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ABSTRACT 
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Degree MASTER OF SCIENCE 
Academic Year 2022 
Thesis Advisor Dr. Napa Sae-bae  

  
This study evaluates the performance of IDInvert, a variant of the generative 

adversarial network (GAN) models, in terms of ability to generate synthetic face images 
that resemble real ones, while also preserving personal identity. The main focus of the 
study is to investigate whether current techniques can detect the subtle differences 
between real and synthetic face images generated by the IDInvert model. The findings 
reveal that although the IDInvert model produces highly realistic facial images, they do 
not preserve personal identity, and they can be identified using feature extraction 
techniques and standard classification models. Overall, the study highlighted the 
potential risks of using GAN inversion models and emphasized the importance of 
developing more robust and secure algorithms to prevent the misuse of such 
technology. 

 
Keyword : Generative model, GAN, GAN inversion, Facial recognition, Fake face 
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CHAPTER 1 
INTRODUCTION 

1.1 Background 
Generative models can generate realistic non-existing content like images and 

videos. In particular, generative adversarial networks (GAN) (Goodfellow et al., 2014) 
that takes a random vector as an input and generates facial image that resemble 
samples in training data have been rapidly developed during recent years and still 
continually improved. The recent GAN variations can generate amazingly realistic face 
images with even higher resolution, such as PGGAN (Karras, Aila, Laine, & Lehtinen, 
2017) and BigGAN (Brock, Donahue, & Simonyan, 2018), and some of the latter 
architectures even disentangle the manipulation on each attribute and let the generated 
facial images features, such as ages, pose, gender and expression, can be separately 
edited. Examples of this identity-preserving GAN model are style-based GAN family 
(Karras, Laine, & Aila, 2019), (Karras, Laine, et al., 2020) and (Karras et al., 2021). 

These GAN technologies have raised the possibility of many useful visual 
applications. However, it also brings the concern on critical abuses and even severe 
criminals, as these fake contents plausibly deceive human eyes and recognition. In 
addition, with identity-preserving GAN model, it can be widely abused and harmfully 
impacts a target person.  

 Although fake detection techniques had been long developed for decades, 
those traditional techniques that were developed are ineffective when dealing with 
contents generated from deep learning networks (Marra, Gragnaniello, Verdoliva, & 
Poggi, 2019), (Neves et al., 2020). Novel techniques are therefore required to detect 
those GAN-generated contents. (Tolosana, Vera-Rodriguez, Fierrez, Morales, & Ortega-
Garcia, 2020) 

Considering the wrestling between efforts to improve GAN illusion ability and 
efforts to catch up it, This study is set to examine the model called IDInvert (J. Zhu, 
Shen, Zhao, & Zhou, 2020b) which is one of the GAN inversion (Xia et al., 2022). Given 
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the face photos of the target persons, this GAN inversion model converts the photos into 
latent vectors that pretrained GANs can use to regenerate identity-preserving images. 
 
1.2 Objectives of the Study 

These GAN technologies have raised the possibility of many useful visual 
applications. However, it also brings the risk concern of critical abuses and even severe 
criminals, as these fake contents plausibly deceive human eyes and recognition. In 
addition, with identity-preserving GAN model, it can be widely abused and harmfully 
impacts a target person.  

 Although fake detection techniques had been long developed for decades, 
those traditional techniques that were developed are ineffective when dealing with 
contents generated from deep learning networks (Marra, Gragnaniello, et al., 2019), 
(Neves et al., 2020). Novel techniques are therefore required to detect those GAN-
generated contents. (Tolosana et al., 2020) 

The objective of this study is to investigate the performance of this GAN 
inversion model on synthesizing realistic face images and to develop the fake detection 
technique that can effectively classify the GAN inversion generated facial images from 
the real ones. 
 
1.3 Scope of the Study 

In this study, one of the state-of-the-art GAN inversion models, IDInvert (J. Zhu et 
al., 2020b) is used to regenerate real face photos from LFW dataset. Figure 1  shows 
examples of images regenerated by IDInvert. 

LFW dataset contains 13,233 faces images of 5,749 individuals with rather 
diversified races and skin colors, and thus allows the test without bias on a narrow 
group of races or skin colors. It also contains face images with various gesture, 
including both straight poses, left poses, and right poses of the same persons, which 
enables the test on personal identity preservation. Figure 2 shows sample photos of 
LFW. 
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This LFW dataset will be used as real images and as reference images to 
generated synthetic images in the following two experiments. 

To investigate the performance of this GAN inversion model on generating 
realistic face images, similarity test is designed to verify IDInvert capability to preserve 
the personal identity of target faces by comparing the distance between real photos with 
different poses and the distances between real photo and regenerated images with the 
same pose. The test result will demonstrate how close synthetic images are to real 
images. 

To develop a fake detection technique that can effectively classify the GAN 
inversion generated facial images from the real ones. The set of the features  of each 
face image will be extracted from pretrained CNN networks and combined with 
frequency domain analysis features (Durall, Keuper, Pfreundt, & Keuper, 2019). This 
feature vector will then be used as an input for a multilayer perceptron network classifier 
where it is trained to discriminate those regenerated images from the real ones. 

   
   

   
   

   
Figure  1  Samples of IDInvert-generated images 
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Figure  2  Samples of LFW face images 

 



 
 

CHAPTER 2  
LITERATURE REVIEW 

 
 In this chapter, previous works on three topics: generative adversarial networks 
(GAN), GAN inversion, and fake face detection techniques, are reviewed. In the first 
topic, the definition and the general components of GANs, including the issues that may 
arise in GAN model training phrase, are described. In addition, the interesting GAN 
architectures are sequentially described. These models became the foundation of style-
based GANs, which enabled semantic editing on generated images. 

In the second topic,  GAN inversion techniques, which were developed to exploit 
capability of the recently developed StyleGAN (Karras, Aittala, et al., 2020) and enable 
realistic manipulation on real images are discussed. In particular, the properties, 
approaches, application tasks, and examples of GAN inversion models are described. 
The selected GAN inversion model for this study, the IDInvert, is also elaborated in 
detail.  

In the third topic, the types of fake face manipulation techniques and the recent 
techniques which were developed to tackle GAN-generated fake faces are briefly 
described. Some examples of the fake face detection techniques against the entire face 
synthesis are discussed. Lastly, the generalizability limitation of the current fake face 
detection approaches is discussed. Details of these topics are follows. 
 
2.1 Generative Adversarial Networks 
 Generative adversarial networks model (GAN) (Goodfellow et al., 2014) was first 
introduced as a subclass of generative models and widely obtained attention for 
achieving realistic image generation. A GAN basically consists of the two linked multi-
layered neural networks, namely the generator (G) and the discriminator (D). G has a 
structure simply contrary to an encoder that converts images into array. It conversely 
generates images from random numbers, so called latent vectors. Latent vectors are 
embedded in the multi-dimensional space, which is called the latent space. 
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While D could be simply considered as a binary classifier which is responsible 
for checking whether an image is real or generated. Figure 3 shows the general 
components of GAN architectures. 

 

 
Figure 3 Overview of GAN architectures 

 
To train a GAN, the G and D network are trained in an adversarial manner. At 

first, the weights of G are frozen, and it could not yet generate realistic images. D is 
trained to classify which images are real or not, by using a labeled set of real images 
and generated images from the unlearned G. The loss function for training D was 
designed to minimize errors that D wrongly identifies the real images and the generated 
ones, so that weights of D are adjusted to learn how real images would look like. 

Then, the trained D is then fixed, and G is trained to generate more realistic 
images and deceive D. G loss function is set to maximize the chances that D wrongly 
classifies generated images as real images. The training process is repeated for some 
numbers of epochs until the stop criteria is met. This could be until the generator 
produces output that is indistinguishable from real data, or until the performance on the 
validation set stops improving. 
 

2.1.1 Problems of GAN 
The original GAN is considered hard to train, since there are serious problems 

that can result in training failure (Goodfellow, 2016). 
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1) Non-convergence It is the situation where trained parameters could not find 
the stable equilibrium between optimizing G and D loss function, or the weights 
of G and D are not converging.  

2) Vanishing Gradients This problem is that D is highly effective in discriminating 
samples generated by G and would not be fooled by G. In this case, D would 
not give useful feedback to G for adjusting weights and optimize the generation. 
(Arjovsky & Bottou, 2017) 

3) Mode Collapse In this problem, G pays too much attempts to overcome D by 
generating only a small set of realistic images. Generated images are therefore 
alike and loss diversification comparingly to the train images.  

 
2.1.2 Variations of GAN architectures 

Successive works proposed the changes in network architectures, loss functions 
and training steps for developing in training stability, image diversification. The latter 
GANs can generate more realistic and larger images. Some of the improved GAN 
versions are as follows: - 
 

1) cGAN (Mirza & Osindero, 2014) The conditional GAN was proposed as an early 
revision of the original GAN. Conditional components were added, and labels 
were used in training the GAN. So that the images could be conditionally 
generated by desired condition. 

 
2) AC-GAN (Odena, Olah, & Shlens, 2017) The auxiliary-classifier GAN (AC-GAN) 

was an extension of conditional GAN. The module that also outputs the labels of 
generated images was added. 

 
3) DCGAN (Radford, Metz, & Chintala, 2015) As the network structures of the 

original GAN was similar to common image encoders and decoders, G and D 
initially consisted of max pooling layers and fully-connected layers. The Deep 
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convolutional GAN (DCGAN) was introduced with changes in convolutional 
layers. This resulted in increasing quality of generated images and training 
stability. DCGAN was widely accepted as successful GAN architecture and 
became the basis for the latter models. The proposed changes were as follows.  

(1) Max pooling layers in G and D were replaced by the transpose 
convolution layers and the convolution layers consecutively. 

(2) Fully connected layers were removed both in G and D 
(3) Batch normalizing layers were added both in G and D 
(4) Regarding the activate function, ReLU was used in G, and LeakyReLU 

was use in D. 
 

4) Improved Techniques for GAN training (Salimans et al., 2016) This paper 
suggested the following techniques to encounter non-convergence and mode 
collapse problem. The techniques were mostly dealing with the loss function of 
G and D as follows. 

(1) Feature matching  The objective of training G was adapted to 
prevent from overtraining on the same current D. Instead, the new loss 
function required G to generate images that matched the statistics of 
real images, which were identified by D. 

(2) Minibatch discrimination This technique was designed to resolve 
mode collapse and prevent the model generating images that resemble 
each other. Training images are packed into minibatches for training D 
collectively, instead of processing each images individually. during. 
This is to avoid the lower distribution of generated images. 

(3) Historical averaging This technique was to add historical averaging 
terms to the loss function of both G and D with the objective to help the 
training achieved convergence better. 



  9 

(4) One-sided label smoothing In this technique, smoothing on the 
positive labels in D loss function was deployed to improve the stability 
of the adversarial model during the training process. 

(5) Virtual batch normalization This can be regarded as the extension of 
batch normalization proposed by DCGAN paper. Particularly, statistics 
of the reference batch was used to normalize input data instead of the 
individual batch’s statistics. 

 
5) EBGAN (Zhao, Mathieu, & LeCun, 2016) The energy-based GAN (EBGAN) was 

developed based on the concept of LeCun’s energy-based model (LeCun & 
Huang, 2005). The discriminator in the adversarial model was modified to 
calculate the energy function and use as the loss function. To achieve better 
stability, the architecture of an auto-encoder was used in the discriminator. This 
method can be seen as an early version of the loss function, implemented to 
enhance stability of the training process. 
 

6) Unrolled GAN (Metz, Poole, Pfau, & Sohl-Dickstein, 2016) To stabilize GAN 
training and decrease opportunity of mode collapse, this paper proposed 
modification on the training procedures with the unrolled optimization of the 
discriminator. G’s parameters would be updated more often than D’s parameters 
by the defined numbers of unrolled step. This was to prevent G overfitting any 
current version of D. 

 
7) WGAN (Arjovsky, Chintala, & Bottou, 2017) This paper also encouraged major 

change in GAN modeling. Wasserstein GAN (WGAN) adopted the concept of 
the Earth Mover distance (EM distance) and used the so-called Wasserstein 
distance as the loss function. WGAN was trained to make the distribution of 
generated images close to the distribution of real images. The network called 
‘critic’ was used in place of D. The critic’s architecture was alike D, but it 
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returned a scalar value instead of the probability that an image was real or not. 
This scalar value takes roll as a score measuring quality of generated images. 
WGAN was reported to improve training stability and get rid of mode collapse 
and became another foundation for latter works. 

 
8) LSGAN  (Mao et al., 2017) The Least Squares GAN (LSGAN) paper 

proposed to use the least squares in place of the sigmoid cross entropy for D’s 
loss function. The architectures of G and D consisted of convolutional layers like 
DCGAN. The model was reported to generate images with better quality and 
achieve more training stability. 

 
9) BEGAN (Berthelot, Schumm, & Metz, 2017) The architecture of Boundary 

Equilibrium GAN (BEGAN) was much alike the mentioned EBGAN (Zhao et al., 
2016) in the way that an auto-encoder was used as a discriminator. 
Reconstruction losses of the autoencoder were calculated for both real images 
and generated images. The distance between reconstruction losses is then 
measured by the Wasserstein distance, which is used as a loss function for GAN 
training. The model was argued to better provide fast and stable training and 
able to produce high image quality. 
 

10) WGAN-GP (Gulrajani, Ahmed, Arjovsky, Dumoulin, & Courville, 2017) The 

Wasserstein GAN with gradient penalty (WGAN-GP) was an improved version of 
original WGAN (Arjovsky et al., 2017). The improvement focused on the loss 
function. The authors proposed to use the term ‘gradient penalty’ in the loss 
function to enforce the Lipschitz constraint, in place of the weight clipping. This 
was because the weight clipping formular potentially led to either non-
convergence or vanishing gradients problems. 

 
11) SN-GAN (Miyato, Kataoka, Koyama, & Yoshida, 2018) The spectrally normalized 

GAN (SNGAN) could be considered as a revision of WGAN (Arjovsky et al., 
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2017). The paper focused on improving the loss function of the critic network. 
They argued that the proposed spectral normalization term could outperform the 
previous training stabilization techniques, e.g., weight normalization (Salimans & 
Kingma, 2016), weight clipping used in the original WGAN, and gradient penalty 
in WGAN-GP (Gulrajani et al., 2017), for controlling the Lipschitz constraint.  

 
12) PGGAN (Karras et al., 2017) The progressive growing GAN (PGGAN) paper 

seemed to make another milestone on GAN modeling. This paper proposed the 
progressive growing technique for architecture and the training procedures. The 
convolution layers were designed to have increasingly higher resolution from 
4x4, 8x8, 16x16, 32x32 up to 1024x1024, and were added and trained both in G 
and D networks gradually. The PGGAN could generate images with high 
resolution up to 1024x1024, which was the largest size ever. 
 The authors deployed the minibatch discrimination technique (Salimans 
et al., 2016) to encounter mode collapse and the WGAN-GP loss function 
(Gulrajani et al., 2017) for training stability. Their new techniques, the equalized 
learning rate and the pixelwise feature vector normalization are also introduced 
for preventing unhealthy competition between G and D also. 

 
13) SAGAN (H. Zhang, Goodfellow, Metaxas, & Odena, 2019) The Self-Attention 

GAN (SAGAN) was developed mainly to solve weakness of the prior GANs 
regarding generating the images with structural complication, e.g. four-legged 
animals. The self-attention module, which was previously used in NLP models 
(Parikh, Täckström, Das, & Uszkoreit, 2016), (Cheng, Dong, & Lapata, 2016), 
was added to the G network. This was to deal with the relationships between 
widely separated spatial regions better, while typical convolutional GANs did not 
perform well on this. SAGAN was highly based on SN-GAN (Miyato et al., 2018) 
and used the spectral normalization term in loss function too. The two-timescale 
update rule (Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2017), which 



  12 

was proposed to use different learning rates in training G and D, was also 
deployed for the more stabilized and faster training.   

 
14) BigGAN (Brock et al., 2018) The large-scale GAN, BigGAN, was another 

phenomenon. It could generate broad range of image classes with high quality 
and high resolution up to 512 x 512. (While other high-resolution GANs, e.g., 
PGGAN, focused only on face images.) The BigGAN architecture was based on 
SAGAN (H. Zhang et al., 2019). It also employed the self-attention modules in 
G’s networks and the spectral normalization terms in the loss function for 
stabilization purpose. 
 The major modification was in the G layout. The blocks of batch 
normalization layers, upsampling layers, and convolutional layers (so called 
residual block, ResBlock, collectively) were in place of the regular convolutional 
layers. Each ResBlock was related to a step of resolution growing. Therefore, the 
more numbers of ResBlocks were added, the generated images got the higher 
resolution. 
 It is also interesting that the latent vector z was first split into many 
chunks and before feeding to each ResBlock. This is different from typical GANs 
where the whole latent vectors were fed to models with no partition. 

 
15) AEGAN (Guo et al., 2019) This model is particularly designed to generate high 

resolution images. The autoencoder was deployed to extract the global structure 
features of real images and combine them into the latent embedding for training 
the generator. The adversarial denoiser was also used to refine generated 
images by removing visual artifacts. AEGAN could generate high resolution 
images up to 512x512 and was claimed to consume significantly less training 
time than PGGAN (Karras et al., 2017) while having quite close performance. 
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16) MSG-GAN (Karnewar & Wang, 2020) The multi-scale gradient GAN (MSG-GAN) 
was developed mainly to improve training stability for high resolution image 
generation. There were two architectures which were simply the variation of 
PGGAN (or ProGAN) (Karras et al., 2017) and StyleGAN (Karras et al., 2019), 
namely MSG-ProGAN and MSG-StyleGAN respectively. The basic components, 
including G, D, and loss function. Each version was like either PGGAN or 
StyleGAN. This design enables the model to generate up to 1024x1024 images. 
However, the MSG-ProGAN was not trained in the progressive growing scheme 
like the original PGGAN, as all the layers were trained at the same time. 
 The core features of MSG-GAN were the direct links between all the 
counterpart layers of G and D. The 8x8 deconvolution layer in G was connected 
to the 8x8 convolution layer in D and so on. This direct connection was inspired 
by architecture of the U-net (Ronneberger, Fischer, & Brox, 2015), which was 
initiated for biomedical image segmentation works. The connection allowed the 
transfers of gradient descents to train G layers at every scale simultaneously, 
and therefore stabilized the learning of higher scale layers better. 

 
17) InterFaceGAN (Shen, Gu, Tang, & Zhou, 2020) The InterFaceGAN was not a 

GAN itself. Literally, it was an extension module which helped a GAN better pick 
up latent codes. It enabled disentanglement of face semantics and allowed the 
face attributes i.e., pose, age, gender, eyeglasses to be edited independently. 
With the InterFaceGAN, image manipulation can be performed on the face 
images generated by conventional GANs in the same way as images generated 
by StyleGAN (Karras et al., 2019). It could also operate with GAN inversion 
models to reconstruct and semantically edit the real face images.  

 
18) StyleGAN (Karras et al., 2019) The first version of StyleGAN might be the biggest 

game changer in GAN works. As prior works just focused on improving stability, 
convergence, image diversification and resolution, StyleGAN emphasized on 
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how to make attributes of generated images could be further edited 
independently. It was thus mainly designed to disentangle the latent codes and 
enable the sperate controls over style generation. The introduction of StyleGAN 
sparked the findings of techniques to utilize the ability to perform realistic 
manipulation on real images, which later became GAN inversion. 
 The StyleGAN architecture was based on PGGAN (Karras et al., 2017).  
The discriminator network (so called the critic) and the loss function were 
adopted from the WGAN-GP paper (Gulrajani et al., 2017). The progressive 
structure of convolution layers was also inherited and enabled the generation of 
high-resolution images up to 1024x1024 pixels. 
 A major modification was added to the generator. Inspired by studies on 
style transfer, the random latent code z was fed to the network, called the 
mapping network, instead of the generator network like other GANs. The 
mapping network then converted the input codes z to the intermediate code w. 
The intermediate code w was not directly fed to the generator also, but was 
passed to the affine transformation algorithms to be further converted into the 
‘styles’ (y). The style y variables were then distributed to the adaptive instance 
normalization modules (AdaIN) (X. Huang & Belongie, 2017) that were 
embedded in every convolution block of each resolution level. 
 One of the most prominent features of StyleGAN is the operation called 
‘style mixing’ which enables generating new face images by mixing attributes of 
two face images. This mechanism allows mixing of the coarse styles (including 
pose, gender, age, races, and skin color), the middle styles (general hair styles, 
face shape and eyeglasses, and background color), and the fine styles (eye 
color, hair color, detailed hair styles) from the original images. This separable 
style control is then encoded in the style (y) variables fed to AdaIN. 

 
19) StyleGAN2 (Karras, Laine, et al., 2020) A year after the first StyleGAN paper, 

another paper on StyleGAN proposing the improved architecture and training 
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processes. This was motivated by the observed blob-like artifacts in background 
areas of generated images, and the problem that face details, like teeth, did not 
move correspondingly to the whole face when changing pose. 
 The first problem urged modification in detailed design of the generator’s 
blocks, especially splitting AdaIN components, refining normalization and 
modulation algorithms, and adding weight demodulation operation into every 
block. 
 The latter problem was solved by redesigning the connection between 
counterpart layers of G and D to transfer gradient descents during the training 
process. The original StyleGAN applied progressive growing method derived 
from PGGAN, but it was pointed out that causing the said problem. StyleGAN2 
was therefore switched to the skip connection scheme which was inspired by 
MSG-GAN (Karnewar & Wang, 2020) . 

 
20) StyleGAN2-ADA (Karras, Aittala, et al., 2020) Training the StyleGAN families is 

not that cheap. It requires both the large enough dataset of high-resolution 
images and the incredibly powerful processing units. Therefore, the special 
version of StyleGAN2 with the adaptive discriminator augmentation mechanism, 
so called StyleGAN2-ADA, was proposed.  Its objectives were to stabilize the 
training with limited dataset and to make StyleGAN better for generating images 
in other domains (besides human face). The concept of this technique was 
roughly the same as general image augmentation techniques to increase 
additional samples by adapting the existing images. 

 
21) StyleGAN3 (Karras et al., 2021) This latest version of StyleGAN was just 

introduced in 2021 and seems yet to be well known. The problem that motivated 
this work could be observed when interpolating a set of the same face with 
different poses, angles, or positions. In other words, it is a problem of transition 
animation rather than a single image, so called texture sticking. It is the situation 
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that small attributes, especially hair, moustache, or textile patterns are 
unintentionally fixed to some certain pixels and do not move to other pixels 
correspondingly to shift of the whole image. This problem makes the image 
transition look unrealistic. 
 The problem might not be seen as critical but required complicated 
solutions. To eliminate texture sticking problem, it required the concepts of 
positional references and the ‘equivariance’ property of GAN networks. The 
generator architecture was almost reengineered. The main improvement 
objectives were to remove all causes of positional refences and to enhance 
either translation equivariance or rotation equivariance property of the networks. 
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2.2 GAN Inversion 
GAN inversion, or GAN embedding, is currently one of the emerging AI fields. Its 

purpose is to enable realistic manipulation on real images. GAN inversion models utilize 
the capability of recently developed GANs, especially StyleGAN (Karras, Aittala, et al., 
2020), which allows independent editing attributes of generated images e.g., pose, age, 
gender, eyeglasses of generated faces.  

To edit real images using GANs, many techniques were designed to invert real 
images into codes that GANs can further use to regenerate like those generated 
images. However, the inversion is not the same as the feature extraction used in image 
classification works. Finding of appropriate area in latent space and to enable semantic 
reconstruction and effectively maintain attribute disentanglement is still challenging. 
 

2.2.1 Properties of GAN inversion methods 
The important properties of GAN inversion methods were proposed by (Xia et al., 

2022) as follows. 
1) Resolution of reconstructed images The Capacity to reconstruct high resolution 

images with satisfied quality depends both on the employed GAN and inversion 
algorithms. Recently developed GANs, especially PGGAN (Karras et al., 2017) 
and StyleGAN, could generate high resolution images up to 1024x1024 pixels. 
However, the utmost utilization of ability to generate that high resolution requires 
appropriate mapping the target images to the latent spaces. This results in 
currently ongoing search of inversion approaches and architectures. 

2) Semantic awareness Sematic seems to be the most important thing for the 
realisticness. It may be considered as the attempt to maintain meaningfulness of 
the whole image while the model generates a single pixel. The well-designed 
GAN inversion methods will reconstruct real images as if they know what objects 
are lying on and how the whole objects should look like after editing. In other 
words, GAN inversion models with the sematic awareness should let generated 
faces smile, turn left-right, and get younger-older while still looking like real 
human faces. 
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3) Being layerwise This means how easy the model is designed to be tracked 
which layer was processing the signal data. Indeed, this concept has attracted 
research attention for a long time because deep learning networks was 
perceived as a magic box. Many studies were also conducted for clear 
understanding how GANs worked and how to make them better. Though the 
continuous performance improvement led to more and more complicated 
architectures, GANs and GAN inverters are also expected to be layerwise and 
tractable which network layers potentially cause problems. 

4) Out-of-distribution generalizability This requires GAN inverters could invert wide 
ranges of image categories even though the inverter and the employed GAN 
were trained by image sets of specific domains. For example, a StyleGAN-based 
inverter, which was trained mainly on human face datasets, can also effectively 
invert animal images or geographic scenes, like sky and ocean, and even allow 
semantic manipulation. This is challenging but also unjustifiable. The model is 
expected to semantically generate objects that it has never known nor 
specialized. Generalizability would be very useful in situations with limited data 
and training resources. 

 
2.2.2 Types of GAN inversion methods 

During the last few years, lots of GAN inversion models have been proposed. 
They could be categorized into 3 approaches, namely learning-based models, 
optimization-based models, and hybrid models (Xia et al., 2022). 

1) Learning-based GAN Inversion models This approach is generally based on 
training the encoder networks to map real images into latent codes. Many 
architectures and training procedures in this framework have been proposed, 
including pSp (Richardson et al., 2021), e4e (Tov, Alaluf, Nitzan, Patashnik, & 
Cohen-Or, 2021), ReStyle (Alaluf, Patashnik, & Cohen-Or, 2021), E2Style (Wei et 
al., 2022), High-fidelity GAN inversion (T. Wang, Zhang, Fan, Wang, & Chen, 
2022), HyperInverter (Dinh, Tran, Nguyen, & Hua, 2022) etc. 
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2) Optimization-based GAN Inversion models The optimization approach does not 
train the encoder’s weights but directly optimizes the latent codes to catch up 
with the target images. This method normally begins with initializing latent codes 
and then performs an optimization process to achieve the best result. It thus 
consumes higher processing power and more computers’ memory. However, it 
is accepted to return better quality than the encoder approach. The optimization-
based models include Image2StyleGAN (Abdal, Qin, & Wonka, 2019), 
Image2StyleGAN++ (Abdal, Qin, & Wonka, 2020), mGANPrior (Gu, Shen, & 
Zhou, 2020), Editing in Style (Collins, Bala, Price, & Susstrunk, 2020), StyleGAN2 
Distillation (Viazovetskyi, Ivashkin, & Kashin, 2020) and MimicGAN (Anirudh, 
Thiagarajan, Kailkhura, & Bremer, 2020), StyleSpace (Wu, Lischinski, & 
Shechtman, 2021), BDInvert (Kang, Kim, & Cho, 2021), and Improved StyleGAN 
Embedding (P. Zhu, Abdal, Qin, Femiani, & Wonka, 2020) etc. 

3) Hybrid GAN Inversion models This approach blends the advantages of the 
above two approaches by using the encoder to initialize the latent vector for 
further optimization. The encoder helps facilitate the optimization process to 
begin with the more potential latent vectors. It thus accelerates the inversion 
while maintaining satisfied image quality. The proposed hybrid models include 
GANSeeing (Bau et al., 2019), GANPaint (Bau et al., 2020), IDInvert (J. Zhu et 
al., 2020b), GANEnsembling (Chai, Zhu, Shechtman, Isola, & Zhang, 2021), PTI 
(Roich, Mokady, Bermano, & Cohen-Or, 2022), and HyperStyle (Alaluf, Tov, 
Mokady, Gal, & Bermano, 2022) 
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2.2.3 Application of GAN inversion 
Ability of GAN inversion to reconstruct target images and allow realistic editing 

can be applied to many tasks e.g., image manipulation, image interpolation, image 
restoration etc. (Xia et al., 2022). 

1) Image manipulation The specific attributes of regenerated images, such as 
pose, expression, age, gender, hair style and eyeglasses of face images, can 
be edited via linear algebra operation over the certain latent codes. This benefits 
from the StyleGAN capability to disentangle image attributes and let a single 
attribute being edited independently from others. The target face can smile 
wider, turn to be male, or get younger while keeping other features the same and 
still looking realistic. 

2) Style transfer This is like changing a woman’s hair style to another style or 
changing a car’s color to another color while keeping other features the same. It 
also benefits from the style-mixing technique of StyleGAN, which enables 
selective lending either low-level, middle-level, or high-level styles from one 
image to another images. Also, it is based on mathematical operations over the 
corresponding latent codes. 

3) Image restoration The GAN inversion is also applicable to repair damaged 
photo. This exploits the model’s ability to normalize defect pixels by learning 
semantics of the entire images and replace them realistically. The colorization 
techniques for adding colors to pale or black & while photos for refreshment and 
the super resolution techniques for increasing resolution for better clearness are 
also based on GAN inversion. 

4) Image interpolation The gradual morphing between two given images can be 
performed by interpolating their corresponding latent vectors. The latent codes 
of in-between images are somewhat the weighted average value of the two 
target images. The weight of the first image gradually moves from 0.0 to 1.0, and 
vice versa for another image.  
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2.2.4 Examples of GAN inversion models 
During the last few years, there were many GAN inversion papers published. Some 

of the interesting works are described as follows: 
1) Image2StyleGAN (Abdal et al., 2019) The Image2StyleGAN was one of the early 

GAN inversion models and was published shortly after the introduction of 
StyleGAN (Karras et al., 2019). It proposed a pure optimization method that the 
initial latent vectors were directly optimized. It used a pre-trained generator and 
combination of the VGG-16 perpetual loss and the pixel-wise MSE loss against 
the target images. Regarding choices of initial vector, the authors tried using 
both a random vector and vector of the average face and found the latter was 
the better choice. 
 The choices to embed optimized codes into the StyleGAN generator as 
the initial codes or as the disentangled intermediate codes were also 
experimented. The authors decided to embed as intermediate codes, which 
would be distributed to AdaIN modules in eighteen convolution layer blocks of 
StyleGAN generator. 
 The improved technique, the Image2StyleGAN++ (Abdal et al., 2020), 
was later published in 2020. Still keeping pure optimization scheme, the authors 
proposed 3 ways of enhancement. The first was to employ noise optimization as 
a complement to latent code optimization. The second way was to extend the 
global latent space embedding to enable local embeddings. Finally, it was to 
use the activation tensor manipulation for high-quality editing.      

 
2) IDInvert (J. Zhu et al., 2020b) The in-domain GAN inverter (IDInvert) is one of  

hybrid GAN inverters.  It uses an encoder network to convert input images into 
initial codes and pass to the optimizer for improvement. (So, a single image is 
processed at a time.) The authors mainly focused on how to blend the semantic 
domain of the train images into the generation, instead of just redefining the 
value of individual pixel. The authors designed a GAN inverter that recognizes 
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what kind of objects that the images were presenting. Their proposed ‘in-domain’ 
codes were described as semantically meaningful and subject to the semantic 
domain of training data. 
 To regenerate input images at both pixel level and semantic level, the 
domain-guided encoder and the domain-regularized optimizer were deployed.  
The domain-guided encoder’s structure was not different from typical encoders 
used in previous GAN inverters. The main difference was that it was trained 
using both the pretrained generator and the pretrained discriminator (while other 
encoders were trained just by a pretrained generator on its generated images). 
Therefore, the domain-guided encoder learned from real images i.e., was guided 
by the domain of real images, and could pass on the domain information to 
inverted codes. 
 And to further refine the inverted codes, the learned domain-guided 
encoder also participated in the optimization process through the additional term 
of the objective function.  Therefore, the codes would be optimized in the way 
that semantic domain was still maintained. 

 
3) E2Style (Wei et al., 2022) This learning-based GAN Inverter proposed the 

encoder with well-designed architecture that did not require further optimizing 
inverted codes. It refined the codes with training iterations, called multi-stage 
refinement. The encoder applied the modules of average pooling layers and fully 
connected layers, called Efficient Head. The Efficient Heads separately 
processed the code from each layer of different resolution and inverted every 
feature levels equally well. 
 Regarding the loss functions, the two new loss terms, namely multi-layer 
identity loss and multi-layer face parsing loss, were combined with normal loss 
function to improve quality of the inversion. 
 

The following Table 1 summarizes the mentioned GAN inversion techniques. 
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Table  1  Examples of GAN inversion models and their performance 
 Model Reference Inversion 

Approach 
Image dataset Best metric result 

Image2StyleGAN (Abdal et 
al., 2019) 

optimization-
based 

FFHQ  (Karras 
et al., 2019) 

distance between the 
inverted code and the 
code of average faces = 
30.67  

Image2StyleGAN++ (Abdal et 
al., 2020) 

optimization-
based 

FFHQ PNSR* = 45 dB 

IDInvert (J. Zhu et 
al., 2020b) 

hybrid FFHQ, LSUN FID** = 42.6 
 

E2Style (Wei et al., 
2022) 

learning-based CelebA (Ziwei 
Liu, Luo, 
Wang, & Tang, 
2015), FFHQ 

FID = 49.4 
 

* Peak signal-to-noise ratio (Hore & Ziou, 2010) 
**Fréchet Inception Distance  (Heusel et al., 2017) 
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2.3 Fake Face Detection 
 There has been the need for detection techniques to distinguish fake contents 
for long, especially fake face images and videos. Fake contents can be abused 
harmfully and even used to commit crimes like fake news and deceiving biometric 
systems. Studies on detecting fake contents were conducted long before the deep 
learning era. And they successfully dealt with fake faces that were created by traditional 
techniques like photomontage. 
 However, the rise of GANs widely sparked social anxiety with the capability to 
create even more realistic fake contents. The latter variations of GANs can generate 
non-existing human faces with high resolution and can be edited while keeping 
realisticness. These GAN-generated contents can fool human eyes, and the traditional 
detection techniques would not effectively cope with. 

Recently, there consequently seems to be continual competition between the 
improved GANs and searches of techniques to detect fake contents. Research on 
detecting GAN-generated faces was highly active. Many new detection techniques 
against GAN images were proposed during the last few years. Some of them highly 
achieved to classify real and fake face images reportedly. 
 

2.3.1 Types of fake face manipulation techniques 
In the context of fake face detection, fake face manipulation techniques on using 

GAN models could be categorized in 4 types, namely entire face synthesis, identity 
swap, attribute manipulation, and expression swap. The detection approaches for these 
techniques are proposed differently. (Tolosana et al., 2020) 

1) Entire face synthesis This technique creates the whole face images of non-
existing people by using GANs. The recent GAN architectures e.g., PGGAN 
(Karras et al., 2017), BigGAN (Brock et al., 2018), StyleGAN (Karras et al., 2019) 
and MSG-GAN (Karnewar & Wang, 2020) can generate highly realistic faces. 
These generated faces can easily pretend to be real people and can be used as 
profile pictures in any social network platforms. 
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2) Identity swap This manipulation aims to replace certain persons’ faces in videos 
with others’ faces. It was made by traditional computer graphic techniques 
formerly. But the invention of deep learning networks led to the new technique, 
so called DeepFakes, that has presented amazing performance on the fake 
videos of celebrities saying and doing what they had never really done. 

3) Attribution manipulation Also known as face editing or face retouching, this is to 
modify certain face attributes e.g., hair style, skin color, gender, age and 
eyeglasses, by using GAN variations such as StarGAN (Choi, Uh, Yoo, & Ha, 
2020). It can be applied for selling cosmetics or hair style products, and the 
well-known application, FaceApp (Warzel, 2019), also deploys this manipulation. 

4) Expression swap Also called face reenactment; this is to switch face expression 
of certain persons in motion pictures with face expression of the others. 
Face2Face is one of the most popular techniques in this category. It is different 
from identity swap that the expression swap just modifies the facial expression of 
a person in that video, while identity swap is like dropping the target person into 
the venue that he does not really appear. 
 
Since this study focuses on capability of GAN inversion technique to reconstruct 

real faces, the fake detection techniques against the entire face synthesis, which are 
considered fit for measuring its performance, are explored. 

As mentioned above, several novel techniques mainly to detect GAN-generated 
images, introduced just in the past few years, illustrate the ongoing competition against 
works on improving GANs and increasing realisticness of generated images. As many 
fake detection techniques utilize the artifacts, so called fingerprint, attached to 
synthesize images to distinguish real and fake faces, one of improvement direction of 
GANs is to remove these artifacts, which are originated from image generation 
processes. 
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2.3.2 Examples of works on fake face detection 
The interesting fake face detection techniques, which were recently proposed to 

detect GAN-generated faces are briefly described as follows. 
 

1) Color Cues (McCloskey & Albright, 2019) This paper argued that GANs 
formed the images’ colors differently from those of the photos produced by 
cameras. This was due to unique statistical relation among pixel values of 
synthesized images, which was caused by generation architectures. Based 
on this concept, the authors employed two techniques, namely color image 
forensics and saturation-based forensics to classify camera photos and 
GAN-generated images. 

 
2) Attribution Networks (Yu, Davis, & Fritz, 2019) This paper took advantages of 

the prior study (Marra, Saltori, Boato, & Verdoliva, 2019) that the GAN-
generated images also got specific patterns, called fingerprint. The 
fingerprint could be used to distinguish them from the camera-generated 
photos. Attribution networks therefore were introduced to extract those 
fingerprints from image sets, which were used as the features for the 
classifiers. 

 
3) Image Spectrum (X. Zhang, Karaman, & Chang, 2019) This technique was 

based on the concept that GANs normally deployed upsampling operation of 
transposed convolution layers to increase resolution of generated images, 
which would result in different patterns of the frequency spectrum from those 
of real images. The authors adopted Discrete Fourier Transform algorithms to 
compute the normalized spectrum of real and fake images, which then 
passed to the image classifier networks as input features. 

 
4) Convolutional Traces (Guarnera, Giudice, & Battiato, 2020) This technique 

was also based on the upsampling operation to generate images from latent 
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codes in GANs, and the hidden correlation pattern between pixels of 
generated images, so called the convolutional traces, thus would reflect the 
generator’s architecture. The Expectation Maximization (EM) algorithms were 
deployed to extract those convolutional traces and convert them into feature 
vectors for classification. 

 
5) FakeSpotter (R. Wang et al., 2019) This technique proposed to use a simple 

neural network for classifying real and generated images.  However, the 
feature for classification was not just the vectors extracted from images. The 
authors of FakeSpotter argued that the behavior of the feature extractor 
networks would be different when converting real and fake images into 
vectors. This difference was thus used to distinguish images. The module 
called mean neuron coverage (MNC) was thus introduced for capturing the 
layer-by-layer neuron activation behaviors of the CNNs in VGG-Face, to use 
as feature vectors for the classifier.  

 
6) Frequency Domain Analysis (Durall et al., 2019) This paper relied on the 

concept of frequency domain analysis in the signal processing theory and 
proposed to deploy Discrete Fourier Transform (DFT) algorithm and 
Azimuthal Average to extract DFT power spectrum from each image. As the 
power spectrum of real images and fake images was found to be 
significantly different at the higher level of spatial frequency, it could be 
therefore used as features for supervised classifiers, like SVM and logistic 
regression models, and unsupervised K-Means clustering also.  

 
Table 2  summarizes the mentioned works on fake face detection. Most 

techniques utilize some hidden properties of generated images, of which the differences 
from those of real images could be observed, as input features for the classifiers, rather 
than directly classify raw images. 
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2.3.3 Limited generalization over different GANs 
There was some evidence showing that a single fake detector did not achieve 

the same performance over fake images generated by the different models of GANs. 
The work of (Zhengzhe Liu, Qi, & Torr, 2020) conducted the experiments on their 
proposed classifier using fake images generated by PGGAN and StyleGAN. Their 
experiments were conducted both in the ‘in-domain’ setting (Training images and testing 
images were generated by the same PGGAN or by the same StyleGAN.) and the ‘cross-
GAN’ setting (Training images were generated by PGGAN and testing images were 
generated by StyleGAN and vice versa.). The results obviously showed the lower 
performance in case of the ‘cross-GAN’ setting. 

Although it was not clearly concluded whether this was because of the specific 
fingerprint patterns of each GAN architecture, it might be considered that the different 
design of the generator network and image generation processes of GAN models would 
result in different signals and information hidden in generated images. And it should be 
aware that the fake detection model which is trained using images generated by a GAN 
will not always achieve the same performance when used to test images generated by a 
different kind of GAN. 

However, since the scope of this study focuses on performance of the IDInvert 
GAN inversion model and does not aim to propose the generalizable fake detector, the 
experiments here are conducted in the ‘in-domain’ setting of the IDInvert. 
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Table  2  Related work on fake face detection. 
Model Technique Dataset GAN model Best result 

Color Cues 
(McCloskey & 
Albright, 2019) 

Color image forensics (INH), 
Saturation-based forensic (SVM) 

LSUN1, 
ImageNet2  

PGGAN3 AUC = 
0.70 

Attribution 
Networks (Yu et 
al., 2019) 

Attribution Networks to extract GAN 
fingerprint from images to use as 
feature vectors for the classifier 

LSUN, 
CelebA4  
 

PGGAN, 
SNGAN5, 
CramerGAN6, 
MMDGAN7 

accuracy = 
99.50% 

Image Spectrum 
(X. Zhang et al., 
2019) 
 

Discrete Fourier Transform algorithms to 
compute the normalized spectrum of 
real and fake images and use as 
feature vectors for the classifier 

CycleGAN 
dataset8 

CycleGAN8 accuracy = 
98.70% 

Convolution Traces 
(Guarnera et al., 
2020) 

EM algorithms to extract Convolutional 
Traces from images to use as feature 
vectors for the classifier 

CelebA StarGAN9, 
StyleGAN10 

accuracy = 
99.81% 

FakeSpotter (R. 
Wang et al., 2019) 

MNC module to extract neuron 
activation behaviors from CNN extractor 
to use as feature vectors for the 
classifier 

CelebA, 
FFHQ10 

PGGAN, 
StyleGAN 

accuracy = 
98.60% 

FDA classifier 
(Durall et al., 2019) 

Discrete Fourier Transform (DFT) 
algorithm and Azimuthal Average to 
extract DFT power spectrum from each 
image and use as feature vectors for 
the classifier 

CelebA, 
FFHQ 

DCGAN11 accuracy = 
100.00% 

 

1(L. Wang, Guo, Huang, Xiong, & Qiao, 2017), 2(Russakovsky et al., 2015), 3(Karras et al., 

2017),4(Ziwei Liu et al., 2015), 5 (Miyato et al., 2018), 5(Miyato et al., 2018), 6(Bellemare et al., 2017), 

7(Li, Chang, Cheng, Yang, & Póczos, 2017), 8(J.-Y. Zhu, Park, Isola, & Efros, 2017), 9(Choi et al., 

2020), 10(Karras et al., 2019), 11(Radford et al., 2015) 

 



 
 

CHAPTER 3 
RESEARCH METHODOLOGY 

 
The main purpose of this study is to examine how well GANs currently perform 

on disguising human faces, which would further indicate the possibility to abuse GAN-
generated contents harmfully. And since GAN inversion techniques currently present the 
most effective way to replicate real faces while allowing realistic manipulation on 
reconstructed faces, the study focus on how close these reconstructed faces get to 
original faces, and how well fake detection techniques can distinguish them. This leads 
to the two experiments on images regenerated by the GAN inverter from real image 
dataset, i.e., the similarity test and the fake face detection test. 
 
3.1 Dataset 

In this study, the experiments are conducted using the sets of original face 
photos (‘real images’) and ‘fake’ images regenerated by the GAN inverter from those 
real images. The original image dataset is from the University of Massachusetts’s 
Labeled Faces in the Wild database (LFW dataset) (G. B. Huang, Mattar, Berg, & 
Learned-Miller, 2008), (G. B. Huang & Learned-Miller, 2014), which contains totally 
13,233 faces images of 5,749 individuals with various gesture. The LFW dataset is 
considered suitable for the experiments since it stores images of each person 
separately. It also collected images of people with diversified races and skin colors, and 
thus allowed face replication test without bias on a narrow group of races or skin colors. 
And photo sets of many persons include both straight poses, left poses, and right poses 
of the same persons. This enables the test on personal identity preservation. Table 3 
shows the distribution of the numbers of each person. Although most people have 
gotten only a few photos, there still be over one hundred persons with more than 10 
photos. 
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Table  3  Numbers of photos per person in LFW dataset 

No. of images per person Head count 

Not over 10        5,606  

11 - 30           111  

31 - 50             20  

51 - 100               7  

over 100               5  

total people        5,749  

 
3.2 GAN Inversion Model 

A GAN inversion model used in this study is the in-domain GAN inverter 
(IDInvert) (J. Zhu et al., 2020b). It is one of hybrid GAN inverters which conceptually 
uses an encoder network to convert input images into initial codes and further pass to 
be refined by an optimizer (a single image therefore can be processed at a time), before 
passing to pretrained StyleGAN (Karras et al., 2019) for regeneration. With capability to 
disentangle attributes of a face image, the features like age, eyeglasses, gender, pose, 
and expression of regenerated can be adjusted with only slight impact on each other. 

Although, IDInvert is not currently the latest GAN inversion model, since 
research on this field has been highly active and novel methods keep being proposed 
during recent years, it still be accepted as a state-of-the-art architecture, and latter 
works have not significantly raised the new standard yet. In addition, as the ready-to-use 
version is publicly accessed, it does not require deep knowledge nor skill to be abused 
and is therefore interesting for testing its performance on replicating real faces. And due 
to time constraint and limited processing resources, the pretrained model is deployed 
here. Figure 4 shows examples of IDInvert regenerated images and their reference 
photos from LFW dataset. 
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Real photos Generated images 

  
 

  
 

  
 

Figure  4  LFW real images versus fake images regenerated by IDInvert   
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Real photos Generated images 

  
 

  
 

  
 

Figure  4  LFW real images versus fake images regenerated by IDInvert(cont’d) 
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3.3 Experiments 
The questions of this study lead to the two experiments on images regenerated by 

the IDInvert from LFW dataset, namely the similarity test and the fake face detection test. 
 
3.3.1 Similarity test 

This experiment is mainly to find out how well generated images replicate real 
faces, in other words how well a GAN inverter preserves personal identity. An output is 
comparison of the distances between real photos with actual right / left pose and real 
photos with straight pose, and the distances between real photos with actual right / left 
pose and regenerated images with manipulated right / left pose. 

This starts from selecting real photos with various gestures, including straight 
pose, left pose and right pose of each person. Then, straight-pose photos are 
regenerated by IDInvert. The regenerated images with straight pose are adjusted into 
right-pose images and left-pose images, using the manipulation model. The ‘fake’ right-
pose images and are paired with the real right-pose photos of the same person, and so 
as the left-pose ones, to calculate cosine distances. Figure 5 illustrates this test process. 

Figure  5  Illustration of the experimental procedure for the similarity test 

 
To perform the experiment, photos of 35 persons with various gestures are 

selected from LFW face dataset, based on diversified races and skin colors. The set of 
totally 304 real photos, contains 70 straight-pose, 137 left-pose and 97 right-pose 
photos. Those real straight-pose photos are used to regenerate 167 fake images, 

https://www.researchgate.net/figure/An-illustration-of-the-experimental-procedure-for-the-similarity-test-Following-a-mask_fig7_283976301
https://www.researchgate.net/figure/An-illustration-of-the-experimental-procedure-for-the-similarity-test-Following-a-mask_fig7_283976301
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containing 92 left-pose and 75 right-pose images for testing. Table 4 shows the number 
of image pairs to calculate cosine distance. Only the pairs of the same persons are 
considered, while those of different persons’ images are excluded. Figure 6 shows the 
samples of paired images. 

 
Table  4  Numbers of image pairs used in the similarity test 

 No. of pairs 
Pairs of Real Photos – Real Photos   
Real / Left-Pose Real / Straight-Pose 331 
Real / Right-Pose Real / Straight-Pose 198 

total real – real 529 
Pairs of Real Photos – Fake Images  
Real / Left-Pose Fake / Left-Pose 460 
Real / Right-Pose Fake / Right-Pose 244 

total real - fake 704 

 
In this test, the cosine distance between image vectors is used to represent 

distance between images. To calculate the cosine distance, the face area of all images 
are first detected and captured by MTCNN (K. Zhang, Zhang, Li, & Qiao, 2016) to 
exclude background and other objects and let the classifiers focus only on faces. 
 The cropped faces are then converted by the VGGFace module (Parkhi, 
Vedaldi, & Zisserman, 2015), (Cao, Shen, Xie, Parkhi, & Zisserman, 2018), with the 
Microsoft’s Resnets50 (He, Zhang, Ren, & Sun, 2016) into vectors. The cosine distance 
between the image vectors are then calculated using numerical operations over NumPy 
arrays. 
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Cosine Distance 
 The cosine distance is derived from cosine similarity, which is used to measure 
similarity between the two vectors. Its invention was related to the domain of vector 
space model and information retrieval system. The formula of cosine distance and 
cosine similarity are as follows (Singhal, 2001).  
 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷, 𝑄) = 1 − 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑎𝑙𝑖𝑟𝑡𝑦 (𝐷, 𝑄) 
 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐷, 𝑄) =
𝐷 ∙ 𝑄

‖𝐷‖‖𝑄‖
=  

∑ 𝐷𝑖𝑄𝑖
𝑛
𝑖=1

√∑ 𝐷𝑖
2𝑛

𝑖=1 √∑ 𝑄𝑖
2𝑛

𝑖=1

 

 

where 𝐷𝑖  and 𝑄𝑖   are the components of vector 𝐷 and vector 𝑄 respectively. 
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Figure  6  Samples of image pairs used to compare cosine distances. 
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3.3.2 Detectability test 

This experiment aims to figure out how well the images regenerated by a GAN 
inverter can be distinguished from real photos. To answer the question, the combination 
of feature extraction techniques and classification models are adopted to classify the 
real photos from LFW dataset, and their counterpart images regenerated by IDInvert. In 
addition, image filtering techniques are also applied to generated images of the test set, 
to verify how the trained classification models would perform when facing the modified 
fake images. 

This experiment is conducted through the following processes. 
(1) Regenerate real photos using IDInvert model. 
(2) Separate train images and test images 
(3) Conduct image filtering on the test images. 
(4) Detect and capture face area using MTCNN 
(5) Extract features using CNNs and frequency domain analysis technique. 
(6) Train classification models and test with non-filtered and filtered images. 

 
(1) Image regeneration First, 5,749  real photos of every individual person in the 

LFW dataset are selected, one photo per person, to regenerate fake images by 
the IDInvert model. However, 595 real photos (approximately 10.3%) fail to be 
regenerated, and there are 5,154 images successfully regenerated. The failure 
real photos are excluded to make the numbers of samples in each class are 
equal. Therefore, there are 10,308 images (5,154 real photos and 5,154 
generated images) in the dataset for this experiment. 
 It should be noticed that those 595 failure real photos consist of people 
with quite various characteristics, genders, age, poses, and races. It is thus not 
clear which specific attributes of face images would cause the regeneration 
failure. The error yet seems to be random. Figure 7  shows the samples of 
unsuccessful-regeneration of IDInvert. 
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Figure  7  Samples of images unsuccessfully regenerated by IDInvert. 
 

(2) Train-test split The dataset then is split, in portion of 70% to 30%, into the train 
set with 7 ,214 images and the test set with 3,094 images. The numbers of real 
photos and generated images are equal in each group. Therefore, there are 
3,607 and 1,547 real photos in the train set and the test set consecutively, so as 
generated images. Real photos and generated images of the same persons are 
in the same group (train set or test set), in order not to let the test data leak into 
the training process. Table 5 summarizes the numbers of real and generated 
images in the train set and the test set. 

  



  40 

Table  5  Numbers of images in the train set and the test set of the detectability test. 
 Real Photos Generated Images Total 

Train set 3,607  3,607  7,214  

Test set 1,547  1,547  3,094  

Total 5,154  5,154  10,308  

 
(3) Image filtering This step is to prepare additional test sets to examine the effect 

of image filtering on the classification models’ performance. These sets of 
original real photos and filtered generated images are further processed in the 
same steps as the unfiltered test sets and are also used to test the classification 
models, which are trained using the unfiltered train set. Variation of the test 
results will show how the models would perform when encountering a fake 
image that is modified by filtering techniques.  

Those 1,547 generated images of the test set are blurred and sharpen 
by using image filtering techniques (Gonzalez, 2009), (Lukac & Plataniotis, 
2018), while real photos are not changed. The test images are therefore 
extended into 5 sets, so called no-filter (original test set), blur4x4, blur8x8, 
sharpen, and sharpen2 according to the applied filters. Table 6 summarizes the 
5 scenarios of model testing with the 5 test sets. And Figure 8 shows the 
samples of those unfiltered and filtered images. 

  



  41 

Table  6  Image filtering techniques applied to a generated test set. 
Scenario Train set Test set Filtering techniques 

1 No filter No-filter n/a 
2 No filter Blur4x4 blur with the kernel size (4, 4) 
3 No filter Blur8x8 blur with the kernel size (8, 8) 
4 No filter Sharpen Sharpen with kernel [[0, -1, 0], 

       [-1, 5, -1], 
       [0, -1, 0]]  

5 No filter Sharpen2 Sharpen with kernel [[-1, -1, -1], 
        [-1, 9, -1], 
        [-1, -1, -1]] 
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No filter Blur4x4 Blur8x8 Sharpen 1 Sharpen 2 

     
     

     
     

     
     

     

     

     

Figure  8  Samples of blurred and sharpen generated images. 
 

(4) Face detection Second, the face area of each image is detected and captured 
by MTCNN (K. Zhang et al., 2016) to exclude background and other objects 
and let the classifiers focus only on the main face of each image. 
 However, MTCNN may also capture other faces in the same image or 
other stuff that it detects as human faces. Thus, the output of MTCNN must be 
cleaned up. Only the main face of each image is used in the further processes.  
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(5) Feature extraction Next, features of all detected faces are extracted before 
further classification. In this study, convolutional neural network (CNN) models 
and frequency domain analysis technique are used as feature extractors for 
comparison. Since this study focuses on face images, VGGFace module 
(Parkhi et al., 2015), (Cao et al., 2018) with the CNN models namely ResNet50 
(He et al., 2016) and SeNet50 (Hu, Shen, & Sun, 2018) are deployed to convert 
images into feature vectors. 
 Regarding the frequency domain analysis technique, the use of Discrete 
Fourier Transform algorithm and Azimuthal Average proposed by (Durall et al., 
2019) is used to extract power spectrum of each image. The power spectrum is 
reported to be significantly different between real photos and GAN-generated 
images, and the classification models which were trained by power spectrum 
presented superior performance on distinguishing real photos and GAN-
generated images. Therefore, there are 3 sets of features i.e., ResNet50 
vectors, SeNet50 vectors, and power spectrum. 

 
(6) Classification models Each set of Feature vectors and power spectrum is then 

used to train and test the group of Classification models. In this study, 5 sets of 
Classification models including multi-layer perceptrons (MLP), Support Vector 
Machine (SVM) with polynomial kernel, SVM with linear kernel, SVM with and 
RBF kernels, and Logistic Regression (LR) models, are comparatively trained 
and tested to examine how each model will perform in cases of different image 
filtering and feature extraction techniques. Table 7 lists the models in use and 
their configuration. The parameters of SVM and LR are based on configuration 
of (Durall et al., 2019).  
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Table  7  Classification models in use and configuration 

Model Configuration 
MLP Layer:  2 dense layers with rectified linear unit function 

(ReLU) and logistic function (sigmoid) 
Optimizer: adaptive moment estimation (Adam) 
learning rate: 0.001 
loss function: binary cross-entropy 

SVM-poly  kernel: polynomial (poly)  
SVM-linear kernel: linear 
SVM-rbf kernel: radial basis function (rbf) 

C: 6.37 
gamma: 0.86 

LR solver: liblinear 
max_iter: 1,000 

 
 All these 5 models are separately trained using 3 sets of image features, 
the ResNet50 vectors, the SeNet50 vectors, and the power spectrum. This 
combination therefore returns the different 15 Classification models as shown in 
Table 8. Each model is then tested by the sets of unfiltered and filtered test 
images as mentioned above. 
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Table  8  Combination of feature extraction techniques and Classification models 

Model Train Features Classifier 

1 

ResNet50 

MLP 

2 SVM-linear 

3 SVM-ploy 

4 SVM-rbf 

5 LR 

6 

SeNet50 

MLP 

7 SVM-linear 

8 SVM-ploy 

9 SVM-rbf 

10 LR 

11 

Power spectrum 

MLP 

12 SVM-linear 

13 SVM-ploy 

14 SVM-rbf 

15 LR 

 
 Finally, Figure 9 recapitulates the processes of the Detectability test. 

 
Figure  9  Summary of the Detectability test processes 



 
 

CHAPTER 4 
RESULT 

In this chapter, experiment results of the similarity test and the fake face detection 
test are described as follows. 

 
4.1 Results of Similarity test 

Table 9 shows the average cosine distances between 529 pairs of real - real 
images and 704 pairs of real - generated images. The 529 pairs of real - real images 
consist of 331 pairs of real/left pose images - real/straight pose images and 198 pairs of 
real/right pose - real/straight pose images. 

The 704 pairs of real - generated images consist of 460 pairs of real/left pose - 
generated/left pose images and 244 pairs of real/right pose - generated/right pose 
images. As the dataset contains more left pose images than right pose images, the 
number of image pairs of left pose images (real vs generated) is higher than number of 
image pairs of right pose images (real vs generated). 

Table  9  Average distances and standard deviation of the similarity test 
Pairs of Images Numbers  

of Pairs 
Avg. Cosine 

Distance 
Standard 
Deviation 

Real vs Real     
Real/Left Pose vs Real/Straight Pose           331          0.267       0.076  

Real/Right Pose vs Real/Straight Pose           198          0.264       0.080  
Total Real vs Real           529          0.266       0.077  
Real vs Generated    

Real/Left Pose vs Generated/Left Pose           460          0.458       0.097  
Real/Right Pose vs Generated/Right Pose           244          0.446       0.087  

Total Real vs Generated           704          0.453       0.094  

 

 The average cosine distance of the 529 pairs of real - real images is 0.266, and 
the average cosine distances of the 331 pairs of real/left pose - real/straight pose 
images and of the 198 pairs of real/right pose - real/straight pose images are 0.267 and 
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0.264 respectively. While the average cosine distance of 704 pairs of real - real images 
is 0.453, and the average cosine distance of 460 pairs of real/left pose – generated/left 
pose images and of the 244 pairs of real/right pose – generated/right pose images are 
0.458 and 0.446 respectively. 
 
4.2 Results of Detectability test Result 

As described in the previous chapter, this experiment totally obtains 15 
Classification models by using 3 techniques (ResNets50, SeNet50 and power spectrum) 
to extract image features for training the 5 Classification models (MLP, SVM-Poly, SVM-
linear, SVM-rbf and LR). The 15 classification models are then tested by the 5 sets of 
test images (no filter, blur4x4, blur8x8, sharpen and sharpen2) to examine the effect of 
image filtering. The accuracy, precision, recall, F1 score, and the area under ROC curve 
(AUC) results of each model are presented from Table 10 to Table 12. And Figure 10 
shows ROC curves off the top performing models. 

Regarding the ResNet50 models, the accuracy results are mostly in the range of 
0.79 – 0.87 (except for SVM-rbf). There is not much difference between precision, recall 
and F1 score of the same models since the predicted results do not fall heavily into one 
class (except for SVM-rbf). And the AUC results are in the range of 0.85 – 0.94 for most 
models (except for SVM-rbf). 

In the case of SeNet50 models, the MLP performance results (including 
accuracy, precision, recall, F1 score and AUC) are not much different. But in cases of 
SVM and LR models, accuracy drops to 0.49 – 0.50 for all filtered test sets. The larger 
differences between precision and recalls are because the test images are almost 
classified as real photos and fewer generated images are correctly detected. That 
results in the decrease of AUC too. 
 For the power spectrum models, the results are quite inconsistent. In the case of 
the no-filter test sets, the MLP performs poorly while SVM and LR perform quite well. 
However, all the models perform poorly on the blur test set, but perform very well on the 
blur8x8, sharpen and sharpen2 test sets (except for the SVM-poly model on sharpen2 
test set that does not perform quite well). 
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Table  10  Performance of classifiers trained by the ResNet50 vectors 
Classifier Filter  Accuracy   Precision   Recall   F1   AUC  

MLP 

No Filter 0.87  0.87  0.85  0.86  0.94  
Blur4x4 0.84  0.84  0.85  0.84  0.92  
Blur8x8 0.80  0.78  0.84  0.81  0.89  
Sharpen 0.87  0.88  0.85  0.87  0.94  
Sharpen2 0.83  0.81  0.86  0.84  0.92  

SVM-linear 

No Filter 0.81  0.81  0.82  0.81  0.90  
Blur4x4 0.79  0.77  0.82  0.79  0.88  
Blur8x8 0.76  0.73  0.82  0.77  0.85  
Sharpen 0.83  0.85  0.82  0.83  0.92  
Sharpen2 0.81  0.80  0.82  0.81  0.89  

SVM-poly 

No Filter 0.87  0.87  0.86  0.87  0.94  
Blur4x4 0.86  0.85  0.86  0.86  0.93  
Blur8x8 0.83  0.81  0.86  0.84  0.91  
Sharpen 0.88  0.89  0.86  0.88  0.95  
Sharpen2 0.86  0.86  0.86  0.86  0.93  

SVM-rbf 

No Filter 0.50  1.00  0.00  0.00  0.50  
Blur4x4 0.50  1.00  0.00  0.00  0.50  
Blur8x8 0.50  1.00  0.00  0.00  0.50  
Sharpen 0.50  1.00  0.00  0.00  0.50  
Sharpen2 0.50  1.00  0.00  0.00  0.50  

LR 

No Filter 0.82  0.82  0.82  0.82  0.91  
Blur4x4 0.79  0.78  0.82  0.80  0.88  
Blur8x8 0.75  0.72  0.82  0.77  0.85  
Sharpen 0.84  0.85  0.82  0.84  0.92  
Sharpen2 0.81  0.80  0.82  0.81  0.89  
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Table  11  Performance of classifiers trained by the SeNet50 vectors 
Classifier Filter Accuracy Precision Recall F1 AUC 

MLP 

No Filter 0.83  0.83  0.82  0.83  0.91  
Blur4x4 0.80  0.79  0.81  0.80  0.89  
Blur8x8 0.76  0.74  0.82  0.77  0.85  
Sharpen 0.82  0.82  0.82  0.82  0.90  
Sharpen2 0.79  0.77  0.83  0.80  0.88  

SVM-linear 

No Filter 0.78  0.77  0.79  0.78  0.85  
Blur4x4 0.50  0.50  0.93  0.65  0.47  
Blur8x8 0.49  0.49  0.93  0.65  0.41  
Sharpen 0.49  0.50  0.93  0.65  0.49  
Sharpen2 0.49  0.50  0.93  0.65  0.47  

SVM-poly 

No Filter 0.84  0.84  0.83  0.84  0.92  
Blur4x4 0.50  0.50  1.00  0.67  0.48  
Blur8x8 0.50  0.50  1.00  0.67  0.34  
Sharpen 0.50  0.50  1.00  0.67  0.55  
Sharpen2 0.50  0.50  1.00  0.67  0.51  

SVM-rbf 

No Filter 0.50  0.00  0.00  0.00  0.50  
Blur4x4 0.50  0.00  0.00  0.00  0.50  
Blur8x8 0.50  0.00  0.00  0.00  0.50  
Sharpen 0.50  0.00  0.00  0.00  0.50  
Sharpen2 0.50  0.00  0.00  0.00  0.50  

LR 

No Filter 0.78  0.77  0.79  0.78  0.85  
Blur4x4 0.49  0.50  0.88  0.63  0.47  
Blur8x8 0.48  0.49  0.88  0.63  0.42  
Sharpen 0.49  0.50  0.88  0.63  0.49  
Sharpen2 0.48  0.49  0.88  0.63  0.47  
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Table  12  Performance of classifiers trained by the power spectrum features 

Classifier Filter Accuracy Precision Recall F1  AUC  

MLP 

No Filter 0.52  0.51  1.00  0.67  0.77  
Blur4x4 0.50  0.50  1.00  0.67  0.46  
Blur8x8 0.91  1.00  0.82  0.90  1.00  
Sharpen 0.96  0.99  0.93  0.96  0.99  
Sharpen2 0.98  1.00  0.95  0.98  1.00  

SVM-linear 

No Filter 0.86  0.91  0.80  0.85  0.93  
Blur4x4 0.70  0.66  0.80  0.73  0.79  
Blur8x8 0.90  1.00  0.80  0.89  1.00  
Sharpen 0.90  1.00  0.80  0.89  1.00  
Sharpen2 0.90  1.00  0.80  0.89  1.00  

SVM-poly 

No Filter 0.91  0.93  0.88  0.91  0.96  
Blur4x4 0.65  0.60  0.88  0.72  0.77  
Blur8x8 0.94  1.00  0.88  0.94  1.00  
Sharpen 0.92  0.95  0.88  0.92  0.98  
Sharpen2 0.72  0.66  0.88  0.76  0.74  

SVM-rbf 

No Filter 0.92  0.95  0.90  0.92  0.97  
Blur4x4 0.63  0.58  0.90  0.71  0.74  
Blur8x8 0.94  0.98  0.90  0.94  0.99  
Sharpen 0.93  0.97  0.90  0.93  0.99  
Sharpen2 0.86  0.84  0.90  0.87  0.92  

LR 

No Filter 0.85  0.87  0.81  0.84  0.91  
Blur4x4 0.67  0.63  0.81  0.71  0.77  
Blur8x8 0.90  1.00  0.81  0.89  0.99  
Sharpen 0.90  1.00  0.81  0.89  1.00  
Sharpen2 0.90  1.00  0.81  0.89  1.00  
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Figure  10  ROC curves of the top performing models 



 
 

CHAPTER 5 
SUMMARY DISCUSSION AND SUGGESTION 

 
5.1 Discussion 

5.1.1 Similarity test 
The similarity test results show that real photos are obviously closer to each 

other than real photos and generated images. The same direction of face pose (left, 
right and straight) cannot help making generated images get less cosine distance to 
real photos than the real photos with different direction of face pose. And since the 
average cosine distance between the right-pose pairs and the left pose pairs do not 
much deviate (0.267 / 0.264 for real-real pairs and 0.458 / 0.446 for real-generated 
pairs), it can be noted that the direction of face pose (right or left) does not significantly 
affect. 

The cosine distance is generally used to represent similarity between a couple 
of images, especially human face images. The more cosine distance means the less 
similarity. This experiment result shows that image regeneration by the IDInvert model 
does not quite maintain similarity, since generated images obviously have more 
distances (less similarity) to real photos than the distances between real photos 
themselves. And as the generated images used in this experiment are not further 
modified by other techniques, it can be inferred that a generated image loses its 
similarity to its reference photo through regeneration process of the IDInvert model. 

According to Figure 11, it can be seen that the generated image looks realistic. 
However, the cosine distance neither measure naturalness nor quality of generated 
images. But the similarity here rather focuses on personal identity of face images. The 
lower similarity scores suggest that the IDInvert model is not effectively preserving the 
personal identity of the reference individuals in the regenerated images. This could also 
be observed from the results that many generated images do not replicate all the 
specific attributes of reference faces, e.g., moles, eye shape and lip shape. This 
variation is also extracted when the images are encoded into the identity vector. As 



  53 

such, the face images with different levels of detail on these attributes would result in the 
identity vectors with the larger distance. 

 

   
   

   

Figure  11  Samples of generated images 
For the reason why the IDInvert model does not preserve personal identity of 

the reference face well, this study suggests that it might be because of its mechanism. 
The architecture of IDInvert model used in this study (J. Zhu, Shen, Zhao, & Zhou, 
2020a), which is a ready-to-use edition, mainly consists of an encoder network and the 
pretrained StyleGAN model and is trained using the FFHQ dataset of human face 
images. The embedded StyleGAN, which is used to reconstruct an image, probably 
prioritizes the naturalness of generated images rather than preserving personal identity. 
Consequently, some personal attribute that quite deviates from the StyleGAN 
discriminator’s view of ‘realistic face’, it might be excluded. The model seems to limit the 
output of generated faces within range of average faces that it has experienced and 
omits some personal attributes that are considered the outliers. 

 

5.1.2 Detectability test 
Regarding the detectability test, the results indicate that the face images the 

IDInvert generated images can be distinguished well by using existing feature extraction 
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techniques like CNNs, frequency domain analysis technique coupled with standard ML 
classifiers.  

In this experiment, using Discrete Fourier Transform algorithm and Azimuthal 
Average (Durall et al., 2019) to extract images’ power spectrum as features for the SVM 
models with polynomial and rbf kernels present the best performance against generated 
images without filter. However, the performance of each classifier model is not 
consistent when facing blur and sharpen filters. 
 The power spectrum is used to detect differences in high frequency signal levels 
between real and generated face images, as demonstrated in Figure 12   Thus, 
modifying the frequency components of generated images with filters can significantly 
impact the model's detection performance. Our experimental results indicate that the 
SVM-rbf model and the SVM-poly model perform slightly better against generated 
images modified with the blur8x8 filter and the both sharpen filters (except the SVM-poly 
that also performed worse for the filter sharpen2) but performs much worse against 
images modified with the blur4x4 filter. This suggests that the power spectrum features 
are not robust to these types of image modification operators, and that these techniques 
can be applied to lower detection changes. 

 

Figure  12  Frequency components of fake images and real photos 
In addition, we also found that by using features extracted by ResNet and 

SeNet, the model can detect generated images with lower detection performance. 
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However, the models with ResNet50 vectors is more robust against image modification 
operators when using these features.  

Regarding the models with ResNet50 vectors, the MLP and the SVM with 
polynomial kernel perform the best against unfiltered images. The performance of each 
classifier does not dramatically increase or decrease when tested on images that are 
filtered by the two levels of blurs and the two levels of sharpen. One exception is the 
SVM with rbf kernel which performs poorly for all cases. Compared to power spectrum, 
ResNet50 vectors perform slightly poorer but more consistently against image filtering. 

Regarding the models with SeNet50 vectors, the classification performance of 
all the models is the lowest one among three types of vectors except for the MLP model. 
In addition, when tested on images that are filtered, the MLP’s performance does not 
much change, but the performance of SVM with polynomial kernel, SVM with linear 
kernel and Logistic Regression significantly drops. One exception is again the SVM with 
rbf kernel which performs poorly for all cases. 

Overall, our findings highlight the importance of carefully considering the 
impact of image modification techniques on detection performance and suggest that 
using alternative feature extraction methods can lead to improved robustness against 
image modification. 

The objective of this study was to compare the performance of detection 
models that use power spectrum features with those that use ResNet and SeNet to 
extract features and investigate the impact of image filters on the detection of generated 
images. The results revealed that applying filters to generated images in the test set 
significantly affected the performance of detection models that used power spectrum 
features. To gain a deeper understanding of how image filters affect the frequency 
signal of generated images, future research should conduct an extended experiment 
using a wider range of image modification techniques. 

On the other hand, it was found that the models that utilized ResNet and SeNet 
for feature extraction were more robust against these image modification 
operators. These findings suggest that the choice of feature extraction method can 
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significantly affect the robustness of detection models to image filters. Overall, the study 
highlights the need to carefully consider the features used in detection models for 
generated images and to evaluate their performance under various image modification 
scenarios. 

It should be noted that these feature extraction techniques are not initially 
designed for face image classification works, including the fake face detection here. The 
VGGFace module with ResNet50 and SeNet50 is generally used for biometric 
recognition task and maybe more suitable for identifying each individual person than 
classifying groups of face images collectively. And although frequency domain analysis 
techniques were found to perform very well for detecting fake contents, they were 
previously initiated for other fields, especially electronics and control system 
engineering. For the more reliable and consistent fake face detection performance, the 
suggested solution is to combine several techniques and models. 
 
5.2 Conclusion 

The IDInvert model is one of the most recent GAN inversion models and can 
regenerate face images of real people and easily deceive human’ eyes. However, the 
experimental results of this study could be inferred that its generated images do not 
quite preserve the personal identity of reference persons, as the cosine similarity 
between those generated images and real photos is significantly different. The 
generated faces can be observed that they look different from the reference face as if 
they are not representing the same persons. Due to this reason, the risk that these fake 
images would imitate real people faces and cause serious damage is not well-awared 
currently.     

In addition, the generated images can be distinguished from real photos by 
using the existing feature extraction techniques and classification models. Some of 
these models can achieve over 90% accuracy. Although these generated images may 
deceive humans’ eyes, they have got hidden features which are different from the 
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features of real photos. These differences could be captured by existing techniques and 
used to distinguish generated images from real photos.    

Although, those fake images generated by the IDInvert model are 
distinguishable, all the applied techniques here require some related skills and 
computational resources that would not always be timely and widely accessible. In daily 
life, we may encounter these fake contents without tools for tackling them.  On the other 
hand, harmful attacks using fake contents, or any technology misuses, might occur any 
chance, and cause serious losses in some context. Consciousness and prudence are 
strongly recommended as the first protection. 
 
5.3 Future works 

The IDInvert model and other recent GAN inversion models might be considered 
as the beginning phase since they were just invented during the last few years. Their 
ability to imitate real faces therefore is not yet perfect and hazardous currently. However, 
it should be aware that the GAN inversion and other generative models have been very 
actively progressed. With this regard, the proposed techniques of this study may be 
applied to further examine the potential threats of newly developed generative models. 

Future works related to this study therefore should be to keep examining novel 
generative models’ abilities to imitate and manipulate real contents and identify their 
possible harmful abuses. Regarding the similarity test, the methodology may be 
redesigned to enumerate how different GAN inversion models would perform on 
maintaining similarity to the reference photos and whether it is possible to keep both the 
realisticness and the similarity. And for the detectability test, the extended experiment 
using the wider range of image filters to examine why and how different filters differently 
affect the dectection performance would be interesting. 
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