., DEC). An entry receives 1 for its respective month and 0 for other 
months. 

• Yearly Features: YEAR_2014, YEAR_2015, ..., YEAR_2022: features differentiate 
the specific year of each entry (YEAR_2014, YEAR_2015, ..., YEAR_2022). The 
feature corresponding to the entry's year is set to 1 and others to 0. 

• Day of the Week Features: Each day of the week is represented by a binary 
feature (MONDAY, TUESDAY, ..., SUNDAY). The feature relevant to the entry's 
day is assigned 1 and the rest 0. 
 
3.8.2 Lag Features 

By identifying temporal connections and past patterns in the data, lag 
characteristics are essential to time series research, such as anticipating total call 
volumes. The goal variable ('TOTAL_CALL') at different time intervals is represented by 
these properties, which enable the model to detect trends, seasonality, and other 
temporal patterns that are essential for precise forecasting. 

• Lag1 to Lag5: These features capture 5 days of seasonality (Monday to Friday) 
and aim to learn any potential weekly patterns affecting call volume. 

• Lag10 to Lag30: This range of lag features (2 to 6 weeks) investigates the 
influence of longer-term historical data on future call volumes. 

• TOTAL_CALL_LAG_1 to TOTAL_CALL_LAG_30: These features represent the 
specific lag observations created for 'TOTAL_CALL', providing the model with 
historical information at different timeframes. 

Figure 14 visually depicts all features used in the analysis, offering a 
comprehensive overview of the data utilized for model training. These lag features, 
combined with other temporal features, create a complete dataset tailored to each 



  

model, ultimately enhancing its ability to learn complex temporal relationships and 
generate accurate predictions for future call volumes. 

 

3.9 Feature Selection 
Finding the most informative features that most accurately represent the 

target variable is the goal of feature selection. Through the removal of superfluous and 
noisy information, the model is improved and more accurate predictions are produced. 
Effective feature selection is especially important for lowering total data complexity and 
avoiding models that require a lot of processing power. Statistical time series models 
lack the ability to manage feature selection on their own, but other algorithms, such 
Artificial Neural Networks, do. As part of the preprocessing stage, a rudimentary feature 
selection mechanism has already been put in place. Curse of Dimensionality: When 
datasets have too many sparse features, a phenomenon known as the Curse of 
Dimensionality is mitigated by dropping one of the created dummy features after one-
hot encoding Category variables. 

 
3.9.1 Correlation Analysis 

The link between each external feature and the target variable is examined 
using correlation analysis in order to choose the feature. More significant features can 
be those having a greater correlation. Fifteen qualities are linked to TOTAL_CALL. For 
15 features, correlated features with a value greater than 0.2 are selected in Figure 15. 

 
3.9.2 Tree-Based Models 

Gini Importance, also known as Mean Gini Decrease, quantifies the overall 
impact of a feature on the purity of all nodes across an ensemble of decision trees. This 
provides valuable insights into the relative importance of each feature for classification. 



  

 

 

Figure  14 Correlation of total 48 features 

 

 

 

 

 



  

 

 

Figure  15 Correlated features selection 

 
 
 
 
 
 
 
 
 
 
 



  

CHAPTER 4  
EXPERIMENTAL RESULTS 

We will present the experimental results of the time series forecasting models 
discussed in Chapter 3 in this chapter. We will compare the performance of the various 
models on the dataset and discuss each model's studies. 

4.1 Statistical Test 
In time series analysis, uncovering a dataset's inherent stationarity is 

crucial. Two key tools, the Augmented Dickey-Fuller (ADF) test and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test, play a vital role in this process. 

The Augmented Dickey-Fuller (ADF) : This test investigates at the presence of 
a "unit root," a sign of non-stationarity, in a time series. Potential stationarity is suggested 
by a rejected null hypothesis of non-stationarity, highlighting the significance of 
differencing in achieving stationarity. 

KPSS Test (Kwiatkowski-Phillips-Schmidt-Shin Test) : investigates the null 
hypothesis of stationarity around a deterministic trend, building on the findings of the 
ADF test. This reveals possible long-term trends or structural fractures within the data by 
assisting in the determination of whether a series is stationary around a trend. 

The ADF and KPSS tests complement one another. The ADF test is especially 
useful for determining the need for differencing, whereas the KPSS test is more 
concerned with detecting stationarity around a trend. Analysts can make informed 
decisions about appropriate transformations and modes thanks to their combined 
application. 

 

Figure  16 Augmented Dickey-Fuller test results. 



  

There is substantial evidence for stationarity in Figure 16, with an ADF Statistic 
of -4.43 and a p-value of 0.00026. Critical values of -3.43 (1%), -2.86 (5%), and -2.57 
(10%) at various significance levels further corroborate this. This strongly rejects the null 
hypothesis of non-stationarity because the p-value is extremely low and the ADF Statistic 
is substantially smaller than these critical values. 

As a result, the test's definitive result verifies that the time series is stationary. 
This suggests that stationarity was probably achieved without the need for differencing, 
which is important information for further study and modeling. By using this knowledge, 
models that are more precise and efficient can be created, improving time series data 
predictions and understanding. 

 

 

Figure  17 KPSS test results 

The KPSS test employed here yielded a statistic of approximately 0.10, a p-
value of 0.1, and 27 lags. Notably, the critical values for different significance levels 
indicate a range of acceptable values: 0.347 (10%), 0.463 (5%), 0.574 (2.5%), and 
0.739 (1%). 

Given that the p-value is quite large (0.1) and the KPSS Statistic is below all of 
these key values, the null hypothesis of stationarity around a deterministic trend is not 
rejected. As a result, the test result supports the first hypothesis by confirming the 
stationarity of the time series. This result suggests that the time series shows signs of 
stationarity and may possibly point to an underlying trend. This important realization 
facilitates further research and model development by revealing details about the 



  

structural stability of the data and opening up a deeper knowledge of its long-term 
behavior. 

4.2 SARIMAX 
4.2.1 ACF and PACF results 

Through the examination of the ACF and PACF plots, analysts can obtain 
significant knowledge for determining the proper AR and MA orders (incorporating 
seasonal and non-seasonal elements) as well as pertinent exogenous variables that 
enhance the SARIMAX model's prediction ability. 

 

 

Figure  18 ACF and PACF of original data 

Figure 18 reveals crucial information about the underlying patterns and 
trends within our time series data. Notably, the ACF and PACF plots exhibit a "long 
memory" effect, meaning the autocorrelation values at successive lags decay slower 
than expected for a purely random process. This suggests that first-order differencing is 
necessary to remove the trend-related structures and achieve stationarity. Furthermore, 
the presence of prominent spikes at every fifth lag in both the ACF and PACF plots 
signifies a clear seasonal pattern with an order of 5. Identifying this periodicity is crucial 
for selecting suitable parameters in time series models, particularly SARIMA. This 



  

valuable insight sheds light on the data's temporal characteristics, paving the way for 
future modeling and analysis efforts to be tailored accordingly. 

Following the application of first-order differencing and a seasonal 
difference of order 5, the ACF and PACF plots in Figure 19 offer further insights into 
potential model parameters. The ACF plot specifically reveals autocorrelation potentially 
present at the first or second lag. This suggests that AR(1, 2, or 4) and MA(1, 2, or 4) 
models might be appropriate choices for further investigation. 

 

 

Figure  19 ACF and PACF of 1st differenced data 

4.2.2 Model Identification and Diagnostics 
The Akaike Information Criterion (AIC) is a statistical measure used for 

model selection, comparing the goodness of fit of different models. In the context of 
SARIMAX modeling, the AIC is particularly valuable for choosing the model parameters. 

To optimize the forecasting model's parameters, a targeted randomized 
approach will be implemented. This strategy involves systematically evaluating 50 
different combinations of AR and MA order settings within a limited range. This efficient 
approach aims to expedite the experimentation process while still comprehensively 
exploring a relevant parameter space. By focusing on the combinations with the lowest 
AIC (Akaike Information Criterion), the optimal configuration for accurate time series 



  

forecasting will be identified. This adaptable strategy balances efficiency with 
effectiveness, ultimately aiming to maximize the model's predictive performance. 

SARIMAX(2, 1, 1) x (0, 0, 0, 5), The study employed a SARIMAX(2, 1, 1) x 
(0, 0, 0, 5) model to predict the TOTAL_CALL variable, incorporating both an exogenous 
variable and lagged values. Analyzing the results sheds light on the model's overall 
effectiveness and the individual impact of each feature. Several metrics like the log 
likelihood (-10840.863) and information criteria (including AIC) suggest a reasonable fit 
between the model and the observed data. Additionally, the coefficients associated with 
specific variables like ABANDONED_RATE, ANSWER_SPEED_SECS, and 
SERVICE_LEVEL provide valuable information about their predictive power for call 
volume. It's crucial to consider the statistical significance of these coefficients, indicated 
by their p-values. This assessment helps determine the reliability of each feature in 
explaining the variability observed in the TOTAL_CALL variable. By examining these 
various aspects, the study paints a comprehensive picture of the model's performance 
and offers valuable insights into the key factors influencing call volume. 

Figure 20 delves into the world of the model's residuals, examining their 
characteristics through various diagnostic measures. The Ljung-Box test for serial 
correlation reveals no significant dependence between the residuals, as evidenced by 
its low p-values. However, a closer look at the skewness and kurtosis values indicates a 
slight rightward skew and heavier tails than a normal distribution. While these deviations 
are not alarming, they warrant further consideration and potential refinement to enhance 
the model's overall robustness. 



  

 

Figure  20 Exogenous correlated features and model summary of SARIMAX 
(2,1,1) (0,0,0,5) results 

 

Figure  21 Correlated Features : Train and Test Actual vs Prediction plot of 
SARIMAX (2,1,1) (0,0,0,5) results 



  

 

Figure  22 Correlated Features : Test Actual vs Prediction plot of SARIMAX 
(2,1,1) (0,0,0,5) 

 

 

Figure  23 Full Features : Train and Test Actual vs Prediction plot of SARIMAX 
(2,1,1) (0,0,0,5) results 



  

 

Figure  24  Full Features : Test Actual vs Prediction plot of SARIMAX (2,1,1) 
(0,0,0,5) 

4.2.3 Feature Importance of SARIMAX 

The analysis of correlated features identified several significant contributors 
to call volume. Higher abandonment rates (ABANDONED_RATE, x1), faster answer 
speeds (ANSWER_SPEED_SECS, x4), and improved service levels (SERVICE_LEVEL) 
all exhibited strong positive correlations with increased call volume, as reflected by their 
high coefficients and low p-values (Figure 20). Additionally, seasonal and temporal 
factors, such as summer seasonality (SUMMER), Mondays (MONDAY), and lagged call 
counts (TOTAL_CALL_LAG_1, TOTAL_CALL_LAG_5, TOTAL_CALL_LAG_20), also 
demonstrated high correlations and statistical significance, indicating their influence on 
call volume patterns. 

In the full dataset analysis, however, a slightly different set of features 
emerged as significant contributors. Among the features with high coefficients and 
statistical significance in Figure 25 were ABANDONED_RATE (x1), 
ANSWER_SPEED_SECS (x4), TALK_TIME_SECS (x5), WINTER (x13), WEEK_OF_YEAR 
(x14), MONDAY (x15), and TOTAL_CALL_LAG_1 (x40). This suggests that certain 



  

characteristics, particularly those associated with call metrics, seasonality, and day of 
the week, consistently and significantly influence call volume across various analyses. 
These insights are crucial for interpreting the SARIMAX model's predictions and refining 
the model further to achieve optimal performance. 

These specific features, namely 'ABANDONED_RATE', 
'ANSWER_SPEED_SECS', 'SEVICE_LEVEL', 'MONDAY', and 'TOTAL_CALL_LAG_1', 
were chosen on purpose for further experimentation. The inclusion of 'SERVICE_LEVEL' 
in the selected features is crucial. Excluding it resulted in a notable decrease in overall 
model performance, with the R-Squared metric dropping by 22%. Examining the 
model's behavior with respect to this collection of five features—more especially, how 
well they correlate with the objective variable—is the aim. The purpose of this focused 
selection is to assess the predictive power of the SARIMAX model and ascertain 
whether a smaller set of characteristics chosen by correlation can produce predictions 
that are both accurate and successful for the provided time series data. 

Key metrics for SARIMAX models broken down into three feature categories 
are provided in Table 3. The "Correlated Feature" (graphs in Figures 21–22) and 
"Selected Feature" (graphs in Figures 23–24) models exhibit lower MAE, MSE, MAPE, 
and RMSE, as well as higher R-Squared, in comparison to the "Full Dataset" model 
(graphs in Figures 26–27), suggesting that feature selection may have an impact on 
model performance. This implies that the predictive power of the SARIMAX model may 
be significantly impacted by feature selection. 

Table 3 Summary metrics on SARIMAX model with different features. 

ML Algorithms MAE MSE MAPE RMSE R-
Squared 

SARIMAX (Correlated Feature) 32.11 1764.97 8.31% 41.91 84.57% 
SARIMAX (Full dataset) 57.73 6136.18 15.69% 68.80 54.81% 
SARIMAX (Selected Feature) 33.21 1860.02 8.73% 43.03 84.01% 



  

    

  

Figure  25 Exogenous full features and model summary of SARIMAX (2,1,1) 
(0,0,0,5) results 



  

 

Figure  26 Selected Features : Train and Test Actual vs Prediction plot of 
SARIMAX (2,1,1) (0,0,0,5) results 

 

Figure  27 Selected Features : Test Actual vs Prediction plot of SARIMAX 
(2,1,1) (0,0,0,5) 



  

4.3 Support Vector Regression (SVR) 
Support Vector Regression (SVR) emerges as a robust and versatile method for 

time series forecasting. Leveraging the core principles of support vector machines, SVR 
significantly enhances traditional regression models by effectively capturing non-linear 
relationships and hidden patterns within time-dependent data. This capability allows 
SVR to deliver accurate and reliable predictions across diverse forecasting scenarios. 
With careful parameter tuning, meticulous feature selection, and a well-designed 
experimental approach, SVR unlocks valuable insights and empowers informed 
decision-making in various domains, including finance, healthcare, and beyond. A 
comprehensive list of hyperparameters is provided in Table 4 for further exploration. 

Table 4 SVR Grid Search for Hyperparameter Optimization 

Parameter name Parameter value 

C 1, 5, 10, 20, 50,100 
epsilon 0.1, 0.01, 0.001, 0.0001, 0.00001 
gamma scale', 'auto', 0.1, 0.01, 0.001 

 
Kernel : This parameter defines the type of hyperplane used to separate data 

points in a high-dimensional space. It essentially determines the shape of the decision 
boundary. RBF is used in the experiment. 

Regularization (C): The regularization parameter, denoted as C, plays a crucial 
role in controlling the balance between minimizing training error and ensuring good 
generalization to unseen data. A smaller C value increases the emphasis on 
regularization, preventing the model from fitting the training data too closely, thus 
promoting better performance on new, unseen data. Regularization is primarily applied 
during the training phase, influencing the model's learning process. In our experiment, 
the hyperparameter tuning process involved a grid search to identify the optimal C value 
for the Support Vector Regression (SVR) model. The best C value, obtained through this 



  

process, reflects the chosen level of regularization that contributes to the model's ability 
to generalize effectively to testing data 

Epsilon (epsilon): Epsilon is the margin of tolerance where errors are not 
penalized. 

Kernel Coefficient (gamma): Gamma defines how far a single training example 
influences a non-linear kernel (RBF, Polynomial). 

The best parameters from grid search for SVR is (kernel='rbf', C=50, 
epsilon=0.001, gamma='auto'). Table 5 summarizes the performance metrics of SVR in 
a time series forecasting task. SVR models are evaluated based on MAE, MSE, MAPE, 
RMSE, and R².  The selected features are adopted from the top 6 most importance of 
XGBoost in Figure 32. The SVR model with "Selected Feature" set outperforms others 
with the lowest MAE (25.13), MSE (1208.86), MAPE (6.15%), and RMSE (34.66), along 
with the highest R² ( 9 0 . 5 6 % ) .  Feature selection significantly enhances predictive 
accuracy. The "Correlated Feature" SVR model performs well, demonstrating competitive 
metrics, while the "Full dataset" SVR model exhibits slightly higher errors and lower R², 
indicating potential noise. Overall, these results emphasize the importance of thoughtful 
feature selection in optimizing SVR for time series forecasting. The forecast results are 
visualized in Figure 28 – 29. 

Table 5 Summary metrics on SVR model with different features. 

ML Algorithms MAE MSE MAPE RMSE R-Squared 

SVR (Correlated Feature) 26.20 1344.36 6.34% 36.60 89.40% 

SVR (Full dataset) 39.87 2841.64 10.22% 52.09 78.85% 

SVR (Selected Feature) 25.13 1208.86 6.15% 34.66 90.56% 

 
 



  

 

Figure  28 Selected Feature: Train and Test Actual vs Prediction plot of SVR 

 

 

Figure  29 Selected Feature: Test Actual vs Prediction plot of SVR 

 

4.5 Gradient Boosting Models 
In this experimental study, the initial phase involved the application of 

hyperparameter tuning to LightGBM, Gradient Boosting Regressor, and XGBoost 
models using a dataset comprising correlated features. The primary objective was to 



  

ascertain the optimal hyperparameter configuration through an exhaustive Grid Search. 
The best parameters identified in this phase were subsequently employed as fixed 
hyperparameters in subsequent analyses. The subsequent stages of the experiment 
sought to investigate the model's performance under different feature subsets. Three 
distinct feature groups were considered: the full dataset, a subset of correlated features, 
and a manually selected feature set. To rigorously evaluate model performance and 
robustness, Time Series Cross-Validation was employed, ensuring that temporal 
dependencies in the data were appropriately considered during the analysis. The 
experimental design thus encompassed both hyperparameter tuning and feature subset 
exploration, providing a comprehensive examination of the models ’ behavior under 
various configurations, with a particular emphasis on its performance in the context of 
time series data. The ensuing sections present the findings of these analyses and shed 
light on the interplay between hyperparameters, feature subsets, and model 
performance. 

 
4.5.1 Light GBM 

In the parameter tuning process for LightGBM, a predefined 
hyperparameter grid is established, encompassing variations for key model parameters 
such as num_leaves, learning_rate, n_estimators, reg_alpha, and reg_lambda explained 
in Chapter  2. This grid serves as the search space for identifying the optimal 
hyperparameter combination. Subsequently, an instance of the LightGBM model is 
created, either with default hyperparameters or an initial set. The parameter tuning itself 
is carried out using a search technique, such as grid search or randomized search, 
where the model is trained and evaluated on different combinations of hyperparameters.  

 
 
 
 
 



  

Table 6 Light GBM Grid Search for Hyperparameter Optimization 

Hyperparameter name Parameter value 

num_leaves [20, 30, 40] 
learning_rate [0.05, 0.1, 0.2] 
n_estimators [100, 400, 1000] 
reg_alpha [0.1, 0.5, 1.0] 

reg_lambda [0.1, 0.5, 1.0] 

 
reg_lambda: Regularization term on weights (L2 regularization). Similar to 

reg_alpha, reg_lambda adds a penalty term for the complexity of the model. Higher 
values of reg_lambda increase the regularization strength, promoting a more 
generalized model by penalizing large coefficient. 

In Table 6 we have identified the hyperparameters through a grid search. 
This particular combination, consisting of a learning rate of 0.1, 400 estimators, 20 
leaves a regularization alpha of 0.5 and a regularization lambda of 1.0 has proven to 
yield the highest model performance, for the assigned task. 

The feature selection process involved the identification of a subset that 
represents the intersection of two key criteria: highly correlated features (Figure 15) and 
the top 10 features with the highest gain (Figure 30) in the LightGBM model. 
Specifically, the features 'ABANDONED_RATE', 'ANSWER_SPEED_SECS', 
'SERVICE_LEVEL', 'TOTAL_CALL_LAG_1', 'TOTAL_CALL_LAG_5', and 
'TOTAL_CALL_LAG_10' were chosen. This strategic selection aimed to capture the 
shared characteristics of features exhibiting strong correlation while simultaneously 
incorporating those deemed most influential by the LightGBM model based on their gain 
values. By integrating these criteria, the chosen feature set represents a nuanced 
combination of correlated attributes and top-performing features, providing a 
comprehensive basis for subsequent analyses. 



  

 
Figure  30 Feature Importance Light GBM in Full dataset 
 
The feature selection process involved the identification of a subset that 

represents the intersection of two key criteria: highly correlated features (Figure 15) and 
the top 10 features with the highest gain (Figure 30) in the LightGBM model. Specifically, 
the features 'ABANDONED_RATE', 'ANSWER_SPEED_SECS', 'SERVICE_LEVEL', 
'TOTAL_CALL_LAG_1', 'TOTAL_CALL_LAG_5', and 'TOTAL_CALL_LAG_10' were 
chosen. This strategic selection aimed to capture the shared characteristics of features 
exhibiting strong correlation while simultaneously incorporating those deemed most 
influential by the LightGBM model based on their gain values. By integrating these 
criteria, the chosen feature set represents a nuanced combination of correlated 
attributes and top-performing features, providing a comprehensive basis for subsequent 
analyses. 

These results in Table 7 provide a comprehensive evaluation of the 
LightGBM model's performance under different feature configurations. The metrics 
include measures of accuracy (MAE, MSE), relative performance (MAPE), and 
goodness of fit (RMSE, R-Squared). The comparison between the three configurations, 
including one with correlated features, one with the full dataset, and one with selected 
features, offers insights into how feature selection impacts model performance. Overall, 
the model appears to perform well, with the selected feature set achieving slightly better 



  

results in terms of MAE, MSE, MAPE, and RMSE, as well as a marginally higher R-
squared value compared to the other configurations. 

 
Table 7 Summary metrics on Light GBM model with different features. 

ML Algorithms MAE MSE MAPE RMSE R-Squared 
LightGBM (Correlated Feature) 30.73 1820.33 7.73% 42.52 84.92% 
LightGBM (Full dataset) 31.07 1835.32 7.91% 42.66 84.77% 
LightGBM (Selected Feature) 30.95 1799.3 7.81% 42.25 84.95% 

 
4.5.2 Gradient Boosting Regressor 

experiment's chosen model for predicting call center performance is a 
Gradient Boosting Regressor. A thorough hyperparameter tuning process is carried out 
in table 8 to optimize the model's performance. Key hyperparameters such as 
'n_estimators,' 'learning_rate,''max_depth,' and'subsample' are systematically 
investigated to determine the best combination. The grid search yields the optimal 
model hyperparameters, which are 'learning_rate': 0.1,'max_depth': 3, 'n_estimators': 
300, and'subsample': 0.8. These hyperparameters are essential for fine-tuning the 
model for improved predictive accuracy. 

The feature importance analysis gives useful information about the 
importance of many aspects influencing call center performance. The entire dataset 
feature importance reveals in Figure 31 that certain attributes such as 'YEAR_2022,' 
'YEAR_2021,' and 'JAN' have low value, implying a limited impact on call center metrics. 
On the contrary, characteristics such as 'TOTAL_CALL_LAG_5,' 'SERVICE_LEVEL,' and 
'ANSWER_SPEED_SECS' show significant significance, underscoring their critical role in 
forecasting call center outcomes. 

 
 
 
 



  

Table 8 Summary metrics on Light GBM model with different features. 

Hyperparameter name Parameter value 

n_estimators [100, 200, 300] 
eta [0.05, 0.1, 0.2] 

max_depth [3, 5, 7] 
subsample  [0.8, 1.0] 

 
Further investigation into correlated features identifies a set of attributes that 

exhibit a strong interdependence. Particularly, 'TOTAL_CALL_LAG_5',  
'ANSWER_SPEED_SECS’, and 'SERVICE_LEVEL' emerge as correlated features with 
high importance, emphasizing their collective impact on call center performance. 
Understanding these correlations allows for a more nuanced interpretation of the 
model's decision-making process. 

Additionally, manual selection of features reveals a subset of attributes that 
researchers may consider for a focused analysis. 'TOTAL_CALL_LAG_10,' 
'ANSWERED_RATE,' 'ABANDONED_RATE,' and 'TOTAL_CALL_LAG_1' demonstrate 
notable importance, signifying their potential as key indicators of call center 
performance. 

 



  

 

Figure  31 Feature Importance Gradient Boosting Regressor in Full dataset 

Table 9 Summary metrics on Gradient Boosting Regressor model with different features. 

ML Algorithms MAE MSE MAPE RMSE R-Squared 
GBR(Correlated Feature) 29.19 1596.85 7.32% 39.89 86.62% 
GBR (Full dataset) 29.35 1606.37 7.45% 39.93 86.65% 
GBR (Selected Feature) 28.77 1545.42 7.18% 39.24 87.04% 

 
In the table 9, the GBR model with the manually selected features performs 

slightly better than the models using the full dataset or correlated features. However, all 
three models demonstrate reasonable predictive performance, as evidenced by the 
high R-Squared values and relatively low error metrics. The choice of features has a 
discernible impact on model performance, emphasizing the importance of feature 
selection in building effective machine learning models. 

 
4.5.3 XGBoost 

In this experiment, we aim to optimize the performance of an XGBoost 
regression model by tuning key hyperparameters through a systematic grid search 



  

approach. The hyperparameters under consideration include n_estimators, eta, gamma, 
max_delta_step, max_depth, max_leaves, and min_child_weight. The n_estimators 
parameter determines the number of boosting rounds, while eta controls the learning 
rate to prevent overfitting. The gamma parameter adds a regularization term to minimize 
overcomplicated models, and max_delta_step adjusts the step size during optimization. 
max_depth and max_leaves influence the depth and number of leaves in each tree, 
respectively, impacting the model's complexity. Finally, min_child_weight sets the 
minimum sum of instance weight required in a child node. These hyperparameters 
collectively govern the trade-off between model complexity and generalization. 

Table 10 shows the optimal hyperparameter values that contribute to high-
performance results in the XGBoost regression model. These parameters include 
objective='reg:squarederror', booster='gbtree', n_estimators=200, eta=0.1, 
gamma=0.001, max_delta_step=1, max_depth=5, max_leaves=25, and 
min_child_weight=1. These carefully chosen settings are associated with superior model 
performance, as evidenced by the graph. 

The process of selecting features entailed the identification of a subset that 
captures the intersection of two pivotal criteria: highly correlated features (as depicted in 
Figure 15) and the top 10 features with the highest gain (illustrated in Figure 32) 
according to the XGBoost model. Specifically, the features 'ABANDONED_RATE', 
'ANSWER_SPEED_SECS','SERVICE_LEVEL','TOTAL_CALL_LAG_1','TOTAL_CALL_LAG_
5', 'TOTAL_CALL_LAG_10', and ‘SUMMER’ were chosen. The fifth lag, denoted by 
"TOTAL_CALL_LAG_5," consistently retains a dominant influence within the full dataset, 
a trend that remains evident when examining correlated features (Figure 35). 
Significantly, "TOTAL_CALL_LAG_5" continues to stand out as the foremost contributor, 
surpassing the impact of other features in the dataset. 

 
 
 
 



  

Table 10 Light GBM Grid Search for Hyperparameter Optimization 

Hyperparameter name Parameter value 

n_estimators [100, 200, 300] 
eta [0.05, 0.1, 0.2] 

gamma [0.0001, 0.001, 0.01] 
max_delta_step [0, 1, 2] 

max_depth [3, 5, 7] 
max_leaves [20, 25, 30] 

min_child_weight [1, 2, 3] 

 
The XGBoost models were evaluated across three distinct feature subsets, each 

showcasing competitive performance (Table 11). Notably, the "Selected Feature" group, 

comprised of a mere seven features, outperformed the comprehensive "Full Dataset" 

configuration in terms of both MAE and MSE. This compelling result underscores the 

significance of the specifically chosen features which demonstrate a pronounced impact 

on the XGBoost model's forecasting capabilities. The efficiency of this reduced yet 

influential feature set highlights its critical role in enhancing the model's predictive 

accuracy compared to a broader array of features. The forecasting visualization is 

depicted in Figures 30 and 31. 

Table 11 Summary metrics on XGBoost model with different features. 

ML Algorithms MAE MSE MAPE RMSE R-Squared 
XGBoost (Correlated Feature) 30.53 1751.30 7.79% 41.72 85.26% 

XGBoost (Full dataset) 31.16 1857.66 7.98% 42.86 84.49% 
XGBoost (Selected Feature) 30.51 1751.47 7.73% 41.72 85.12% 

 



  

 

Figure  32 XGBoost Feature Importance (Full dataset) 
 

 

Figure  33 Correlated Feature: Train and Test Actual vs Prediction plot of 
XGBoost 

4.6 Deep Learning 
Deep learning model like RNN, GRU, and  LSTM, in call center forecasting 

offers significant advantages. In this experiment, the dataset is split into training and 
testing sets for evaluating the performance of different RNN architectures on time series 
forecasting. The training dataset constitutes 70% of the entire dataset, and the 
remaining 30% is designated as the testing dataset. For each randomly selected 



  

hyperparameter combination, the training process involves using the 
TimeseriesGenerator to create sequences of data for both the input features (X) and the 
target variable (y). The training sequences are generated with a specified lookback 
period, allowing the model to learn patterns in the time series data. 

The training phase spans multiple epochs, where the model is iteratively 
updated based on the training data. Early stopping is implemented with a patience of 10 
epochs, monitoring the validation loss to prevent overfitting. The average validation loss 
is calculated over the training epochs, serving as an indicator of the model's 
performance on unseen data. 

 

Figure  34 Correlated Feature: Train and Test Actual vs Prediction plot of 
XGBoost 



  

 

Figure  35 XGBoost Feature Importance (Correlated Features) 
After training, the model is utilized to make predictions on both the training and 

testing datasets. The predictions are inverse transformed to the original scale using Min-
Max scaling. Evaluation metrics are then computed for both the training and testing 
predictions.  

 
Table 12 Experimental setup configurations of deep learning model 

Model Nodes Batch size Layer Added Sequence 
Length 

Simple RNN 32, 64, 

128,256, 512 

16, 32, 64 32, 64, 128 5, 10, 20 

GRU 

LSTM 

 
By assessing the model's performance on both datasets, this experiment aims 

to gauge the generalization capabilities of the trained RNN architectures. It helps in 
understanding how well the models have learned the underlying patterns in the training 
data and how effectively they can make accurate predictions on previously unseen 



  

testing data. This comprehensive evaluation strategy ensures a robust assessment of 
the models' forecasting capabilities across different hyperparameter configurations. 

A number of experimental setups with varying batch sizes, lookback times, 
network node counts, and layer architectures are listed in Table 12. A metric for 
evaluating the model's performance in every configuration is provided: the average 
validation loss. One important metric that indicates how well the model generalizes to 
new data during training is the validation loss. The validation loss decreases with 
increasing model prediction accuracy. The parameters of the model are used; 

• EarlyStopping parameter (verbose=1, patience=10, monitor='val_loss') 
When the validation loss stops improving, the training process is 
terminated early. The model will cease training if, after a predetermined 
number of epochs (patience), the validation loss does not improve. It is 
indicated that the validation loss is being tracked by the 
monitor='val_loss'. 

• ReduceLROnPlateau(monitor='val_loss,' factor=0.5, patience=5, 
min_lr=1e-7, verbose=1) description: The learning rate is adjusted by 
the ReduceLROnPlateau callback when the validation loss reaches a 
plateau. After a predetermined number of epochs with no improvement 
in validation loss (defined by patience), the learning rate is lowered by a 
facto. Min_lr establishes the bottom bound for the learning rate. 

• Compilation: loss='mean_squared_error': The loss function is Mean 
Squared Error (MSE). 

• Optimizer='adam': For optimization, the Adam optimizer is used. 

• metrics=['mae']: MAE is another metric to keep track of during training. 
Following the identification of ideal hyperparameters for each model, the 

chosen configurations are used in a thorough evaluation procedure that includes the 
use of time series cross-validation. This methodology is achieved by utilizing the scikit-
learn library's TimeSeriesSplit class, which systematically partitions the dataset into 



  

three distinct folds (n_splits=3), distinguishing discrete temporal segments to confirm 
metrics results. 

 
4.6.1 SimpleRNN 

Table 13 presents the results of experimenting with different configurations 
of a SimpleRNN model for time series prediction. The highlighted configuration, 
SimpleRNN with 32 nodes, a lookback of 5, batch size 64, and an additional Dense layer 
with 64 units, stands out as the most promising based on its low average validation loss 
of 0.021087. This indicates that the model, when trained with these specific 
hyperparameters, achieved superior performance in predicting the target variable on 
the validation dataset. While other configurations exhibit slightly higher validation losses, 
this particular setup demonstrates the potential for effective time series forecasting. 
Consequently, it is a strong candidate for further investigation and implementation in 
real-world scenarios where accurate predictions are crucial. 

In this experiment, three distinct feature groups were employed for the 
Simple RNN model, with feature selection based on the most impactful attributes 
identified by a Gradient Boosting model to be “Selected Feature” group such as 
'ABANDONED_RATE’,'ANSWER_SPEED_SECS,'SERVICE_LEVEL’,'TOTAL_CALL_LAG_1
,'TOTAL_CALL_LAG_5,' 'TOTAL_CALL_LAG_10,' and 'ANSWERED_RATE’. The 
"Correlated Feature" group produced promising results in Table 14. The model 
demonstrated accuracy with a MAE of 58.92, emphasizing precise predictions. The MSE 
at 6256.60 and RMSE at 78.72 highlighted the model's precision. An R-Squared value of 
50.70% suggests that the model has demonstrated a moderate proficiency in capturing 
underlying data patterns. However, when the model was applied to the "Full Dataset," it 
faced challenges, resulting in higher MAE, MSE, and RMSE values, and a diminished R-
Squared of 13.02%. Notably, despite the overall performance being relatively modest, 
the "Selected Feature" group showcased results comparable to the "Correlated Feature." 
With a MAE of 59.30 and an R-Squared of 49.25%, this finding underscores the 
significance of feature selection in enhancing the Simple RNN's predictive capabilities. 



  

While the model's overall performance may be considered suboptimal, the improved 
performance with limited features highlights the potential benefits of a more focused 
feature set up. 

Table 13 Experimental Setup Configurations and Results of RNN 

Type Nodes Lookback Batch  
Size 

Layer Added Average Validation Loss 

SimpleRNN 32 5 64 64 0.021087 

SimpleRNN 32 20 64 32 0.026774 
SimpleRNN 64 10 16 128 0.024709 
SimpleRNN 64 20 64 128 0.02632 
SimpleRNN 64 20 32 32 0.026546 
SimpleRNN 128 5 64 128 0.023994 
SimpleRNN 128 20 16 32 0.027361 
SimpleRNN 128 20 64 32 0.027887 
SimpleRNN 128 20 16 64 0.028016 
SimpleRNN 256 5 16 128 0.025049 
SimpleRNN 512 20 32 64 0.026175 
SimpleRNN 512 20 32 32 0.031727 
SimpleRNN 512 10 64 32 0.033783 

 

Table 14 Summary metrics on Simple RNN model with different features. 

ML Algorithms MAE MSE MAPE RMSE R-Squared 
Simple RNN (Correlated Feature) 58.92 6256.6 15.75% 78.72 50.70% 

Simple RNN (Full dataset) 83.22 11262.74 21.40% 104.98 13.02% 

Simple RNN (Selected Feature) 59.3 6465.89 15.79% 80 49.25% 

 



  

4.6.2 GRU 

The results of various configurations evaluated on a GRU model for time 
series prediction are summarized in Table 15. The setup with a GRU with 256 nodes, a 
lookback duration of 5, a batch size of 64, and an extra Dense layer with 32 units 
outperforms the others, with an excellent the validation loss of 0.021568. 

Table 15 Experimental Setup Configurations and Results of GRU 

Type Nodes Lookback Batch  
Size 

Layer Added Average Validation Loss 

GRU 32 20 64 32 0.025781 

GRU 32 10 16 64 0.026253 

GRU 32 20 16 128 0.026334 

GRU 32 20 16 64 0.034352 

GRU 32 10 64 128 0.043032 

GRU 64 10 16 32 0.024401 

GRU 64 5 32 64 0.025012 

GRU 64 5 16 32 0.025103 

GRU 64 20 32 32 0.030067 

GRU 64 20 64 128 0.037075 

GRU 128 10 32 64 0.02495 

GRU 128 10 64 64 0.026905 

GRU 256 5 64 32 0.021568 

GRU 256 5 64 64 0.023658 

GRU 256 10 64 32 0.02521 

GRU 256 20 16 128 0.026368 

GRU 256 20 16 32 0.026714 

GRU 512 20 64 32 0.028279 

 



  

The results from the GRU model across different feature groups in Table 15 
provide valuable insights into its predictive capabilities. In the case of the "Correlated 
Feature" group, the GRU model achieved a MAE of 64.34. The associated MSE at 
7322.52 and RMSE at 84.89 reflect the model's precision. The R² value of 43.44% 
suggests that the model captures a substantial portion of the variance in the data. 
Interestingly, when applied to the "Full Dataset," the GRU model exhibited slightly lower 
MAE and MSE values, along with a higher R² (48.17%). Notably, the "Selected Feature" 
group demonstrated the best performance, with a lower MAE of 58.88, MSE of 6307.37, 
and an elevated R² of 50.52%. This underscores the importance of feature selection, as 
the model benefited from focusing on specific relevant features, namely 
'ABANDONED_RATE,''ANSWER_SPEED_SECS,''SERVICE_LEVEL,''TOTAL_CALL_LAG_
1,''TOTAL_CALL_LAG_5,''TOTAL_CALL_LAG_10,' and 'ANSWERED_RATE.' These 
findings emphasize the potential for enhancing GRU model performance by judiciously 
selecting input features based on their significance in the context of the prediction task. 

Table 16 Summary metrics on GRU model with different features. 

ML Algorithms MAE MSE MAPE RMSE R-Squared 
GRU (Correlated Feature) 64.34 7322.52 16.84% 84.89 43.44% 
GRU (Full dataset) 60.49 6787.43 15.66% 81.53 48.17% 
GRU (Selected Feature) 58.88 6307.37 15.83% 79.00 50.52% 

 
4.6.3 LSTM 

The experimentation with different configurations of LSTM models shown in 
Table 17 for time series prediction revealed that the model with 128 nodes, a lookback 
of 5, batch size 16, and an additional Dense layer with 32 units gained the best 
hyperparameters. This specific configuration achieved the lowest average validation 
loss of 0.021457, indicating superior performance in predicting the target variable on the 
validation dataset. Among the various setups tested, this LSTM model configuration 
demonstrated the most promising results. It outperformed other configurations, such as 
those with 32, 64, or 256 nodes, across different lookback periods, batch sizes, and 



  

layer additions. These findings highlight the significance of tuning hyperparameters for 
LSTM models to achieve optimal predictive capabilities, with a focus on the number of 
nodes, lookback period, batch size, and layer architecture. 

Table 17 Experimental Setup Configurations and Results of LSTM 

Type Nodes Lookback Batch  
Size 

Layer Added Average Validation Loss 

LSTM 32 10 64 32 0.024289 

LSTM 32 5 64 128 0.02632 

LSTM 32 10 16 128 0.026478 

LSTM 32 20 64 64 0.034471 

LSTM 64 5 32 128 0.026081 

LSTM 64 20 16 64 0.026931 

LSTM 64 20 64 64 0.030435 

LSTM 128 5 16 32 0.021457 

LSTM 128 10 32 32 0.023483 

LSTM 128 5 64 32 0.024624 

LSTM 128 5 64 64 0.030634 

LSTM 256 10 16 32 0.023492 

LSTM 256 10 32 32 0.024401 

LSTM 256 5 16 64 0.026767 

LSTM 256 20 16 64 0.026995 

LSTM 256 10 64 64 0.029533 

LSTM 256 20 64 128 0.035616 

LSTM 512 5 64 64 0.023475 

LSTM 512 10 64 32 0.025123 

 
The LSTM model, trained on the "Selected Feature" group, which includes 

'ABANDONED_RATE','ANSWER_SPEED_SECS','SERVICE_LEVEL','TOTAL_CALL_LAG_
1', 'TOTAL_CALL_LAG_5', 'TOTAL_CALL_LAG_10', and 'ANSWERED_RATE,' exhibited 
superior predictive performance (Table 18) compared to other feature sets. This 
configuration resulted in a significantly lower MSE, indicating reduced overall prediction 
errors. Similarly, the MAE for the "Selected Feature" group was notably lower, 
emphasizing improved accuracy in predicting the target variable. The model also 



  

achieved a lower RMSE, underlining enhanced precision. These results collectively 
highlight the effectiveness of feature selection in optimizing the LSTM model for time 
series prediction, with a notable increase in predictive power as indicated by the 
improved R-squared value. 

Table 18 Summary metrics on LSTM model with different features 

ML Algorithms MAE MSE MAPE RMSE R-Squared 
LSTM (Correlated Feature) 61.41 8316.18 18.18% 90.58 57.76% 
LSTM (Full dataset) 62.99 7717.16 17.57% 87.69 60.35% 
LSTM (Selected Feature) 54.53 6212.75 15.20% 78.48 68.31% 

 

4.7 Data Transformation 
The use of differencing transformations in time series analysis provides several 

benefits, including improved model performance and prediction accuracy. 
Differentiating helps stabilize variance and eliminate seasonality by computing the 
difference between consecutive observations, allowing for a more robust analysis of 
temporal patterns (see Figure 33). The total call is more volatile, and the metrics are 
poor. 

 
Figure  36 TOTAL_CALL after differenced transformation. 

The results presented in table 19 showcase the performance metrics of various 
machine learning algorithms under two different data transformation scenarios: "No Day 



  

off series" and "Differenced Transform. In the "No Day off series" transformation, several 
algorithms, including SVR, Gradient Boosting Regressor (GBR), XGBoost, and 
LightGBM, exhibit relatively consistent and competitive performance across all metrics. 
SVR, in particular, stands out with the lowest MAE, MAPE, and RMSE, indicating 
accurate predictions and minimal error. Simple RNN, GRU, and LSTM, on the other 
hand, show higher errors, with LSTM performing the best among the three. 

Table 19 Comparison model performance metrics by using non-transformed 
observations and differenced transformed observations. 

Transformation ML Algorithms MAE MAPE RMSE R^2 
No Day off 

series 
SARIMAX 32.11 8.31% 41.91 84.57% 

SVR 26.64 6.34% 36.60 89.40% 
LightGBM 30.73 7.73% 42.52 84.92% 

Gradient Boosting Regressor 29.19 7.32% 39.89 86.62% 
XGBoost 30.53 7.79% 41.72 85.26% 

Simple RNN 58.92 15.75% 78.72 50.70% 
GRU 64.34 16.84% 84.89 43.44% 
LSTM 61.41 18.18% 90.58 57.76% 

Differenced 
Transform 

SARIMAX 31.97 inf% 41.55 86.02% 
SVR 27.44 3.71E-02 38.53 86.49% 

LightGBM 33.47 6.16+00% 46.97 77.46% 
Gradient Boosting Regressor 33.44 inf% 47.01 77.42% 

XGBoost 33.56 5.10E-02 47.48 79.48% 
Simple RNN 139.63 7.14E+17 77.04 46.27% 

GRU 54.01 7.14E-02 77.04 46.27% 
LSTM 54.25 6.90% 76.15 47.51% 

 
In the "Differenced Transform" scenario, the results are notably different. The 

SARIMAX model achieves improved performance in terms of MAE and R-Squared, 
indicating better predictive accuracy after differencing the data. However, for several 
algorithms, such as Simple RNN, GRU, and LSTM, the differencing transformation 
results in extremely high values for certain metrics, particularly in MAPE, suggesting 
challenges or instability in modeling the differenced series. 



  

The exceptionally high MAPE values observed in SARIMAX and GBR models in 
the "Differenced Transform" scenario can be attributed to the introduction of 
differencing, potentially leading to division by very small or zero values during MAPE 
calculation. When differencing results in near-zero denominators due to subtracting 
consecutive observations, the MAPE can yield an extremely large or infinite percentage 
error (Inf%). This sensitivity of SARIMAX and GBR models to small denominators 
highlights a potential compromise in their predictive accuracy when differencing 
generates such challenging conditions. 

4.8 Result Analysis 
In Table 20, a comprehensive summary of performance metrics is presented, 

showcasing the evaluation results for various machine learning algorithms across three 
feature groups: "Correlated Feature," "Full Dataset," and "Selected Feature." The metrics 
include MAE, MSE, MAPE, RMSE, and R^2. This table provides a detailed insight into 
the comparative performance of each algorithm within different feature contexts, offering 
valuable information for model selection and feature engineering strategies. 

 
4.8.1 MAE Analysis 

Figure 37 displays the MAE graph illustrating the performance of various 
machine learning algorithms across three distinct feature groups. In the Correlated 
Feature group, SVR stands out with the lowest MAE of 26.20, indicating superior 
predictive accuracy compared to other algorithms in capturing patterns in the correlated 
features. In contrast, GRU and LSTM models exhibit higher MAE values, with GRU 
recording 64.34 in the Correlated Feature group, suggesting challenges in predicting 
the target variable within this feature set.  

 



  

 

Figure  37 MAE model performance comparison 

Moving to the Full dataset group, GBR showcases consistent performance 
with the lowest MAE of 29.35, reinforcing its robustness across different feature 
compositions. While GRU and LSTM maintain their relatively higher MAE values, the gap 
between GBR and the recurrent neural network models narrows, highlighting their 
improved performance on the broader dataset. In the Selected Feature group, SVR 
stands out as the top-performing algorithm with the lowest MAE of 25.13, showcasing its 
effectiveness in capturing patterns within this particular feature subset. 

In the Selected Feature group, SVR stands out as the top performer with the 
lowest MAE of 25.13, emphasizing its adaptability to specific feature subsets and its 
ability to deliver precise predictions. GBR, LightGBM, and XGBoost showcase 
commendable performance, maintaining competitive MAE values ranging from 28.77 to 
30.95. LSTM also demonstrates efficacy within this more focused feature subset, 
achieving a notable MAE of 54.53. This collective evaluation provides a comprehensive 
understanding of how these algorithms perform relative to each other in capturing 
patterns within the selected feature group. 

 



  

4.8.2 MAPE Analysis 
Within the Correlated Feature group, SVR emerges as the frontrunner, 

exhibiting an impressive MAPE of 6.34% (Figure 38). This remarkable performance 
highlights SVR's strength in accurately predicting values for datasets characterized by 
correlated features. GBR, LightGBM, and XGBoost also demonstrate commendable 
performance, achieving MAPE values ranging from 7.32% to 7.79%.  

 

 

Figure  38 MAPE model performance comparison 

SVR has a slightly higher MAPE of 10.22% in the Full Dataset group. 
Nonetheless, it displays versatility in making correct predictions across a wide range of 
datasets. GBR, LightGBM, and XGBoost continue to show high accuracy, with MAPE 
values ranging from 7.45% to 7.98%, confirming their consistency in capturing 
underlying patterns in large datasets. SARIMAX and deep learning models (Simple 
RNN, GRU, LSTM) are included for evaluation in the Full Dataset group, providing 
insights into their relative performance. SARIMAX has a MAPE of 15.69%, indicating 
competitive accuracy when compared to other models in this dataset. Deep learning 
models, notably Simple RNN, GRU, and LSTM, perform differently. Simple RNN has a 
MAPE of 21.40%, showing larger prediction errors, whereas GRU and LSTM outperform 



  

with MAPE values of 15.66% and 17.57%, respectively. It's worth noting that these 
results emphasize the various performance aspects of the Full Dataset group's models. 

SVR is the highest performer in the Selected Feature group, with the lowest 
MAPE of 6.15%, demonstrating its adaptability to specific feature subsets and precise 
prediction capabilities. GBR, LightGBM, and XGBoost also perform well, with MAPE 
values ranging from 7.18% to 7.81%, confirming their dependability in catching patterns 
in this more limited feature subset. SARIMAX performs competitively with a MAPE of 
8.73%, showcasing its effectiveness in capturing temporal patterns. Deep learning 
models, including Simple RNN, GRU, and LSTM, contribute to the analysis within this 
feature subset. Despite Simple RNN displaying a higher MAPE of 15.79%, GRU and 
LSTM achieve lower MAPE values of 15.83% and 15.20%, respectively. 

 
4.8.3 RMSE Analysis 

Figure 39 illustrates the RMSE across different feature groups. In the 
Correlated Feature group, SVR stands out with the lowest RMSE of 36.60, emphasizing 
its strong predictive capabilities when dealing with correlated features. GBR, LightGBM, 
and XGBoost also exhibit competitive performance, with RMSE values ranging from 
39.24 to 42.52, showcasing their reliability in accurate predictions. 

Transitioning to the Full Dataset group, GBR stands out with the lowest 
RMSE of 39.93, demonstrating its superior predictive performance within this feature 
group. While SVR also performs well with an RMSE of 52.09, it shows a slightly higher 
error compared to GBR, highlighting the nuances in their predictive capabilities across 
diverse datasets. LightGBM and XGBoost maintain strong accuracy, with RMSE values 
ranging from 42.52 to 42.66, showcasing their reliability in capturing underlying patterns 
within extensive datasets. 

In the Selected Feature group, SVR once again emerges as the top 
performer, achieving the lowest RMSE of 34.66. This underscores SVR's adaptability to 
specific feature subsets, resulting in precise predictions. GBR, LightGBM, and XGBoost 
showcase noteworthy performance, with RMSE values ranging from 41.72 to 42.25, 



  

affirming their effectiveness in capturing patterns within this more focused feature 
subset. 

 

 Figure  39 RMSE model performance comparison 

4.8.4 R-Squared Analysis 
Within the Correlated Feature group, SVR emerges as the standout performer, 

showcasing impressive R² value of 89.40% as Figure 40. This underscores SVR's robust 

capability to elucidate the variance in the data, particularly in the context of correlated 

features. Furthermore, GBR, LightGBM, and XGBoost demonstrate consistent and 

strong performance, maintaining R² values in the range of 86.62% to 85.26%. SARIMAX 

exhibits strong explanatory power with an R² value of 84.57%, indicating its 

effectiveness in explaining the variance in the data. The deep learning models display 

varying performance, with Simple RNN showing an R² value of 50.70%, GRU at 43.44%, 

and LSTM leading with an R² value of 57.76%. 

For the Full Dataset group, R² of SVR drops 78.85%. GBR, LightGBM, and 

XGBoost maintain high accuracy, with R² values ranging from 86.62% to 85.26%, 

confirming their consistency in capturing underlying patterns in large datasets. 

However, in this larger dataset, the performance of RNN model is comparably worse, 

with R²  values suggesting less effective explanatory power. 



  

Table 20 Summary metrics by model in 3 feature group 

Group Feature ML Algorithms MAE MAPE RMSE R² 

Correlated 
Feature 

SARIMAX 32.11 8.31% 41.91 84.57% 

SVR 26.2 6.34% 36.6 89.40% 

LightGBM 30.73 7.73% 42.52 84.92% 

GBR 29.19 7.32% 39.89 86.62% 

XGBoost 30.53 7.79% 41.72 85.26% 

Simple RNN 58.92 15.75% 78.72 50.70% 

GRU 64.34 16.84% 84.89 43.44% 

LSTM 61.41 18.18% 90.58 57.76% 

Full dataset 

SARIMAX 57.73 15.69% 68.8 54.81% 

SVR 39.87 10.22% 52.09 78.85% 

LightGBM 31.07 7.91% 42.66 84.77% 

GBR 29.35 7.45% 39.93 86.65% 

XGBoost 31.16 7.98% 42.86 84.49% 

Simple RNN 83.22 21.40% 104.98 13.02% 

GRU 60.49 15.66% 81.53 48.17% 

LSTM 62.99 17.57% 87.69 60.35% 

Selected Feature 

SARIMAX 33.21 8.73% 43.03 84.01% 

SVR 25.13 6.15% 34.66 90.56% 

LightGBM 30.95 7.81% 42.25 84.95% 

GBR 28.77 7.18% 39.24 87.04% 

XGBoost 30.51 7.73% 41.72 85.12% 

Simple RNN 59.3 15.79% 80 49.25% 

GRU 58.88 15.83% 79 50.52% 

LSTM 54.53 15.20% 78.48 68.31% 

 
SVR is the top performance in the Selected Feature group, with R² value of 

90.56%, highlighting its adaptability to various feature subsets and ability to give exact 
predictions. GBR, LightGBM, and XGBoost all work admirably, with R² values ranging 
from 84.92% to 85.12%. This validates their ability in capturing patterns within this more 
focused feature subset. Overall, the R² analysis provides a full knowledge of how these 
methods perform in explaining variance in distinct feature groups. 

 



  

 
Figure  40 R-Squared model performance comparison 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

CHAPTER 5  
CONCLUSION AND DISCUSSION 

5.1 Conclusion 
This research delved into the crucial role of Workforce Management (WFM) in 

enhancing call center effectiveness. Optimized WFM practices, encompassing call 
volume forecasting and agent scheduling, are key to achieving operational efficiency 
and cost reduction. Advanced time series models, such as SARIMAX, SVR, Gradient 
Boosting, RNN, GRU, and LSTM, proved instrumental in accurately predicting contact 
volume, a cornerstone of successful WFM implementation. 

The experiment produced insightful findings and tested several machine 
learning algorithms for time series forecasting in a call center environment. The models 
with the lowest MAE, RMSE, MAPE, and highest R2 values were SVR and GBR. This 
illustrates their capacity to forecast contact volume with accuracy, enabling the strategic 
distribution of labor over various time intervals. 

For efficient training and testing, the system model incorporated significant data 
pretreatment, metrics translation, normalization, and the usage of time series generators. 
Even greater model performance was achieved through feature engineering and 
hyperparameter optimization. The experiment extends beyond the utilization of call 
center metrics alone; additional time and lag features are engineered to afford the 
model a more comprehensive understanding of available options. Subsequently, these 
features are categorized into three distinct groups: the Full Dataset, the Correlated 
Feature group, which comprises features highly correlated with a correlation coefficient 
exceeding 0.2, and the Selected Feature group, which includes manually chosen 
features based on their frequent occurrence and their significance in each model, 
determined by low p-values in SARIMAX and higher feature importance in the Gradient 
Boosting model. Key features such as service level call, abandon rate, answer rate, 1st 
lag of call especially 5th Lag of call with 0.29 feature importance value in GBR and 
XGBoost models have been identified as pivotal contributors to this study, underscoring 
their significance in the predictive modeling process. 



  

The experiment's findings demonstrate how crucial sophisticated forecasting 
methods are for maximizing resource allocation, achieving customer service targets, 
and eventually raising total customer happiness. Such data-driven strategies will be 
more and more crucial as call centers develop to remain competitive in the ever-
changing field of customer support operations. 

5.2 DISCUSSION 
5.2.1 Data pre-processing and Differencing Transformations 

It was discovered how data preprocessing techniques affected the 
performance of the model. Higher errors were first observed when the complete dataset 
containing day-off and holiday information was used, suggesting that these attributes 
may contain noise. Overall metrics improved after day off entries were removed, 
suggesting that they had a detrimental effect. The performance of machine learning 
models can be greatly impacted by the use of differencing procedures in time series 
analysis. But the measurements suffered from deconstructing and diffusing the data, 
especially the MAPE metrics. These results highlight how difficult preprocessing choices 
can be and how crucial it is to take a balanced approach to information retention and 
noise reduction. Considering multiple indicators guarantees a comprehensive 
comprehension of the model's efficacy. 

 
5.2.2 Interpretability 

In machine learning, the trade-off between interpretability and complexity is 
critical. While complex models, like deep neural networks, often excel in capturing 
intricate patterns, their "black box" nature raises concerns about interpretability, bias, 
fairness, and robustness. In this context, the notable performance of interpretable 
models like SVR and Gradient Boosting is highlighted. These models strike a balance by 
providing strong predictive capabilities alongside interpretability. However, it's essential 
to acknowledge that neural networks, despite their complexity, did not perform well in 



  

this study. The choice between a complex, black-box model and a simpler, interpretable 
model depends on the specific context and requirements of the application. 

 
5.2.3 Dataset and model complexity 

Machine learning algorithms' performance is essentially dependent on the 
features of the dataset and the nature of the task at hand. While SVR and GBR 
performed well in this study, it is important to note that the efficacy of deep learning 
models varies depending on the dataset or task. Poor deep learning performance can 
be due to a variety of issues, one of which being model complexity. Deep neural 
networks, due to their complexity, may experience difficulties when the dataset is small 
or lacks the diversity essential for full learning. The risk of overfitting increases in such 
instances, as these models may capture noise in the data rather than generalizable 
patterns. This problem is exacerbated further by a lack of training data. 

 
5.2.4 Flexibility and Non-Linearity 

SVR is a robust choice for time series forecasting tasks, particularly when 
dealing with non-linear relationships between variables. Its effectiveness stems from its 
ability to capture complex patterns that other models may struggle with. SVR is also less 
sensitive to outliers and requires fewer parameters than other non-linear models, making 
it less prone to overfitting and better suited for smaller datasets. Additionally, SVR offers 
a higher degree of interpretability compared to deep learning models, providing insights 
into the relationships between variables and aiding in understanding the model's 
behavior. Empirical evidence supports the superiority of SVR in various time series 
forecasting tasks, particularly in scenarios with non-linear patterns. 

 
5.2.5 Feature Importance 

The Full Dataset, Correlated Feature group, and Selected Feature group are 
the three separate feature groups that the study uses to carefully classify its features. 
The purpose of this strategic grouping is to provide insight into the various effects that 



  

distinct feature subsets have on the effectiveness of predictive models. Specifically, the 
SARIMAX model performs competitively by utilizing just 5 features: Monday, the first lag, 
abandoned rate, answer speed, and service level call. This result emphasizes the 
superiority of a targeted feature selection over a more comprehensive strategy. 

SVR is the model that performs best out of all the models that were 
examined in this study. Its improved performance with selected features that come from 
the top important features found in the XGBoost model is remarkable. This emphasizes 
how important feature engineering and selection are to optimizing the performance of 
sophisticated in SVR. 

Within the realm of Gradient Boosting models, specific features consistently 
emerge as top contributors. Notably, the 5th lag, service level call, and answer speed 
stand out as the top 3 most important features across GBR and XGBoost. However, in 
the case of LightGBM, the 5th lag is less important feature, service level call, answer 
speed, and abandoned rate are the top 3. The abandoned rate takes precedence as the 
most influential feature for Light GBM in the Selected feature set. This variation in feature 
importance underscores the nuances of model-specific preferences and highlights the 
importance of considering individual model behaviors. 

RNN produce poor outcomes when used on the entire dataset, GRU and 
LSTM networks function similarly on all feature sets. This shows that in order to avoid 
overfitting and improve generalization, careful feature selection is essential, as 
demonstrated by the sensitivity of RNNs to feature dimensions. 

The 5th lag feature proves to be crucial in forecasting, especially for 
working days. Its significance lies in capturing patterns related to the same business 
day over a 5-day period. The 1st lag, representing the closest call or the call from the 
previous day, is also important. Monday emerges as a pivotal day for call reception, 
aligning with the observed pattern of increased call volumes on that day. 

Abandoned rate, answer speed, and service level call are not merely 
metrics that accompany the call process—they are invaluable indicators that offer 
insights into customer behavior, system performance, and operational efficiency. By 



  

recognizing the importance of these features, organizations can better prepare for and 
adapt to fluctuations in call volumes, ultimately improving overall service quality and 
customer satisfaction. 

5.3 Limitation 
This work offers valuable insights into call volume forecasting. However, there 

are several areas for further exploration and refinement. Analyzing hourly data and 
incorporating additional features like top contact reasons, locations, and contact 
channels could offer a more granular understanding of temporal patterns and the factors 
influencing the time series. 

Moreover, utilizing domain expertise within the company may greatly enhance 
the interpretability and contextual relevance of the model, resulting in better feature 
engineering and model selection. Extending the study's reach by examining a wider 
array of models and datasets would yield a more comprehensive understanding of the 
model's applicability and generalizability in other contexts. 

Experimenting with a wider range of models may also reveal different strategies 

that, in some situations, perform better than or supplement current models. Resolving 

these issues would open the door for additional study and development with the goal of 

enhancing the call volume forecasting model's accuracy, interpretability, and 

generalizability over time. 

 
 
 
 
 
 
 
 



 

REFERENCES 
 

REFERENCES 
 

 

Alsharef, A., Aggarwal, K., Sonia, Kumar, M., & Mishra, A. (2022). Review of ML and 
AutoML Solutions to Forecast Time-Series Data. Archives of Computational 
Methods in Engineering, 29(7), 5297-5311. https://doi.org/10.1007/s11831-022-
09765-0  

Baldon, N. (2019). Time series Forecast of Call volume in Call Centre using Statistical and 
Machine Learning Methods (Publication Number 2019:666) [Student thesis, DiVA. 
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265002 

Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. 
Holden-Day. https://books.google.co.th/books?id=1WVHAAAAMAAJ  

de Boer, T. R., Mérelle, S., Bhulai, S., Gilissen, R., & van der Mei, R. (2023). Forecasting 
call and chat volumes at online helplines for mental health. BMC Public Health, 
23(1), 984. https://doi.org/10.1186/s12889-023-15887-2  

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional 
LSTM and other neural network architectures. Neural networks : the official journal 
of the International Neural Network Society, 18, 602-610. 
https://doi.org/10.1016/j.neunet.2005.06.042  

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9, 
1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735  

Kanthanathan, C., Carty, G., Raja, M. A., & Ryan, C. (2020, 3-5 Dec. 2020). Recurrent 
Neural Network based Automated Workload Forecasting in a Contact Center. 2020 
3rd International Conference on Intelligent Sustainable Systems (ICISS),  

Koole, G. M., & Li, S. (2023). A Practice-Oriented Overview of Call Center Workforce 
Planning. Stochastic Systems. https://doi.org/10.1287/stsy.2021.0008  

Phi, M. (2018). Illustrated Guide to LSTM’s and GRU’s: A step by step explanation.  
Saksonita, K., Jae sung, K., & Wan sup, C. (2022). A Comparison of Time Series Forecast 

Models for Predicting the Outliers Particles in Semiconductor Cleanroom [A 
Comparison of Time Series Forecast Models for Predicting the Outliers Particles in 

 

https://doi.org/10.1007/s11831-022-09765-0
https://doi.org/10.1007/s11831-022-09765-0
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265002
https://books.google.co.th/books?id=1WVHAAAAMAAJ
https://doi.org/10.1186/s12889-023-15887-2
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1287/stsy.2021.0008


  94 

 

Semiconductor Cleanroom]. The Journal of Korean Institute of Information 
Technology, 20(11), 137-146. https://doi.org/10.14801/jkiit.2022.20.11.137  

Services, C. o. C.-D. o. P. (2023, December 6). Citizen Service Request (CSR) Call Center 
Calls. City of Cincinnati - Department of Public Services. https://data.cincinnati-
oh.gov/Efficient-Service-Delivery/Citizen-Service-Request-CSR-Call-Center-
Calls/k2qr-ck2v 

Shu-guang, H., Li, L., & Er-shi, Q. (2007, 9-11 June 2007). Study on the Continuous Quality 
Improvement of Telecommunication Call Centers Based on Data Mining. 2007 
International Conference on Service Systems and Service Management,  

Singh, A., Kotiyal, V., Sharma, S., Nagar, J., & Lee, C.-C. (2020). A Machine Learning 
Approach to Predict the Average Localization Error With Applications to Wireless 
Sensor Networks. IEEE Access, 8, 208253-208263. 
https://doi.org/10.1109/ACCESS.2020.3038645  

Takwi, F. (2021). SERVICE OPERATIONS MANAGEMENT IMPROVING SERVICE 
DELIVERY.  

Tunnicliffe Wilson, G. (2016). Time Series Analysis: Forecasting and Control,5th Edition, by 
George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 
2015. Published by John Wiley and Sons Inc., Hoboken, New Jersey, pp. 712. 
ISBN: 978-1-118-67502-1. Journal of Time Series Analysis, 37, n/a-n/a. 
https://doi.org/10.1111/jtsa.12194  

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent 
gas market model. Neural Networks, 1(4), 339-356. 
https://doi.org/https://doi.org/10.1016/0893-6080(88)90007-X  

 
 

 

https://doi.org/10.14801/jkiit.2022.20.11.137
https://data.cincinnati-oh.gov/Efficient-Service-Delivery/Citizen-Service-Request-CSR-Call-Center-Calls/k2qr-ck2v
https://data.cincinnati-oh.gov/Efficient-Service-Delivery/Citizen-Service-Request-CSR-Call-Center-Calls/k2qr-ck2v
https://data.cincinnati-oh.gov/Efficient-Service-Delivery/Citizen-Service-Request-CSR-Call-Center-Calls/k2qr-ck2v
https://doi.org/10.1109/ACCESS.2020.3038645
https://doi.org/10.1111/jtsa.12194
https://doi.org/https:/doi.org/10.1016/0893-6080(88)90007-X


 



 

VITA 
 

VITA 
 

 
 

 

 


	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Objectives of the study
	1.3 Benefits of the study
	1.4 Scope and limitations
	1.5 Procedure of the research

	CHAPTER 2 LITERATURE REVIEW
	2.1 Workforce Management and Call Center
	2.2 Time Series and Machine Learning Models
	2.2.1 Autoregressive Integrated Moving Average (ARIMA)
	2.2.4 Support Vector Regression (SVR)

	2.3 Time Series Cross-Validation
	2.4 Error Metrics
	2.4.1 Mean Absolute Error (MAE)
	2.4.2 Mean Squared Error (MSE)
	2.4.3 Root Mean Squared Error (RMSE)
	2.4.4 Mean Absolute Percentage Error (MAPE)
	2.4.5 R-squared

	2.5 Related Research

	CHAPTER 3  METHODOLOGY
	3.1 Data Understanding
	3.2 Exploratory data analysis and visualization
	3.3 Data Preparation and Feature Engineering
	3.4 Data Preprocessing
	3.5 ACF and PACF
	3.6 Feature Importance
	3.7 Machine Learning
	3.7.1 Training set and Test set
	3.7.2 Data decomposition

	3.8 Feature Engineering
	3.8.1 Time Features
	3.8.2 Lag Features

	3.9 Feature Selection
	3.9.1 Correlation Analysis
	3.9.2 Tree-Based Models


	CHAPTER 4  EXPERIMENTAL RESULTS
	4.1 Statistical Test
	4.2 SARIMAX
	4.2.1 ACF and PACF results
	4.2.2 Model Identification and Diagnostics

	4.3 Support Vector Regression (SVR)
	4.5 Gradient Boosting Models
	4.6 Deep Learning
	4.6.3 LSTM

	4.7 Data Transformation
	4.8 Result Analysis
	4.8.1 MAE Analysis
	4.8.2 MAPE Analysis
	4.8.3 RMSE Analysis
	4.8.4 R-Squared Analysis


	CHAPTER 5  CONCLUSION AND DISCUSSION
	5.1 Conclusion
	5.2 DISCUSSION
	5.2.4 Flexibility and Non-Linearity
	5.2.5 Feature Importance

	5.3 Limitation

	REFERENCES
	VITA

