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ABSTRACT 

Title BOUNDARY CONTROL OF FLEXIBLE BEAMS 
Author NIPON BOONKUMKRONG 
Degree DOCTOR OF PHILOSOPHY 
Academic Year 2022 
Thesis Advisor Assistant Professor Dr. Pichai Asadamongkon  
Co Advisor Associate Professor Dr. Sinchai Chinvorarat  

  
The vibration control of flexible beams is an important problem in 

engineering applications. Many studies have proposed that the vibration control of these 
beams; however, the implementation methods in practical applications are few. This 
dissertation investigates passivity-based boundary control for vibration suppression of 
flexible beams. This method incorporated an energy principle in the design, rather than 
a signal processing perspective. An undamped shear beam was used as a beam 
model, and the controller was implemented through a moving base. The storage 
function was defined and used to determine the control law in the design process. The 
finite-gain L2 - stability of the controlled system was then proven. This technique treated 
the beam model PDE directly without model reduction, so control spillover was 
avoidable. Since the measurement and actuation in the application were non-collocated, 
a backstepping observer was needed for the state estimation. The controller was 
applied at the end of the beam via a moving base, so the beam domain was intact. This 
technique is readily implementable in applications. The PDE model was solved 
numerically using the finite-difference method. The computer simulation was used to 
demonstrate the performance of the controllers under the proposed control scheme. The 
beam vibration was suppressed satisfactorily with L2 - stability. 

 
Keyword : Passivity-based boundary control, Shear beam, Storage function, 
Backstepping observer, Vibration suppression, Partial differential equation, Finite 
difference equation 
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CHAPTER 1 
INTRODUCTION 

1.1 Background 
There has been significant interest in controlling flexible beams in recent years. 

This interest has been motivated by the prospect of fast, light robotic arms flexing under 
some load. Vibration is inevitable when the robotic arm travels at a high speed. The 
biggest problem with task completion is this vibration. In many cases, the only practical 
solution to this vibration is to slow down the robotic arm or wait until the vibration has 
subsided. 

Distributed characters or distributed parameter systems (DPS) constitute the 
flexible beams. The state variables of the distributed parameter system are affected by 
spatial and temporal variations. Models of these systems are represented 
mathematically using partial differential equations (PDEs). 

The techniques for designing a controller to reduce or control vibration in a 
slender Timoshenko or shear beam are proposed in this dissertation. Since the 
controller is only set up at the end of the beam, it has no effect on the beam's body. For 
the design, the full beam model of the PDE is used, with no simplifications or 
approximations. Then, we can prevent the spillover problems (Boonkumkrong, 
Chinvorarat, & Asadamongkon, 2023, pp. 1-16). 

The flexible beam model is a hyperbolic-like system that oscillates at a high 
frequency. As a result, high frequencies have an effect on the overall system dynamics. 
Spillovers cause the failure of many control system designs based on reduced or 
truncated finite-dimensional models that disregard the impact of high modes. In contrast 
to its parabolic counterpart, such as the heat equation, the dynamics of the system 
depends only on the first few modes; therefore, the impacts of higher modes may be 
minimal. Therefore, control designs using these finite-dimensional models with reduced 
dimensions are always insufficient. 

The proposed controller in this research is designed by using passivity 
properties of the beam model such as dissipation, storage function etc. This method 
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deals directly with the system’s original PDEs without the truncation of the model, so the 
spillover phenomenon caused by ignoring high-frequency modes is avoided.   

State estimation is performed using the backstepping observer, a Lünberger-
like observer. This observer is infinite-dimensional, which mimics the finite-dimensional 
one. The form of the observer is a partial differential equation (PDE). The non-collocation 
configuration is used for the control scheme. The proposed method of control is simple 
to implement in a wide variety of applications. 

 
1.2 Objectives of the Study 

Using the energy concept (the passivity property) to design the boundary 
control scheme for the flexible beam vibration’s suppression. 

 
1.3 Significance of the study 

1. Designing a control law relies on the energy concept rather than signal 
processing. 

2. Control spillover can be omitted because the higher modes are not removed 
when the system's original partial differential equation (PDE) is solved directly, with no 
model reduction or approximation. 

3. The control technique is implemented using distributed parameter systems 
(of infinite dimension) rather than lumped parameter systems (of finite dimension). 
Natural systems are modeled using distributed parameter systems. 

4. The control setup consists of non-collocated sensing and actuation, where 
the sensing and the actuation are placed at different locations. This configuration is 
simple to use in practical applications. 

5. The beam body or domain remains intact since both the controller and the 
observer are situated at the ends of the beam. 

6. The first time that the passivity-based controller is implemented with the 
backstepping observer. 

7. The beam model is a second-order partial differential equation with an 
integration term, making it easy to solve numerically. 



  3 

1.4 Scope of the study 
1. Design the passivity-based control controller using the energy principle. 

First, the storage function is defined and employed to derive the control law.   
 2. The suitable observer is selected and incorporated into the control system. 

In this dissertation, the backstepping observer is used. 
 3. The feedback control system's stability is established, and observer 

convergence is presented. 
 4. By using finite difference equation method, partial differential equations can 

be numerically solved. 
 5. The controlled systems with and without the observer are simulated and the 

results are discussed. 
 6 The control parameters of the controller and the observer are changed, and 

the effects on the performance are studied. 
 

1.5 Definition of terms 
1. Partial differential equation (PDE) - a differential equation that comprises 

unknown functions of several variables and their partial derivatives. 
2. Passive system - a system that consumes but does not produce energy. 

Examples are mass, spring and damper. 
3. Passivity-based control – a control scheme designed by using the passivity 

properties of the system such as dissipation, storage function etc. 
4. Lyapunov's direct method - the effective method for analyzing nonlinear and 

time-varying systems and a requisite for stability analysis and control law formulation. 
The differential equation on the system is not necessary to solve. Instead, a so-called 
Lyapunov function is constructed to check the stability. 

5. State observer - a system that estimates the internal state of a system based 
on input measurements. 

6. Storage function - a positively semi-definite, continuously differentiable 
function of the system state. 
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7. Non-collocated configuration – the control setup in which actuation is 
performed at one end and sensing is applied at the other. 

8. Collocated configuration – the control setup in which the actuation and the 
sensing are applied at the same location. 
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 CHAPTER 2 
REVIEW OF THE LITERATURE 

In this chapter, the literature pertaining the boundary controls is reviewed. The 
mathematical descriptions are shown as necessary. The sections are structured as 
follows: The developments of boundary control and distributed parameter systems, 
including the derivations of engineering beams, are introduced in Section 2.1. The 
relevant papers related to parabolic systems, which are the counterpart of hyperbolic 
systems, are discussed in Section 2.2. The papers on the control of hyperbolic systems 
such as string and wave equations are reviewed in Section 2.3, and the controls of the 
hyperbolic-like beam model are in Section 2.4. Section 2.5 demonstrates several 
applications of the boundary control, whereas Section 2.6 contains the chapter's 
conclusion. 
 
2.1 Introduction 

In this section, some background and information necessary for this research 
are investigated briefly.  

Irena Lasiecka (Lasiecka, 1995, pp. 2792–2796), discussed the evolution of the 
control of distributed parameter systems, including string and beam systems, across 
time. These systems correspond to natural physical systems and are governed by 
partial differential equations. Physically attractive and theoretically challenging topics 
involving boundary and point controls are the subject of this research. However, several 
important results are still dispersed across the research literature. These results need a 
more orderly presentation. 

Han R. et al. (Han, Benaroya, & Wei, 1999, pp. 935-988) developed and 
analyzed four engineering beams, namely the conventional Euler-Bernoulli and shear 
beams, which are thin beams, and the Rayleigh and Timoshenko beams, which are thick 
beams. The paper also presented the development history of each beam and the 
derivations of the beam models. For the boundary conditions, the beam frequency 
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equations were expressed. Using normalized wave numbers, the roots of frequency 
equations are expressed. 

In this dissertation, the boundary control with the backstepping observer of the 
shear beam is considered. 

Engineering beams mentioned above are of distributed parameter and infinite-
dimensional systems expressed by partial differential equations (PDEs). Padhi R. and Ali 
SF. (Padhi & Ali, 2009, pp. 59–68), in their review paper, from a great deal of the 
literature on distributed parameter systems, the attempt was made to offer a concise 
description of the development in the control of the distributed parameter systems. The 
presentation was in chronological order. The mathematical descriptions have been 
omitted so a broad audience can access the paper's content. 
 
2.2 Parabolic systems 

Some papers on parabolic systems, the counterpart of hyperbolic ones, are 
presented in this section. The system model, such heat system, is of the first-order-in-
time and second-order-in-space PDE. For the parabolic system, the first few modes of 
the model determine the system performance so that the higher modes can be 
disregarded. As compared with the hyperbolic system, the parabolic system is not 
difficult to control.  

The issue of boundary control for the the following heat equation,  
 

( , ) ( , ) ( ) ( , ), (2.1)t xxu x t u x t a x u x t   

 

was studied by WJ. Liu (Jiu, 2003, pp. 1033-1043). This equation can be made 
unstable by the term au  with 0a  . If ( )a x is a continuously differentiable function and 
  is a positive constant, it can be shown in this paper that a boundary feedback control 
law can be formulated analytically.  At a rate of  , the system with this control scheme 
converges to zero exponentially. 

  Andrey Smyshlyaev examined the boundary stabilization of the one-
dimensional parabolic partial differential equations using the backstepping technique 
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(Smyshlyaev & Krstic, 2004, pp. 2185-2202). Using coordinate integral transformation, 
the original system was changed into the known stable system. In doing so, the 
hyperbolic-type gain kernel PDEs, ( , )k x y  were formulated as follows, 

 
( , ) ( , ) ( , ), (2.2)xx yyk x y k x y k x y   

 

( ,0) 0, (2.3)k x   

 

( , ) . (2.4)
2

k x x x


   

 

The solution to the gain kernel (2.2) – (2.4) can be stated analytically as follows, 
 

2 2

1

2 2

( )
( , ) , (2.5)

( )

I x y
k x y y

x y





 


 

 

where 1I   is the 1st- order modified Bessel function of the first kind. 
 

The gain kernel of order one is plotted for several values of  , as shown in 
Figure 1. 

 

 

FIGURE 1 Gain kernel plot. 
 
The controller was expressed with the gain kernel in this way,  
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2 2
1

1

0 2 2

( )
(1) ( ) . (2.6)

( )

I x y
u y u y dy

x y





 


  

 

For parabolic partial integro-differential equations, Smyshlyaev A. et al. 
(Smyshlyaev & Krstic, 2005, pp. 613-625) proposed the design of exponentially 
convergent observers. The observer error system was transformed into a target system, 
which was known to be exponentially stable, by using an invertible coordinate 
transformation. The observer gain was in closed form. The output feedback controls 
were in both the collocated and non-collocated sensing and the actuation setup. 

Boonkumkrong N. et al. (Boonkumkrong & Kuntanapreeda, 2014, pp. 295-302) 
investigated the backstepping boundary control to regulate the temperature of a copper 
rod. At one end, a Dirichlet boundary condition was established, and at the other, a 
Neumann boundary condition was constructed. The rod that had a built-in heat source 
acted as an unstable system. The control setup was non-collocated, i.e., the sensor was 
at one end, and the actuation was at the opposite end. The experiment was conducted 
with the thermoelectric cooler acting as the controller, see Figure 2. The control scheme 
was evaluated by comparing the simulation and the experiment results. 

 

 
 

FIGURE 2 The experiment diagram. 
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2.3 String and Wave equations 
A partial differential equation (PDE) can be used to model the hyperbolic 

systems of strings and waves. The model is a PDE with second-order derivative terms in 
both time and space. The boundary control can be applied in this kind of system model. 

In 2007, Krstic et al. (Krstic, Siranosian, Balogh, & Guo, 2007, pp. 882-887) 
presented a backstepping boundary control scheme for the hyperbolic PDE system's 
controller and observer, i.e., the undamped vibrating string and a flexible beam. This 
design technique was also used for the vibration control of the shear and Timoshenko 
beams which will be discussed later. And also, in  2007 (Krstic, Guo, Balogh, & 
Smyshlyaev, 2007, pp. 2048-2053) and 2008 (M. Krstic, B.-Z. Guo, A. Balogh, & A. 
Smyshlyaev, 2008a, pp. 63-74), the issue of one-dimensional wave equation stabilization 
was considered by the same authors. The instability was at the free end, and the control 
was placed at the opposite. Using backstepping approaches, the gain kernel PDEs of 
the controller and observer were designed. The solution’s existence and uniqueness, as 
well as its exponential stability, were then proven. Finally, the applications were 
demonstrated using simulation results. 

In 2010, He W. et al. (He, Ge, Hang, & Hong, 2010, pp. 2584-2589) developed 
the adaptive boundary controller for a vibrating string exposed to unspecified time-
varying disturbances as shown in Figure 3. The string was modelled using a PDE and 
several ODEs. The robustness was shown by using Lyapunov’s direct method. The 
controller was applied at the tip of the string. Using the appropriate design parameters, 
it has been demonstrated that the string's state converges to a neighbourhood close to 
zero. Simulation results were used to prove the performance of the suggested control 
method. 
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FIGURE 3 A typical string system. 
 

In 2014, He W. et al. (He, Zhang, & Ge, 2014, pp. 1088-1093), the vibration 
suppression for a flexible string in both lateral and axial directions was investigated as 
shown in Figure 4. The governing equation of the nonlinear string was represented by 
two PDEs and four ODEs using Hamilton's principle for the derivation.  An adaptive 
boundary controller was created employing Lyapunov’s function. The adaptive law 
compensated for the parametric uncertainties. The effectiveness of the presented 
control law was confirmed by doing simulations on a computer. 

 

 

FIGURE 4 Nonlinear flexible string system. 
 

In 2018, Zhao Z. et al. (Zhao, Liu, & Luo, 2018, pp. 323-331) studied control 
issue for a vibrating string system with limited input and external disturbance. The 
control scheme stabilized the string system globally and compensated for the input 
saturation effect.  The disturbance observer was designed for tracking the external 
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disturbance.  By using LaSalle's invariance concept, it was able to demonstrate 
asymptotic stability. 

 
2.4 Beam equations 

The engineering beam models used in the analysis include Euler-Bernoulli, 
shear, Rayleigh and Timoshenko beams. There are many control methodologies for 
controlling these beam models, such as backstepping boundary control, passivity-
based boundary control, the sliding mode control etc. The beam model is represented 
by a fourth-order in space and a second-order in time PDE. The beam model is a 
hyperbolic-like system with a high-frequency oscillation character. High frequencies 
have effects and affect the overall system dynamics. Spillovers cause the failure of many 
control system designs based on reduced or truncated finite-dimensional models that 
neglect the impact of high modes. 

 
2.4.1 Euler-Bernoulli beam 

Euler-Bernoulli beams are the conventional engineering beams widely used 
in the analysis. This beam model is the simplest among the four engineering beams. 
Boundary control can be applied in this type of beam with various successes. 

In 1992, Morgul O. (Morgul, 1992a, pp. 639-642) consider the cantilevered 
Euler-Bernoulli beam. At which the free end, the boundary force, and torque controls 
were applied. To establish stability, the energy-based Lyapunov functional of the beam 
system was developed. The beam vibration was satisfactorily reduced.   

The control of one link flexible robot arms using direct strain feedback was 
investigated by Luo ZH. (Luo, 1993, pp. 1610-1622). The A-dependent operators was 
used for proving the closed-loop stability, the existence and uniqueness. In addition, 
control experiments were conducted to verify the methodology. 

Two years later, Luo ZH. et al. (Luo, Kitamura, & Guo, 1995, pp. 760–765) 
applied direct strain feedback for vibration suppression of the SCARA-type robot with 
rotational joints. Both trajectory tracking control and set point control experiments were 
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conducted. The simple PI (Proportional and integration) plus shear force feedback could 
help with both the movement of the robot arm and the damping of vibrations. 

In 2002, Fard MP. (Fard, 2002, pp. 239-258), the Lagrangian equations for 
distributed-parameter mechanical systems using Hamilton's principle were developed 
and then used for nonlinear Euler-Bernoulli beam model derivation.  The passivity 
property of the system was employed for controller design. The resulted controller was 
in the form of mass, damping and spring forces as shown in Figure 5. The feedback 
control system was shown to have finite gain 2L  stability. Finally, simulation results 
were demonstrated to show the controller's performance. 

 

 
 

FIGURE 5 A vibrating beam with a MDS boundary controller. 
 

Smyshlyaev et al. in 2008 (Smyshlyaev, Guo, & Krstic, 2008, pp. 185-190), 
the stability of the Euler-Bernoulli beam was investigated. Figure 6 depicts the left 
boundary as a sliding end while the right boundary was actuated by displacement and 
moment.  

 

 
 

FIGURE 6 The Euler-Bernoulli beam with the sliding and pivoting ends. 
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A year later, in 2009, the Euler-Bernoulli Beam which was expressed in the 
Schrodinger equation (Smyshlyaev, Guo, & Krstic, 2009, pp. 1134-1140) was controlled 
using the backstepping boundary control technique. The integral transformation 
transformed the resulting equation into a target system that is exponentially stable. The 
control method's efficacy was shown through simulations. 

The suppression of the beam, which was pinned at one end and the 
controlled sliding end, was investigated by Guo et al. (Guo & Jin, 2010, pp. 2098–2106). 
Before any design could be made, the Euler-Bernoulli beam had to be stated as a 
coupled heat-like equation. The backstepping technique might be put into practice by 
using this process. Then, an exponential target system with a specified decay rate was 
substituted for the original beam model. Unlike Smyshlyaev et al. (Smyshlyaev et al., 
2009, pp. 1134-1140), there are no limitations on which boundary control problems may 
be applied using this method. 

An unknown disturbance was assumed to be affecting the control of the 
beam's vibration, Figure 7, and Ge SS et al. (Ge, Zhang, & He, 2011, pp. 2988-2993) 
used Hamilton's concept to develop the adaptive boundary control. The beam's end 
was where the controller was put into action. It was shown that the beam state tends to 
approach zero. Simulation results demonstrated the controller's effectiveness. 

 

 
 

FIGURE 7 A typical Euler-Bernoulli Beam. 
 

In 2018, Liu Z et al. (Z. Liu, Liu, & He, 2018, pp. 531–541) studied the 
control technique for the conventional Euler–Bernoulli beam, whose input and output 
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were both bounded and which was exposed to disturbances. A boundary control 
scheme for damping vibrations was developed using the backstepping method. The 
partial differential equations of the system were treated directly. An auxiliary system was 
designed to manage the impact of the restricted input, and a Lyapunov function was 
implemented to reduce the effects of output restriction. Simulation results verified the 
effectiveness of the control scheme. 

 
2.4.2 Shear and Rayleigh beams 

The shear and Rayleigh beam models are more complex than the Euler-
Bernoulli beam. The shear beam has an additional shear deformation term in the model. 
In the case of the Rayleigh beam, the rotating inertia term is included. Shear and 
Rayleigh beams are mathematically similar but physically different. The shear beam is a 
thin beam, but the Rayleigh beam is a thick beam. In this thesis, the shear beam model 
is studied. 

In 2003, Krener et al. (Krener & Kang, 2003, pp. 155-177) proposed a new 
method for designing the observer for nonlinear systems using a backstepping 
technique. This work was the motivation for Krstic’s later works. The designed observer 
was globally convergent. As a result, the estimated error between the full-state plant and 
the observer decayed to zero exponentially. 

In 2006, Krstic et al. (Krstic, Balogh, & Smyshlyaev, 2006a, pp. 1389-1394), 
the undamped shear beam's control was examined. The beam was set up in a 
cantilevered configuration. The novel control strategy integrated the backstepping 
boundary control method with the damping boundary feedback method. The original 
unstable beam was transformed into the stable boundary-damped wave equation. The 
coordinate integral transformation was used to change this variable, 

 
1

0
( ) ( ) ( , ) ( ) , (2.7)w x u x k x y u y dy    
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where ( , )u x t  is the variable of the original system and ( , )w x t  is the variable 
of the target system. The control setup was the non-collocated measurement and 
actuation, which was easily implementable in many applications. The measurement was 
done at the free end of the beam, while the opposite end was utilized to implement the 
boundary feedback controller as follows, 

 
1

0
(1) (1,1) (1) (1, ) ( ) (2.8)x xu k u k y u y dy    

 
1

1 1
0

(1) (1, ) ( ) ,t tc u c k y u y dy    

 

where 
( , )u x t    is the lateral displacement, 
( , )k x y   is the gain kernel of the beam. 

 
When the piezo-actuator was used at the base of the beam, this technique 

can be used for an atomic force microscopy (AFM). The observer design for state 
estimation was done with a similar technique. The design parameters were easily 
selected to achieve the desired performance. 

In 2018, Boonkumkrong et al. (Boonkumkrong, Chinvorarat, & 
Asadamongkon, 2018, pp. 1-11), the vibration of the beam, which was attached to the 
moving base, was eliminated by using boundary control. 

Using a passivity-based boundary controller with a moving base, 
(Boonkumkrong et al., 2023, pp. 1-16), the vibrations of the flexible beam can be 
suppressed. The control designs might be classified as collocational or anti-
collocational, whether the beam's actuation and sensing were situated at the same or 
opposite ends. With the latter, estimating the state required the use of the backstepping 
observer. The controller was a PD-style controller. The control results were satisfactory. 

Liu JJ et al. studied the stabilization of a shear beam’s tip force subjected to 
disturbance matched boundary control (J. J. Liu, Chen, & Wang, 2016, pp. 117-128). To 
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regulate the unknown bounded external disturbance, the sliding mode control (SMC) 
was used. Finally, the closed-loop system solution’s existence and uniqueness were 
established. 

Lertphinyovong J. et al. (Lertphinyovong & Khovidhungij, 2008, pp. 8731–
8736), the Rayleigh beam was controlled using the backstepping boundary control. The 
original system was transformed into an exponentially stable system using a 
backstepping-like integral transformation. In doing so, the backstepping controller was 
formulated. The measurement and actuation were non-collocated in the control setup. 
The same technique was applied for the observer designs. Using simulation results, the 
performance of the closed-loop system is verified. 
 

2.4.3 Timoshenko beam 
Among the four engineering beams, the Timoshenko beam model is the 

most advanced. Both shear deformation and rotational inertia are included in the 
conventional Euler-Bernoulli beam. The boundary feedback controller is also used to 
control the Timoshenko beam. 

The boundary control of Timoshenko beams was investigated by Kim JU. 
and Renardy Y. (Kim & Renardy, 1987, pp. 1417-1429). The function of the energy 
stored in the beam and a moving base system is described by 
 

2 2 2 2

0

1
( ) ( ) ( ) ( ) ( ) , (2.9)

2

L w w
t I K EI d x

t t x x


 
  

    
     

    
  

 

where 
( , )w x t   is the lateral displacement. 
( , )x t   is the rotation angle of the beam subject to pure bending.  

    is the mass per unit length 
I   is the mass moment of inertia of the area. 
I    is the moment of inertia of the area. 
E    is Young’s modulus. 
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For the shearing term, the coefficient K is equal to k GA , where G  is the 
modulus of elasticity in shear, A  is the cross-sectional area and k  is a shape factor. 
The boundary control mechanism was in the form of lateral force and moment applied at 
the beam end. This energy equation will be modified for the controller design in this 
thesis.  

Morgul (Morgul, 1992b, pp. 1255-1260) also applied the same methodology 
as the Euler-Bernoulli beam case mentioned above to control the more advanced 
Timoshenko beam. The beam's vibration was exponentially and uniformly reduced to 
zero. 

The passivity and direct feedback control law for flexible mechanical 
systems were studied by Matsuno F. and Murata K. in 1999 (Matsuno & Murata, 1999, 
pp. 51-56). The Lyapunov function of the system was introduced and used to derive the 
control law. Asymptotic stability was proven using the differential operator and the 
invariance principle.  Lastly, experiments were carried out in order to validate the 
effectiveness of the proposed control strategy. 

In 2006, it was proposed in two separate articles that the Timoshenko 
beam's vibration may be suppressed by using a backstepping boundary control 
technique.  Part one was the design methodology (Krstic, Siranosian, & Smyshlyaev, 
2006, pp. 2412–2417), and part two was the stability analysis and simulations (Krstic, 
Siranosian, Smyshlyaev, & Bement, 2006, pp. 3938-3943). Shear deformation and 
rotational inertia were considered in the Timoshenko beam model. In Figure 8, the beam 
element was displayed. 
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FIGURE 8 The beam element. 
 

In the beam model, a small amount of Kelvin-Voigt damping was permitted. 
This damping was the internal friction present in the real material. The designs of the 
controller and the observer were the same as in the case of the undamped shear beam 
that was previously mentioned. The unstable beam was converted to the stable target 
system (a wave equation with a damping boundary) using the coordinate integral 
transformation, and the process is shown in Figure 9. 

 

 
 

FIGURE 9 Beam behavior with various steps of control. 
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The measurement and actuation were not collocated in the control 
configuration. In the mathematical solving of the Timoshenko beam model, the singularly 
perturbed approximation was used to reduce the original beam into the shear beam 
model and solved for the system response. 

In 2012, Sasaki M. et al. (Sasaki, Ueda, Inoue, & Book, 2012, pp. 1-6) 
investigated the controls of translational and rotational Timoshenko robotic arms. For 
controller design, the beam's passivity property was used. Without using a model 
approximation, it directly dealt with the PDE of the beam system. The stability of the 
feedback control was proven in 2L  sense. The performance of the proposed controller 
was found to be effective.  

In the same year, the authors also investigated methods for suppressing 
vibrations in a rotational arm, Figure 10 (Sasaki, Shimizu, Inoue, & Book, 2012, pp. 1-7). 
The control scheme consisted of a gain tuning with the neural network and a variable 
gain feedback control. The neural network learned the optimal gain of the controller. 
Lyapunov's direct method was used in the process of developing the controller. The 
presented controller was effective in vibration suppression. 

 

 

FIGURE 10 A Rotational flexible arm. 
 

In the paper of Zhao Z. and Liu Z. (Zhao & Liu, 2021, pp. 157-168), for a 
Timoshenko manipulator that was affected by a convergence disturbance-removing 
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scheme was designed. In a limited period of time, the estimation error was reduced to 
zero in a limited period of time. 

 
2.5 Some applications of the boundary control 

The boundary control can be implemented in many applications. In this section, 
some papers on the boundary control applications are presented.  

In 2013, He W. et al. (He, Zhang, & Ge, 2013, pp. 5802-5810) investigated the 
control problem of the marine riser installation, which consists of a vessel, a flexible riser 
to be installed, and the payload under the sea in Figure 11. The system's adaptive 
boundary control was made with the help of a Lyapunov direct technique. The proposed 
control scheme was used to locate the payload in the desired position and to suppress 
the vibration of the riser.  The controllers were placed at the top and the bottom of the 
riser. The design parameters were chosen for the desired performance. The control 
technique was shown to be successful via simulation. 

 

 

FIGURE 11 Typical beam-like marine riser installation system. 
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In 2014, He W. et al. (He, Sun, & Ge, 2014, pp. 497-505) analyzed the 
technique of boundary control for reducing vibrations in a maritime riser pipe. The 
flexible riser was described by the PDEs. The boundary controller, which located at the 
top of the riser, was designed using the integral-barrier Lyapunov function to suppress 
the riser vibration. Because of the existence of the parametric uncertainty, the authors 
the designed an adaptive controller to cope with this situation. 
The stability study was carried out with Lyapunov's theory of stability.  Simulation results 
demonstrated the effectiveness of the control schemes.  

Liu Y. et al. (Y. Liu, Fu, He, & Hui, 2018, pp. 8648–8658). considered 
spacecraft's flexible structure subject to external disturbances. An observer-based 
control was developed to remove vibration and maintain the proper orientation. An 
infinite-dimensional disturbance observer was utilized to decrease the disturbance. It 
has been shown that the developed control system is stable. 

Liu Y. et al. (Y. Liu, Chen, Wu, Cai, & Yokoi, 2021, pp. 1-9) analyzed the angle 
control and vibration suppression of a spacecraft. The adaptive neural network control 
was developed via backstepping and Lyapunov's direct technique.  A barrier Lyapunov 
was applied to guarantee that the angle tracking error remained within the acceptable 
limit.  Lyapunov analysis was used to demonstrate that the feedback control system was 
stable. 
 

2.6 Chapter conclusion 
This chapter reviewed the literature concerning boundary control and the 

related issues. The boundary control of the parabolic such as heat system, hyperbolic 
such as string system or wave equation, hyperbolic-like such as beam models, is 
considered.  

The parabolic system model is the first-order-in-time and second-order-in-
space PDE. The heat system model is a parabolic. For the parabolic systems, the first 
few modes of the model determine the system performance so that the higher modes 
can be disregarded. So, the parabolic systems were easy to control compared to their 
hyperbolic counterpart.  
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The boundary control was also applied successfully to control the hyperbolic 
systems such as string, wave equations and other mechanical systems. 

The flexible beam model is a hyperbolic-like system that oscillates at a high 
frequency. As a result, high frequencies have an effect on the overall system dynamics. 
Spillovers cause the failure of many control system designs based on reduced or 
truncated finite-dimensional models that disregard the impact of high modes. All 
engineering beam theories, including Euler-Bernoulli, shear, Rayleigh, and Timoshenko 
beams, are suitable for boundary control. 

For the controller and observer stability proof, there were many techniques 
used such as Lyapunov’s direct method, passivity property, the invariance principle etc. 

Both collocated and non-collocated configulations can be used depended on 
in the location of the actuation and sensing, and also based on the design techniques of 
each methodology. For the non-collocated configulation, in which the sensing and 
actuation were placed in opposition to one another, it is easier to implement in practical 
applications. 

The feedback boundary control technique was employed in many applications 
such as atom force microscopy (AFM), marine riser installation, container crane control, 
space structure etc.  
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CHAPTER 3 
METHODOLOGY 

This chapter presents the mathematical fundamentals and theories for 
designing the passivity-based controller. The engineering beam models, such as shear, 
and Timoshenko beams, etc., are derived in Section 3.1. The passivity property of the 
beams and some lemmas are explained in Section 3.2. In Section 3.3, the passivity-
based control design technique is demonstrated. Section 3.4 demonstrates the 
backstepping observer technique for state estimation, and Section 3.5 contains the 
chapter's conclusion. 

 
3.1 Derivation of Engineering beam models 

The beam model in engineering applications consists of the following four 
models: the Timoshenko, shear, Rayleigh, and Euler-Bernoulli beams. The Euler-
Bernoulli beam is the most commonly employed fundamental beam model. For this 
beam, the effects of beam displacement and bending moment are considered. The 
Euler-Bernoulli beam is turned into the Rayleigh beam by adding the rotating inertia 
term. Similarly, with shear deformation applied to the Euler-Bernoulli beam, the beam 
model changes into the shear beam. Mathematically, the equation of motion of the 
Rayleigh and shear beams is the same, but only the parameter of a specific term is 
different. In Timoshenko beam theory or thick beam theory, the effects of beam 
displacement, bending moment, rotary inertia, and shear deformation are all 
incorporated. 

Consider the beam element is shown in Figure 12 (Rao, 2011, pp. 699-768). If 
the shear deformation is disregarded, the tangent to the deflected center line will 
coincide with the normal to the element's face. The tangent to the deformed center line 
cannot be perpendicular to the face due to shear deformation. The amount of shear 
deformation can be determined by the angle that exists between the normal to the face 
and the tangent to the deformed center line. 
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FIGURE 12 An element of Timoshenko beam. 
 

In Figure 12, notice that the positive shear acting downward on the element’s 
right face. The shear deformation is expressed as following, 
 

, (3.1)
w

x
 


 


 

 

where   is the slope of the deflection line due to pure bending alone 
Note also that the element undergoes distortion alone but not rotation because 

of shear. 
 According to the mechanics of solids, the bending moment M  and shear 

force V  related to   and w  as follows, 
 

, (3.2)M EI
x





 

 

( ), (3.3)
w

V k AG k AG
x

 


  

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where 
G  is the modulus of rigidity of the beam’s material  
k  is Timoshenko’s shear coefficient.  
The value of k  is 9 10  for a circular section and 5 6  for a rectangular section. 
From Hooke’s law, G  , note also that 
 

. (3.4)V A GA    
 
For each of the different cross-sectional shapes, the right-hand side of this 

equation is modified by a factor k , as mentioned above, resulting in the equation 
becoming V k GA  .  

Using Newton's second law, we can derive the motion equation for the element 
in Figure 12: 

In the 𝑧 direction, the translation of the element is as follows, 
 

2

2
[ ] . (3.5)

w
V dV f dx V A dx

t



    


 

 

For the rotation about a line parallel to the y-axis and passing through point D: 
 

2

2
[ ] [ ] . (3.6)

2

dx
M dM V dV dx f dx M I

t





     


 

 

Using the relations V
dV dx

x





 and M

d M dx
x





 along with Eq. (3.2) and 

(3.3) and disregarding terms involving second powers in d x , Eq. (3.5) and (3.6) can be 
expressed as 
 

2 2

2 2
, (3.7)

w w
k AG f A

x x t




   
    

   
 

 



  26 

2 2

2 2
. (3.8)

w
EI k AG I

x x t

 
 
   

   
   

 

 

Solving Eq. (3.7) for x  ,  
 

2 2

2 2
. (3.9)

A w f w

x kAG t kAG x

   
   

  
 

 

Substituting the above equation Eq. (3.9) into Eq. (3.8), we reach the desired 
equation of motion for a uniform beam's forced vibration: 
 

4 2 4 2 4 2

4 2 2 2 4 2
1 (3.10)

w w E w I w EI f
EI A I

x t k G x t k G t k AG x


 

     
     

        
 

2

2
0.

I f
f

k AG t

 
  


 

 

The equation (3.10) is called the Timoshenko beam. 
For free vibration, 0f   and Eq. (3.10) becomes 

 
4 2 4 2 4

4 2 2 2 4
1 0. (3.11)

w w E w I w
EI A I

x t k G x t k G t


 

    
     

     
 

 

For solving Equation (3.10) or Equation (3.11), the following boundary 
conditions might be used. 

The deflection and slope of the beam are both zero for a clamped or fixed 
boundary. 
 

0. (3.12)w    
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For simply supported or hinged boundary, both the deflection and the bending 
moment are zero, 
 

0. (3.13)w EI
x


 


 

 

 With a free boundary, there is no shear force and no bending moment at the 
end. 
 

0. (3.14)
w

kAG EI
x x




  
   

  
 

 

No shear force and no beam slope existed for the end of the beam fixed to the 
moving base, 
 

0. (3.15)
w

kAG
x

 
 

   
 

 

 
Note that the following rotary inertia and shear deformation affect the beam 

model: 
If only the effect of rotating inertia is taken into account, the equation of motion, 

Eq. (3.11), contains no terms involving the shear coefficient k . 
 

4 2 4

4 2 2 2
0. (3.16)

w w w
EI A I

x t x t
 

  
  

   
 

 

Eq. (3.16) is called the Rayleigh beam. 
Considering only the effect of shear deformation, the term 4 2 2I w x t     

does not appear in the equation of motion.  As a result, we obtain the motion equation,  
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4 2 4

4 2 2 2
0. (3.17)

w w EI w
EI A

x t kG x t




  
  

   
 

 
Eq. (3.17) is called the shear beam or slender Timoshenko beam. A beam with 

a length-to-width ratio greater than 10 is considered a slender beam (Sasaki, Ueda, et 
al., 2012, pp. 1-6). Notice that Eq. (3.16) and (3.17) have the same structure 
mathematically, besides the different parameter of the term 4 2 2w x t   . 

If we ignore the effects of shear deformation and rotating inertia, Eq. (3.11) 
becomes   

 
4 2

4 2
0. (3.18)

w w
EI A

x t


 
 

 
 

 
Eq. (3.18) is the conventional Euler-Bernoulli beam. 
This research uses Eq. (3.17) as the model to be studied, which constitutes the 

most engineering beams used in many practical applications. From Eq. (3.7), with 
0f  and (3.8), the shear beam can be described as a coupled wave equation and a 

second-order spatial ordinary differential equation as follows, 
 

2 2

2 2
, (3.19)

w w
k AG A

x x t



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0. (3.20)

w
EI k AG

x x



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3.2 Passivity Property 
This section aims to introduce the concept of passivity and present some of the 

stability results obtained using this framework. A passive component is one that 
consumes but does not create energy. The passive component is incapable of power 
gain. Examples are resistor, inductor and capacitor for electrical systems and mass, 
spring and damper for mechanical systems. 
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The so-called storage function will be used for stability analysis. We can think of 
the storage function as the system's internal energy. All passive systems have a stable 
origin. To stabilize the origin, damping is injected into the system so that energy will 
dissipate whenever the state is not identically zero. For a dynamic system, let us define 
passivity now. Consider the following state model, 
 

( , ), (3.21)x f x   
 

( , ), (3.22)y h x   
 
where 
x  is the state variable, 
y  is the output variable, 
  is the input. 

  
The function ( , )f x  is locally Lipschitz, and ( , )h x  is a continuous 

function, where (0,0) 0f  , and (0,0) 0.h   There are an equal number of 
inputs and outputs in the system. 

Notice that the variables x  and y  will also be used as spatial variables in the 
controller and observer designs.  
 

Definition 1 The system is said to be passive if there is a function ( )V x  called 
the storage function that is a continuously differential positive semi-definite function such 
that, (Khalil, 2002, p. 236) 
 

. (3.23)T y V   
 

Lemma 1 If the system Eq. (3.21) – (3.22) is output strictly passive with 
T Ty V y y   , for some 0  , where  and y  are input and output, 

respectively, then it is finite-gain 2L   stable (Khalil, 2002, p. 242).    
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Proof 
 
Consider the function V  of the variable x , called the storage function. This 

function's derivative satisfies the condition: 
 

1 1
( ) ( ) , (3.24)

2 2 2

T T T T TV y y y y y y y


       
 

         

 

1
.

2 2

T Ty y


 


   

 

To get the result, integrate both sides over [0, ]  

 

20 0 0

1 2
( ) ( ) ( ) ( ) ,T Ty t y t d t t t d t V d t
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 
 
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2 0

1 2
( ) ( ) [ ( ( ) ) ( (0) )] . (3.25)T t t d t V x V x



  
 
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Take the square root on both sides, we get 
 

20 0

1 2
( ) ( ) ( ) ( ) [ ( ( )) ( (0))] . (3.26)T Ty t y t d t t t d t V x V x

 
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 
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With the fact that ( ) 0V x  , the inequality can be reduced to 

 

20 0

1 2
( ) ( ) ( ) ( ) ( (0)) . (3.27)T Ty t y t d t t t d t V x

 

 
 

    

 

For any nonnegative numbers a  and b , then 2 2a b a b   , we obtain 
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20 0

1 2
( ) ( ) ( ) ( ) ( (0)) . (3.28)T Ty t y t d t t t d t V x

 

 
 
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Finally, the equation is expressed as a norm notation, 

 

2 2

1 2
( (0)) , (3.29)

L L
y V x 

 
   

 

where 
2L

y and 
2L  are 2L  norms. So, the lemma is proved.  

  
Lemma 2 If the system with a positive, definite storage function ( )V x  is 

passive, then the origin of ( ,0)x f x  is stable (Khalil, 2002, p. 242).  
 

3.3 Design of Passivity-based Controller 
This section will demonstrate the control design based on passivity. The internal 

energy of the beam will be used as a storage function in the control scheme's 
development. The finite-gain stability and passivity of the feedback system are shown 
further. 

Usually, the shear beam (3.17) can be expressed in a short form (Krstic & 
Smyshlyaev, 2008, p. 91), 

 
( , ) ( , ) ( , ) 0, (3.30)t t xxt t xxw x t w x t w x t    

 
where 0   is a constant depending on the shear modulus.  

 

The shear beam model (3.19) and (3.20) can be expressed in short forms as 
follows (Krstic & Smyshlyaev, 2008, p. 91), 
 

( , ) ( , ) ( , ) , (3.31)tt xx xw x t w x t x t    
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( , ) ( , ) ( , ) 0. (3.32)xx xx t x t w x t     
 

The beam models (3.30), and (3.31) – (3.32) are equivalent. We can verify this 
by taking the following steps (Krstic & Smyshlyaev, 2008, p. 91), 
 

) (3.27) (3.28) (#),xa    
 

) (#) (##),xb   
 

1
) (##) (3.27) (3.26).c


   

 

The beam model (3.31) – (3.32) is the equation that is reduced from the fourth-
order equation. This form of equation will be employed for the control scheme derivation 
and for the numerical simulation; it is also used in the development of the finite 
difference equation. 

  

 
FIGURE 13  Shear beam model with the moving base. 

 

As shown in Figure 13, the investigated beam is a cantilever-type beam, which 
is fixed at the base on the right and free on the left (Boonkumkrong et al., 2023, pp. 1-
16). The free end has the following boundary conditions: 
 

(0, ) (0, ) 0, (3.33)xw t t   
 

(0, ) 0. (3.34)x t   
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As shown in Eqs. (3.33) and (3.34), the shearing force and bending moment 
are zero at the free end, respectively. 

The boundary conditions at the moving end are 
 

( ) [ (1, ) (1, )] ( ), (3.35)tt xm W t w t t U t    
 

(1, ) 0, (3.36)t   
 

(1, ) 1. (3.37)w t   

 
In Eq. (3.35), ( )U t  is the boundary controller implemented at the end of the 

beam via a moving base and from Eq. (3.36) - (3.37), the slope and the deflection at are 
zero, respectively. 

Note also that in the boundary conditions at both ends, i.e., at 0x   and at 
1x   are the functions of time, t  only.   

 

 
FIGURE 14  Shear beam model with coordinates 

 

In Figure 14, the model consists of the beam sliding along the column through 
the moving base. In the model, there are two coordinates. The first is a global coordinate 
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X Y fixed to the ground, which does not move with the beam. Another is a local 
coordinate x y  located on the beam base and moves with the beam.   

For the coordinate X Y , the deflection of the beam is expressed as  
 

( , ) ( , ) ( ) , (3.38)w x t w x t W t   
 

where ( )W t  is the displacement of the moving base along the column and is 
the function of time, t  only.   

The beam model (3.31) – (3.32) are expressed in the global coordinate as 
follows, 
 

( , ) ( , ) ( , ), (3.39)tt xx xw x t w x t x t    
 

( , ) ( , ) ( , ) 0. (3.40)xx xx t x t w x t     
 

Substituting Eq. (3.38) into (3.39) and (3.40) 
 

[ ( , ) ( )] ( , ) ( , ), (3.41)tt tt xx xw x t W t w x t x t     
 

( , ) ( , ) ( , ) 0. (3.42)xx xx t w x t x t     
 

Note that ( , ) ( , )x xw x t w x t  and ( , ) ( , )xx xxw x t w x t  

We propose the following controller which will be applied at the moving base. 
 

1( ) ( ) ( ), (3.43)tU t c W t t    
 
where the constant 1c  is positive. On the right-side of the equation, the first 

term is a damping force, and the variable ( )t  is a control element that will be 
determined in the next step.  
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In this study, the internal energy of the beam and the moving base will be used 
to define the following storage function: (Boonkumkrong et al., 2023, pp. 1-16),  

 
1

2

0

1
( ) [ ( , ) ( )] (3.44)

2
t tV t w x t W t d x   

 

 
1 1

2 2 2

0 0

1 1 1
( , ) [ ( , ) ( , ) ] ( ).

2 2 2
x x tx t d x x t w x t d x mW t       

 
The above function represents the potential and kinetic energies of the beam 

and the moving base. The first right-hand integral represents kinetic energy. The strain 
(potential) energies are represented by the second and third integrals. The last term 
stands for the moving base's kinetic energy. 

The time rate of change of the storage function (3.44) is as follows, 
 

1

0
( ) [ ( , ) ( )][ ( , ) ( )] (3.45)t t t t t tV t w x t W t w x t W t dx    

 
1

0
( , ) ( , )x xtx t x t dx    

 
1

0
[ ( , ) ( , )][ ( , ) ( , )] ( ) ( ).x t xt t t tx t w x t x t w x t dx mW t W t      

 
Substituting Eq. (3.41) into the first integral term of Eq. (3.45), yields 

 
1

0
( ) [ ( , ) ( )][ ( , ) ( , )] (3.46)t t xx xV t w x t W t w x t x t dx    

 
1

0
( , ) ( , )x xtx t x t dx    

 
1

0
[ ( , ) ( , )][ ( , ) ( , )] ( ) ( ).x t xt t t tx t w x t x t w x t dx mW t W t      

 
The square brackets in the integrands of the first and last integrals are 

multiplied, so the equation becomes, 
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1

0
( ) ( , ) [ ( , ) ( , )] (3.47)t xx xV t w x t w x t x t dx   

 
1 1

0 0
( ) [ ( , ) ( , )] ( , ) ( , )t xx x x xtW t w x t x t dx x t x t dx       

 
1

0
( , ) [ ( , ) ( , )]t xx t x t w x t dx    

 
1

0
( , ) [ ( , ) ( , )] ( ) ( ).xt x t t tw x t x t w x t dx mW t W t    

 
Integrating the second term and integrating by parts the third and fifth terms, 

we obtain, 
 

1

0
( ) ( , ) [ ( , ) ( , )] (3.48)t xx xV t w x t w x t x t dx   

 

( ) [ (1, ) (1, )] ( ) [ (0, ) (0, )]t x t xW t w t t W t w t t      
 

1

0
(1, ) (1, ) (0, ) (0, ) ( , ) ( , )x t x t xx tt t t t x t x t dx          

 
1

0
( , ) [ (1, ) ( , )]t xx t t w x t dx    

 

(1, ) [ (1, ) (1, )] (0, ) [ (0, ) (0, )]t x t xw t t w t w t t w t      
 

1

0
( , ) [ ( , ) ( , )] ( ) ( ).t x xx t t tw x t x t w x t dx mW t W t    

 
Applying BC of Eq. (3.33) - (3.34) and (3.36) - (3.37), the first and the last 

integral cancel each other (with the last integral rearranged) and the second and the 
third integrals are combined and then vanished according to (3.42), the equation 
becomes 

 
1

0
( ) ( , ) [ ( , ) ( , )] (3.49)t xx xV t w x t w x t x t dx 

 
1

0
( ) [ (1, ) (1, )] ( , ) ( , )t x xx tW t w t t x t x t dx       
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1 1

0 0
( , ) [ ( , ) ( , ) ] ( , ) [ ( , ) ( , )]t x t x xxx t x t w x t dx w x t x t w x t dx        

 

( ) ( ).t t tmW t W t  
 
Then, Eq. (3.49) simplifies to 
 

( ) ( ) [ (1, ) (1, )] ( ) ( ). (3.50)t x t t tV t W t w t t m W t W t    
 

By putting the boundary condition (3.35) into (3.50), yielding 

 
( ) ( ) [ ( ) ( ) ] ( ) ( ), (3.51)t t t t t tV t W t m W t U t m W t W t     

 

1( ) [ ( ) ( ) ( )] ( ) ( ),t t t t t t tW t mW t cW t t m W t W t      

 

1( ) [ ( ) ( )].t tW t c W t t    

 
For the sake of stability proving, we let ( )ty W t  be an output of the system 

and we will obtain  
 

2

1( ) ( ) ( ) ( ). (3.52)V t t y t c y t   
 

From Eq. (3.52) and lamma 1, the system Eq. (3.41) – (3.42) with boundary 
conditions (3.33) - (3.37) and the controller (3.43) is 2L  stable. 

Now, the additional control input ( )t  will be chosen. Again, the variable 
(1, )y w t  is defined as an output. According to the feedback control theory, we can 

stabilize the system by the control input ( ) ( )t y    where   is a function by which 
(0) 0   and (0) 0Ty    for all 0y  , then we choose the control component as 

shown below,   

0( ) ( ), 0. (3.53)t c W t k     
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On the right-hand side of Eq. (3.53) is a spring or elastic force term. 
Substituting the input (3.53) into the controller (3.43) 
 

1 0( ) ( ) ( ). (3.54)tU t c W t c W t    
 

Note that the first term on the right-side of Eq. (3.54) is damping force and the 
second term is spring or elastic force. Due to the fact that the right end of the beam was 
secured to the base, so ( ) (1, )W t w t , the controller becomes  
 

1 0( ) (1, ) (1, ). (3.55)tU t c w t c w t    
 
In the controller (3.55), the state feedback variables - both the displacement of 

the moving base and its time derivative - are employed in the controller of the control 
scheme. In this instance, the state estimator is unnecessary since we place the sensing 
and actuation in the same location. In this design, the sensing and actuation setup is 
called collocated configulation. 

The controller’s components or terms are relevant to physical variables in a 
real-world situation. The first term on the right-hand side of (3.55) acts as a damping 
component used to reduce the vibration. The second term represents the potential 
energy with a unique minimum at 0x  .   

The controller obviously uses a proportional-derivative (PD) algorithm. The 
controller is implemented on the moving base, and the control action is determined by 
the movements of the base. 

 
3.4 Backstepping Observer Design 

In this section, the observer design is presented. This design methodology was 
proposed by M. Krstic et al. (M. Krstic, B. Z. Guo, A. Balogh, & A. Smyshlyaev, 2008b, 
pp. 553-574). It is the typical form of the so-called copy of the system plus an injection 
of the estimation error of the output, which imitates the finite-dimensional case, which will 
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be explained later. The determination of the observer gains is similar to the one that is 
used by the Lünberger observer method. For the design technique, the observer error 
system is changed into a target system that is known to be exponentially stable by using 
an invertible coordinate transformation. The measurements used in the observer system 
are measured only at the tip of the beam. 

Eq (3.42) can be expressed in the following form  
 

2 2( , ) ( , ) ( , ) 0, (3.56)xx xx t b x t b w x t     
 

where 2 1b  .  
 
Take Laplace transform in x  of (3.56), we get, 
 

0
( ) cosh ( ) (0) sinh ( ( )) ( ) . (3.57)

x

yx bx b b x y w y dy     
 

Integrating by parts the integral term of the right-hand side of the above 
equation, yields (Krstic, Balogh, et al., 2006a, pp. 1389-1394), 

 
( ) cosh( ) (0) sinh( ) (0) (3.58)x bx b bx w    

 

2

0
cosh ( ( )) ( ) .

x

b b x y w y dy   

 

By setting 1x   in Eq. (3.58), we can write an expression for (0, )t   given in 
term of (1, )t   as following, 
 

1
2

0

1
(0) [ (1) sinh ( ) (0) cosh ( (1 )) ( ) ]. (3.59)

cosh ( )
b b w b b y w y dy

b
      

 
We obtain Eq. (3.60) by substituting it into Eq. (3.58).  
 



  40 

1
2

0

cosh ( )
( ) [ (1) sinh ( ) (0) cosh ( (1 )) ( ) ] (3.60)

cosh ( )

bx
x b b w b b y w y dy

b
      

 

2

0
sinh ( ) (0) cosh ( ( )) ( ) ].

x

b bx w b b x y w y dy    

 

Differentiating Eq. (3.60) with respect to space, x  and substitute into Eq. (3.31), 
then we get another form of the beam used for the observer model, 

 
2 3

0
( , ) ( , ) ( , ) sinh ( ( )) ( ) (3.61)

x

t t xxw x t w x t b w x t b b x y w y dy      

 
2 cosh ( ) (0, ) sinh ( ) (0),b bx w t b bx    

 

(0) (0). (3.62)xw   

 
From eq. (3.61) and boundary condition (3.62), the following PDE provides the 

observer,   
 

2 3

0
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) sinh ( ( )) ( ) (3.63)

x

t t xxw x t w x t b w x t b b x y w y dy      
 

2 cosh ( ) (0, ) sinh ( ) (0, )b bx w t b bx t   
 

ˆ( ,0) ( (0, ) (0, ),yp x w t w t   
 

2
ˆ ˆ ˆ(0, ) (0, ) (0,0)( (0, ) (0, )) ( (0, ) (0, )), (3.64)x t tw t t p w t w t c w t w t      

 

ˆ (1, ) (1, ). (3.65)w t w t  

 

where ( , )p x y is the observer error transformation gain which is to be 
determined. The design parameter for the observer, 2c  is used in determining the 
observer's convergence rate. 

The observer uses the information of the displacement, (0, )w t  and the 
rotating angle, (0, )t , which are both measured at the tip of the beam.  
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The observer (3.63) – (3.65) is the typical form of the so-called copy of the 
system plus an injection of the estimation error of the output, which imitates the finite-
dimensional case, where the observer of the form ˆ ˆ ˆ( )x Ax B L y C x     is used for 
the state equation x Ax B  , and the output equation y C x , where x   is the state, 
y  is the output, and   is the input. Notice that the variables x  and y  will also be 

used as spatial variables in the controller and observer designs. ,A B  and C are the 
system, control, output matrices, respectively, and L  the observer gain matrix (Krstic & 
Smyshlyaev, 2008, pp. 53-54). It should note that the above observer can be used 
whether the input, (1)w  in (3.65) is replaced by other control schemes such as the time-
dependent controller or even set to zero.  

The approach that is used to determine the gains is similar to the one that is us
ed by the Lünberger observer method, which is based on the pole placement concept. 
 

The observer error is introduced, 
 

ˆ( , ) ( , ) ( , ). (3.66)w x t w x t w x t   
 

The observer's error dynamics are, therefore, 
 

2 3

0
( , ) ( , ) ( , ) sinh ( ( )) ( ) (3.67)

x

t t xxw x t w x t b w x t b b x y w y dy      

 

( ,0) (0, ),yp x w t  

 

2(0, ) (0,0) (0, ) (0, ), (3.68)x tw t p w t c w t    

 

(1, ) 0. (3.69)w t   

 

By using the following transformation integral (Krstic et al., 2008b, pp. 553-574), 
 

0
( ) ( ) ( , ) ( ) . (3.70)

x

w x x p x y y d y     
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to convert the observer error dynamics (3.67) - (3.69) into the following target 
system 

 
( , ) ( , ), (3.71)t t xxx t x t   

 

0(0, ) (0, ), (3.72)x tt c t   

 

(1, ) 0, (3.73)t   

 

which has been shown to have exponential stability. 
 

From the transformation of variables, the observer gain will satisfy the following 
PDE, 
 

2 3( , ) ( , ) ( , ) sinh( ( )), (3.74)yy xxp x y p x y b p x y b b x y     
 

3 ( , ) sinh ( ( )) ,
x

y
b p y b x d     

 
2

( , ) ( 1), (3.75)
2

b
p x x x   

 

(1, ) 0. (3.76)p y   
 

where   is the integration variable. This PDE is of hyperbolic type and its 
domain is a lower  triangle and is shown in Figure 15. 
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FIGURE 15 The observer-gain kernel’s domain.  

 

By solving the above PDE, the observer gains (0 ,0)p   and its derivative 
( ,0)yp x   in (3.63) - (3.65) are obtained. The observer utilizes only the slope and the 

displacement at the free end of the beam to estimate all values of the displacements in 
the beam domain and is employed in the design of controllers. 

The following lemma establishes the backstepping observer's convergence. 
 

Lemma 3 Suppose the classical solution of (3.67) – (3.69) exists. Then the 
invertible transformation (3.70) converts the error system (3.67)–(3.69) into the already 
known exponentially stable system (3.71) – (3.73) (Krstic et al., 2008b, pp. 553-574). 

 

Proof 
 

The transformation (3.70), differentiated with respect to 𝑥 and 𝑡, is as follows: 
 

0
( , ) ( , ) ( , ) ( , ) ( , ) ( , ), (3.77)

x

t t t t t t xx xxw x t x t p x y y t dy w x t w x t       

 

0
( , ) ( , ) ( , ) ( , ) ( , ) ( ,0) ( , )

x

t t yy x xx t p x y y t dy p x x x t p x x t        
 

( , ) ( , ) ( ,0) (0, ) ( , ) [2 ( , ) ( , ) ] ( , )y y xx x yp x x x t p x t x t p x x p x x x t         

 

0
( , ) ( , ) ( , ) ( , ) ( , ),

x

x xx xxp x x x t p x y y t dy w x t     

 
2

2( , ) ( , ) ( ,0) (0, ) ( ,0) (0, )xx t yw x t b x t c p x w t p x t      
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2

0
[ ( , ) ( , ) ( , ) ( , )] .

x

xx yyp x y p x y b p x y y t dy    

 

Using the observer gain PDE (3.74) – (3.76) in (3.77), we obtain the governing 
equation (3.71) – (3.73). 

Taking the derivative with respect to x  of the transformation (3.70) with respect 
to x  and setting 0x  :  
 

(0, ) (0, ) (0,0) (0, ). (3.78)x xw t t p t    
 

When comparing (3.78) to the boundary condition (3.68), yielding the following, 
 

2(0, ) (0,0) (0, ) (0, ). (3.79)x tw t p t c t     
 
So, one obtain the boundary condition of (3.72). Then, the boundary condition 

of (3.73) is satisfied due to (1, ) 0p y  . So, the lemma is proved.   
Figure 16 shows the diagram of the control with the observer. The sensor 

located at the beam tip measures the beam's dynamics, (0, )w t  and sends the 
information to the observer for state estimation, ˆ (0, )w t . The estimated state is then fed 
into the controller and creates the actuator's signal ˆ (0, )w t . 
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FIGURE 16 The control diagram. 
3.5 Chapter conclusion 

The technique for designing the passivity-based controller was discussed. To 
begin, a mathematical model for the shear was constructed using Newton's second law, 
which also applied to other engineering beams. It was the partial differential equation 
that represented the shear beam model (PDE). One end of the cantilever shear beam 
was connected to the moving base, while the other end was free to move. In order to 
construct a controller, we first defined the passivity of the system and proved that the 
feedback control is the finite gain 2L  stability. In the passivity-based design, the 
storage function, which in this study is the energy function, was defined. This function is 
a representation of both the kinetic energy and the potential energy of the system. The 
resulting controller was characterized by its elastic and damping components and has a 
proportional and derivative (PD) control structure. The moving base housed both the 
sensing and acting components of the control setup. The sensing is at one end and the 
actuation is at the other in the real-world application or implementation because the 
control set-up is non-collocated. An observer or the state estimator is required here. The 
backstepping observer was used in this study. The gain kernel for the observer was 
developed and implemented. The domain of the hyperbolic PDE gain kernel is a lower 
triangle. In addition, the observer's convergence was shown. 
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CHAPTER 4 
RESULT 

This chapter will present the shear beam system's vibration suppression by the 
proposed passivity-based controller.  The numerical simulation will be performed using 
the finite difference equations. The results of the controller’s performance will be 
discussed. In Section 4.1, the finite-difference equations used to solve partial differential 
equations are discussed. In Section 4.2, the finite-difference versions of the partial 
differential equations for the full-state plant, the observer, and the observer's gain kernel 
are presented. The simulation and discussion are described in detail in Section 4.3. In 
Section 4.4, the effects of the different parameter values are shown. The last section of 
the chapter is the conclusion. 

 
4.1 Finite Difference Equations 

In this thesis, the finite difference method (FEM), a form of numerical solution 
method, is used to solve PDEs. The finite difference approach provides discrete 
numerical values at a specified grid point ( , )x t or ( , )x y . The numerical values are 
approximations of continuous solutions.  

For shear beam equation, it is assumed that the region to be examnined is 
covered by uniform rectangular grid with sides paralell to x  and t  axis, with x

and t being grid spacing in the x  and t  directions, respectively.   
For PDE of both shear beam equation and observer, the grid is also uniform 

rectangular grid with sides paralell to x  and t  axis, with  𝛥 𝑥 and 𝛥 𝑦 being grid 
spacing in the x  and t  directions, respectively.    

Furthermore, the point considered is the point ,i ix i x y i y    , and 

jt j t  of the domain, where i and j are integers, where 1i j  is the origin 
points and I and J are the maximum integers. The value of function ( , )w x t and

( , )p x t are denoted by j

iw  and j

ip , respectively.  
In this thesis, the first- and second-order terms in the PDE are solved by using 

the following finite difference approximations (Mathews & Fink, 2004, pp. 352-504):   
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The forward finite difference in time, 
 

1

( ). (4.1)

j j j

i i

i

w ww
O t

t t

  
   

  
 

 
The backward finite difference in time, 
 

1

( ). (4.2)

j j j

i i

i

w ww
O t

t t

  
   

  
 

 
The forward finite difference in space, 
 

1 ( ). (4.3)

j j j

i i

i

w ww
O x

x x


  

   
  

 

 
The backward finite difference in space, 
 

1 ( ). (4.4)

j j j

i i

i

w ww
O x

x x


  

   
  

 

 
The centered finite difference in time, 
 

1 12
2

2 2

2
( ). (4.5)

( )

j j j j

i i i

i

w w ww
O t

t t

    
   

  
 

 
The centered finite difference in space, 
 

2
21 1

2 2

2
( ), (4.6)

( )

j j j j

i i i

i

w w ww
O x

x x

 
   

   
  

 

 
where the terms (*)O is the truncation errors.  
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Since there are integration terms in the governing equations of the system, so 
numerical integration is needed.  In this thesis, we use a trapezoidal integration rule to 
solve the definite integral as follows, 
 

1

1

( , ) . (4.7)
2 2

bb

a k b
a

k a

x x
f x t dx f f f



 

 
    

 
.where ( )f x  is the function to be integrated, 𝑎 and 𝑏 are the limite of 

integration. 
 
4.2 Numerical Calculations 

For the numerical simulation of the shear beam model, the partial derivative 
terms in the previous section will be solved using the finite difference method (FDM). 
The forward-backward difference equation in the first order and the centered difference 
equation in the second order are employed to discretize the first- and second-order 
variables of the PDEs. Then, we can calculate the integral term by using the trapezoidal 
integration method.  
 

4.2.1 The finite difference equations for the full-state plant 
Using the beam model (3.61), the finite difference equation of the full-state 

plant is formulated. Figure 17 shows the calculation grid that will be used to do the 
computations, where x and y are spatial and temporal increments, i and j  are 
the indices, respectively.  
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FIGURE 17 The calculation grid for the beam. 
 
 Equation (3.61) can be approximated by using the following finite element 

equation, 
 

1 1
21 1

2 2

2 2
(4.8)

( ) ( )

j j j j j j
ji i i i i i

i

w w w w w w
b w

t x


 

    
 

   
 

1 1

1
3 2

1 1

2

1
sinh[ ( )]

2

sinh[ ( )] cosh ( ) sinh ( ) .

1
sinh[ ( )]

2

j

i

i
j j j

i k k i i

k

j

i i i

b x y w

b y b x y w b bx w b bx

b x y w






 
 

 
 

     
 
 
 

  
 

  

 
Then, we solve for the element 1j

iw  ,  
 

1 1 2

1 12 ( 2 ) (4.9)j j j j j j j

i i i i i i iw w w q w w w sb w 

        
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1 1

1
3

2

1
sinh[ ( )]

2

sinh[ ( )]

1
sinh[ ( )]

2

j

i

i
j

i k k

k

j

i i i

b x y w

sb y b x y w

b x y w





 
 

 
 

   
 
 
 
  

 

  

 

2

1 2 1cosh ( ) sinh ( )( ).j j j

i i

sb
sb bx w bx w w

x
  


 

 
where 2,r t x q r     and 2( )s t   . 
 

Finally, we obtain the following finite difference equation,  
 

1 2 1

1 1(2 2 ) ( ) (4.10)j j j j j

i i i i iw q sb w w q w w 

        
 

1 1

1
3

2

1
sinh[ ( )]

2

sinh[ ( )]

1
sinh[ ( )]

2

j

i

i
j

i k k

k

j

i i i

b x y w

sb y b x y w

b x y w





 
 

 
 

   
 
 
 

  
 

  

 

2

1 2 1cosh ( ) sinh ( )( ).j j j

i i

sb
sb bx w bx w w

x
  


 

 
The elements in the first and second rows can be computed from the given 

initial conditions as shown in Figure 17. 
The elements 1j

iw   in the next row from 2i   to 1i I  are determined 
using information from the two preceding rows.  
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4.2.2 The finite difference equations of the first element for the full-state plant 
Since the finite difference equation (4.10) cannot be used to calculate the 

first element 1j

iw   at 0x  , Eq. (3.59) and the boundary condition (3.33) are 
employed as follows,  

 
1

(0, ) (0, ) [ (1, ) sinh ( ) (0, ) (4.11)
cosh ( )

xw t t t b b w t
b

     

 
1

2

0
cosh ( (1 )) ( ) ].b b y w y dy   

 
From the boundary condition (3.36), (1, )t  , 
 

1
2

0

1
(0, ) [ sinh ( ) (0, ) cosh ( (1 )) ( ) ]. (4.12)

cosh ( )
xw t b b w t b b y w y dy

b
     

 
So, the finite difference equation of Eq. (4.12) can be expressed as, 
 

1 1

2 1 1

cosh ( )

j jw w

x b

 


  
 

1

1 1

1
1 2 1

1

2

1

1
cosh[ (1 )]

2

sinh( ) cosh[ (1 )] . (4.13)

1
cosh[ (1 )]

2

j

M
j j

k k

k

j

I I

b y w

b b w b y b y w

b y w




 





  
  

  
  

       
  
  

   
  

  

 

1 1

2 1 (4.14)
cosh ( )

j j x
w w

b

  
   
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sinh ( ) cosh[ (1 )] .

1
cosh[ (1 )]
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k

j
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b y w

b b w b y b y w

b y w




 





  
  

  
  

       
  
  

   
  
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1 1 1 1

2 1 1 1 1

0.5
sinh ( ) cosh ( (1 )) (4.15)
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j j j jx b x y
w b b w b y w w

b b

     
      

 

1
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2

1

cosh[ (1 )]

.
cosh ( ) 1

cosh[ (1 )]
2

I
j

k k

k

j

I I

b y w
b x y

b
b y w








 
  

 
 
  

 


 

 

1

1 2

1

1
(4.16)

0.5
tanh ( ) cosh[ (1 )] 1
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jw
b x y

b x b b y
b

 
 

   

 

 
1
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2

1
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cosh ( ) 1
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2

I
j
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k

j
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b y w
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






 
  

 
 
  
 


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1 2

1
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j b x y
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b x y
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b
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2
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2
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j
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k

j

I I

b y w

b y w








 
 

 
 
  
 


 

 
The Eq. (4.17) is used to calculate the first elements of each row. 
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4.2.3 The finite difference equations of the last element for the full-state plant 
For the last element, 1j

Iw   can be computed from the boundary condition 
(3.35) with the controller, ( )U t ,  

 
(1, ) [ (1, ) (1, )] ( ) (4.18)t t xm w t w t t U t    

 

1 0(1, ) [ (1, ) (1, )] (1, ) (1, ). (4.19)t t x tm w t w t t c w t c w t      
 
Because of the boundary condition (3.36), (1, ) 0t  so 
 

1 0(1, ) (1, ) (1, ) (1, ) (4.20)t t x tm w t w t c w t c w t     
 

1 0(1, ) (1, ) (1, ) (1, ). (4.21)x t t tw t m w t c w t c w t     
 

The finite difference equation of Eq. (4.21) is written as follows,  
 

1 1 1

1
1 02

2
, (4.22)
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jI I I I I I I
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   
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       
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2 2 2

1 1

1 0 1 1

( ) ( ) ( )
2 1 . (4.23)j j j j

I I I I

t t t t t
w c c w c w w

m x m m m m x
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      
         

   
 

 
Eq. (4.23) is used to calculate the last element 1j

Iw   of each row.  Note that 
the displacement of this point is also the displacement of the moving base.   
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In summary, Eq. (4.10), (4.17) and (4.23) are used to calculate the elements 
of the full-state plant. 

 
4.2.4 The finite difference equations for the observer 

In this subsection, the observer will be developed into the finite difference 
equation. The finite difference equation for the boundary condition (3.62), at 1i  , may 
be expressed as follows:  

 

1
1

ˆ ˆ
,

j j
ji iw w

x
 




 

 
1

2 1
1

ˆ ˆ
. (4.23)

j j
j w w

x


 



 

 
From Eq. (3.63), the finite difference equation of the observer be written as 

follows,  
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ˆ ˆ ˆ ˆ ˆ ˆ2 2
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where 2,r t x q r      and 2( )s t    . 
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  1

2 1 1 1
ˆ ˆ ˆsinh ( ) ( ) ( ).j j j j

i y i
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bx w w s p w w

x
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Eq. (4.26) is used to calculate the elements of the observer from 2i   to 
1i I  .  

 
4.2.5 The finite difference equations of the first and last elements for the 

observer 
Since the first element of each row cannot be determined using Eq. (4.26), 

so, the finite difference equation will be developed for this element 
From the boundary condition (3.64), the finite difference equation can be 

written as follows,  
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We solve for the element 1

ˆ jw ,  
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At for the element at 1j j  , Eq. (4.30) becomes 
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1
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 1 1 1 1 12
2 2 1 1 1 1 1
ˆ ˆ(1 ) .j j j j j jc
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    
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   

 
The first element of the observer's finite difference equation is given by 

(4.31), while the final element's finite difference equation is derived from (3.65), as 
shown below: 
 

1 1ˆ . (4.32)j j

I Iw w   

 
In summary, Eq. (4.26), (4.31) and (4.32) are used to calculate the elements 

of the observer. 
 

4.2.6 The finite-difference equations for the observer gain kernel 
Lastly, in this subsection, the finite difference equations for the observer 

gain kernel PDE are formulated. The domain of this PDE is the lower triangle 
0 1y x   , so, Figure 18 depicts the calculating grid with the spatial increments 

x  and y  , and indexed by i  and j  , respectively.   

 
 

FIGURE 18 Calculation grid for the observer. 
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From Eq. (3.75), we can get the diagonal elements, i

ip  as follows 
 

2

( 1). (4.33)
2

i

i i

b
p x   

 

Next, to obtain the off-diagonal elements, 1

j

ip   which are just below the 
diagonal by differentiating Eq. (3.75) with respect to x , so we obtain,  
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So, the finite difference equation of Eq. (4.34) is as follows, 
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
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Then, we get the off-diagonal elements by setting j i  yields  

 
2

1 . (4.36)
2

i i

i i

b
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The vertical elements at i I  can be obtained by using Eq. (3.76), which 
are all zero, 
 

0. (4.37)j

Ip   

 
Now, the rest of the elements are obtained by using Eq. (3.74), so, the 

observer gain kernel's finite-difference equation is as follows: 
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So, we obtain the finite difference equation for calculating the rest of the 
elements of the observer gain kernel as follows, 
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The equation (4.41) is calculated downward from above, here the known 

values are available. 
Finally, the equation for derivative of the observer gain kernel used in Eq. 

(3.63) is 
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In summary, the finite difference equations (4.33), (4.36), (4.37), (4.41) and 

(4.42) are used to calculate the observer gain kernel PDE. 
 

4.3 Simulation results and Discussions 
The beam simulations are shown in this section for both with and without the 

observer. In solving the partial differential equation, the finite difference equations 
developed in the preceding section will be implemented. 

The numerical computations are performed through the use of code written in 
MATLAB using the parameters as shown in the Table 1 below. In the numerical 
simulation, the time and spatial increments are 0.01t   and 0.025x  , respectively.  

 
 TABLE 1 Control parameters 
 

𝐦 𝛆 𝐜𝟎 𝐜𝟏 𝐜𝟐 

𝟎. 𝟎𝟓 1 1.0 1.25 0.75 
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The following initial conditions as proposed by Krstic et al. (Krstic, Balogh, & 
Smyshlyaev, 2006b, pp. 2430-2435) cause the beam to begin vibrating,   
 

2(0) 0.1 (1 ) sin [1.6 (1 )], (4.36)w x x      
 

2(0) 0.1 (1 ) sin [1.6 (1 )]. (4.37)tw x x      
 

Figure 19 illustrates the displacement and velocity at the beginning of the 
motion as defined by the equations (4.36) and (4.37). The initial conditions are then 
enhanced by 50% for the observer. 

 

 
 

FIGURE 19 Initial displacement and velocity 
 

In the uncontrolled case, the initial conditions are applied to the beam model to 
stimulate the vibration. The energy of the system is preserved in the beam because 
there is no damping component in the beam model. Within the system, there are only 
changes from one form to another between potential and kinetic energy. Figure 20 
depicts the oscillating motion of the response. Figure 21 depicts the tip displacement. 
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FIGURE 20 The simulation for the beam without the controller 

 
 

FIGURE 21 The displacement of the tip of the beam without the controller. 
 

The beam response in the controlled case, where the controller (22) was 
applied at the moving base, is shown in Figure 22. The control action and the tip 
displacements are shown in Figure 23. The vibration quickly died down. This is because 
the vibrating energy in the system is dissipated through the damping component, 

1 (1, )tc w t  in the controller and the elastic component, 0 (1, )c w t  causing the equilibrium 
point being at 0x  .    
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FIGURE 22 The simulation for the beam with the controller. 
 

 
 

FIGURE 23 The tip displacement and the control action. 
 

Figures 24 and 25 illustrate the observer's gain kernel and its derivative, 
respectively. The curves were both smooth. 
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FIGURE 24 The observer’s gain function. 
 

 
 

FIGURE 25 The observer’s derivative gain function. 
 

The beam model simulation with observer (3.63) – (3.65) and the controller 
(3.55) is shown in Figure 26. The observer makes use of the displacement, (0, )w t , of the 
beam’s tip and the slope (0, )t , which can be derived from the boundary condition 
(3.33). The initial conditions for the system with the observer, which were 50% larger 
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than for the full-state system, have caused vibration. In the 2L   sense, the beam is also 
stabilized. 

 
 

FIGURE 26 The beam simulation with the observer. 
 

Figure 27 depicts the time sequence of the beam displacement snapshots for 
the uncontrolled case. The solid line represents the full-state response, whereas the 
dashed line represents the observer's response. Since there is no dampening to reduce 
the vibration, the beam vibrates indefinitely.  Figure 28 shows the snapshots of the beam 
displacements with the controller at 1x  , the responses settle down and reach 
equilibrium. Notice that the base movements are present at 1x  .  
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FIGURE 27 Snapshots of the uncontrolled beam with the observer. 
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FIGURE 28 Snapshots of the controlled system with the observer. 
  

Using the 2L   norm, often known as the Euclidean norm, we can calculate the 
total energy of the system using (4.38) (Khalil, 2002, p. 647). 
 

2 2

12
. (4.38)Iw w w    

 
The settling time measures how quickly the response settles down. The settling 

time is defined as the amount of time needed for the beam's norm to reduce to within 
2% of its maximum norm under the initial conditions. 
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FIGURE 29 The Euclidean norm of the system with and without the observer. 

  
For the full-state plant, the settling time was at 5.9t  , whereas in the control 

with the observer, it was at 5.7t  . The time it took the observer to settle down was less 
than in the full-state case. This depends on the setting of the observer’s design 
parameter, 2c . The system's 2L   norms without and with the observer (solid and dot-
dash lines, respectively) are displayed in Figure 29. The energy of the system was 
quickly dissipated. 

The observer error between the full state and the observer is shown in Figure 
30.  As t   , the observer error response approaches zero. 

 
 
 



  69 

 
 

FIGURE 30 The observer error. 
 

4.4 Control and observer with different parameters 
The control system's performance will be examined in this section, along with 

the impact of parameter modifications. Each spring, damping, and observer’s design 
parameter will be changed, but all the other parameters will be kept fixed 
(Boonkumkrong, Chinvorarat, & Asadamongkon, 2022, pp. 1-11). 

 
4.4.1 The effects of the different spring parameters 

In the first case, the damping parameter, 1c  and the observer’s design 
parameter, 2c  will be kept at 1.0 and 0.75, respectively, while the spring parameters, 0c  
will be set at 1.0, 1.5, and 2.0. Figures 31 and 32 show the tip displacement of the full-
state control and the tip displacement of the control with an observer, respectively.   
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FIGURE 31 The tip displacement with different spring parameters. 
 

 
 

FIGURE 32 The tip displacement (observer) with different spring parameters. 
 

The settling times of the different spring parameter, 0c  at the value of 1.0, 
1.25, 1.5, 1.75 and 2.0 are displayed in Table 2, and are plotted using the least-squared 
curve-fitting as shown in Figure 33. As the spring parameter value increased, the settling 
time also increased. This occurred due to the stiffer spring parameter controller 
supplying the system with more energy than the softer ones. Notice that the settling 
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times of the observers were less than that of the full-state case. This was because of the 
tuning of the design parameter, 2c  for setting the convergence rate of the observer. The 
spring parameter 0c   is responsible for maintaining the system's equilibrium condition at 

0w  . The spring parameter should be set at the smallest value possible.  
 
TABLE 2 Settling times for different spring parameters.  
 

Spring 𝒄𝟎 = 𝟏. 𝟎 𝒄𝟎 = 𝟏. 𝟐𝟓 𝒄𝟎 = 𝟏. 𝟓𝟎 𝒄𝟎 = 𝟏. 𝟕𝟓 𝒄𝟎 = 𝟐. 𝟎 

Full-state 5.9 8.0 8.1 10.3 12.3 

Observer 5.4 5.5 7.7 7.8 9.9 

 

 
FIGURE 33 Settling times with different spring parameters. 

 

4.4.2 The effects of the different damping parameters 
In the second case, the damping parameters, 1c  are varied at the values 

of 0.5, 0.75, and 1.0, while the spring parameter, 0c  and the observer’s design 
parameter, 2c  are set at 1.0 and 0.75, respectively. Figure 34 for the tip displacement 
of the full-state control and Figure 35 for tip displacement of the control with an 
observer. The system where the damping parameter has the smallest value has the 
largest amplitude.   
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FIGURE 34 Tip displacements with different damping parameters. 
 

 
 

FIGURE 35 Tip displacements (observer) with different damping parameters. 
 

The settling times for the damping parameters, 1c  at various values, 
including 0.5, 0.75, 1.0, 1.25, and 1.5, are shown in Table 3, and were plotted using the 
least-squared curve-fitting as shown in Figure 36. The settling time was less in the case 
of the strong damping parameter. This is because the rate of vibration energy 
dissipation is high.  As we changed the spring parameter up to a certain point, i.e., at 
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around 1 1.1c  , the time it took for the system to settle started to increase. The reason 
is that the controller put too much damping into the system, making it move slowly. 
 

TABLE 3 Settling times for different damping parameters. 
 

Damping 𝒄𝟏 = 𝟎. 𝟓 𝒄𝟏 = 𝟎. 𝟕𝟓 𝒄𝟏 = 𝟏. 𝟎 𝒄𝟏 = 𝟏. 𝟐𝟓 𝒄𝟏 = 𝟏. 𝟓 

Full-state 12.8 8.9 5.9 5.2 4.5 

Observer 9.3 6.05 5.4 5.2 4.7 

 

 
FIGURE 36 Settling times with different damping parameters. 

 

4.4.3 The effects of the different observer’s design parameters 
For the varying design parameters of the observer, 2c  the control 

parameters were fixed at 0 1c  , and 1 1c  . The observer’s design parameters will be 
varied at 1.0, 1.5, 2.0, 2.5 and 3.0. The tip displacement of the beam as a result of 
varying the parameters to 1.0, 2.0, and 3.0 is depicted in Figure 37. 
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FIGURE 37 Tip displacements with different observer’s design parameters. 
 

Table 4 and Figure 38 depict settling times upon varying the observer’s 
design parameters. The settling time increased as the parameter values increased. This 
parameter is used as a tuning parameter for setting the observer’s convergence rate. 

 
TABLE 4 Settling times for the different observer parameters.  
 

Observer 𝒄𝟐 = 𝟏. 𝟎 𝒄𝟐 = 𝟏. 𝟓 𝒄𝟐 = 𝟐. 𝟎 𝒄𝟐 = 𝟐. 𝟓 𝒄𝟐 = 𝟑. 𝟎 

Parameter 5.8 6.5 7.3 9.6 12.2 
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FIGURE 38 Setting times with different observer’s parameters. 
 

4.5 Chapter conclusion 
In the first part of the chapter, the finite difference equations to find the solutions 

of the PDE for the shear beam system, the observer, and the observer gain kernel were 
developed. The only first- and second-order partial derivative terms and the integration 
terms make up the PDE, and the finite difference method makes it easy to solve them. In 
the second part of the chapter, the numerical simulations were performed. The initial 
displacement and initial velocity functions were provided. These initial conditions gave 
the starting information for the subsequent calculations and also triggered the beam 
systems to vibrate. The numerical simulations were shown in uncontrolled and controlled 
situations and for both full-state and observer cases. The system responses of both the 
full-state and observer cases were observed in the controlled case, and they converged 
satisfactorily to equilibrium at 0w  . The energy dissipation due to the damping term 
in the controller was observed using the Euclidean or 2L   norm. The error between the 
responses of the full state and the observer approaches zero as t  . The control 
parameters, both spring parameter, 0c   and damping parameter, 1c  and the 
observer's design parameter, 2c  were varied to study the performance of the controller 
and the observer. The spring, or elastic parameter, in the controller was used to keep 
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the equilibrium point at 0w  , which should be set at a moderate value. The damping 
parameter is the tuning parameter that determines how long it takes for the control to 
settle. The higher the value, up to a certain value, the shorter the settling time. If the 
damping parameter was set too high, the control was slow, or the settling time was 
longer. For the observer's design parameter, the higher the setting, the longer the 
settling time. As shown in the simulations, all the parameters were easily tuned. The 
simulation results have shown that the proposed passivity-based controller effectively 
eliminated the beam vibration.  
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CHAPTER 5 
SUMMARY DISCUSSION AND SUGGESTION 

5.1 Summary Discussion 
The boundary control based on passivity has suppressed the flexible beam’s 

vibration. In this study, the undamped shear beam was taken into consideration. By 
incorporating an energy idea into the design of the controller for this method. The PDE in 
the beam model may be solved without resorting to a reduced model. The model's 
higher terms were not excluded; the control spill-over can be avoidable. In the design of 
the controller, this technique took advantage of the passivity property of the beam. The 
energy function of the beam was employed as the storage function. It was composed of 
kinetic and potential energies and was next employed to identify the controller. It was 
shown that the feedback control system is finite gain 2L  stable. The damping-spring 
mechanism dynamics, which were physical variables, were included in the designed 
controller. 

The movable base at the right end of the beam was used for applying the 
designed controller. Both the actuation and sensing were collocated, which means they 
were applied in the same place. In the situation of non-collocational architecture, i.e., 
when the sensing and actuation were located at opposing ends, the backstepping 
observer was utilized for the estimation of the system's state. The latter configuration can 
be employed easily in actual applications. With the use of the finite difference method, 
the PDE was solved numerically. For the numerical calculation,  the parameters were set 
at 01, 0.05, 1m c    and 1 1.25c   for the controller and 2 0.75c  for the 
observer. The time and space increments were 0.01t   and 0.025x  , 
respectively. The amount of energy still stored in the system was measured using the 
Euclidean or 2L  norm. The beam control simulation results were displayed both with 
and without the state estimation. The settling time for  

the full-state system and the observer were at 5.9t   and 5.7t  , 
respectively. The observer error approached zero as t  . The proposed control law 
was simple and successfully removing the flexible beam's vibration. 
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5.2 Suggestion 
In this study, the vibrating shear beam model was controlled by a passivity-

based controller. This controller can also be used with other engineering beams, such 
as Euler-Bernoulli, Rayleigh, and Timoshenko beams. The reason is that since the 
structure of the proposed controller components consists only of damping and elastic 
terms, which are the real physical parameters, there is no restriction on their usage in 
other kinds of beam models. 

The possibility of future research may also include the following paragraphs:  

In this study, the beam model was investigated without any outside forces or 

disturbances, so the study of the forced vibration with some disturbance is very 

interesting. The results of the study can be applied to a wider range of applications.  

The investigation of the observer's design parameter, which can be tuned to 

determine the observer's settling time or the rate at which the observer's response 

catches up with the full-state controller.  
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