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This research is concerned with chest radiography, which is essential for 

doctors to determine and follow up on lung disease. However, practicing radiologists 
have an insufficient ability to identify diseases in chest x-ray images. Therefore, the 
researchers developed deep-learning models to mitigate this problem, and CheXNet is 
one of the state-of-the-art models that can detect 14 lung pathologies. This research 
applied six image enhancement techniques to the x-ray images before using ChexNet to 
improve detection performance. The six techniques consisted of Gamma, Complement, 
HE, CLAHE, BCET, and MMCS. In addition, we studied the effectiveness of using a 
single enhancement technique (single channel) and a combination of them to the 
original image (multi-channel). Gamma gave the highest and most stable detection 
improvement using a single enhancement technique at 0.628% AUCROC in 14 
diseases. Combining the original image, Gamma-enhanced image, and CLAHE-
enhanced image shows 0.7% AUCROC improvement for 14 diseases. Moreover, this 
combination offers outstanding Pneumonia detection, which is 2% more than CheXNet. 

 
Keyword : CheXNet Chest x-ray image enhancement multichannel input image 
DenseNet 
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CHAPTER 1  
INTRODUCTION 

1.1 Introduction 
Diagnostic imaging is a vital tool in today's medicine. Medical imaging 

techniques such as computed radiography, computed tomography, digital 
mammography, and magnetic resonance imaging, among others, help map a 
subject's anatomy. They are essential to diagnosing and therapy planning because 
they show normal and abnormal anatomy. Knowledge has considerably increased 
as a result of these technologies.  
 

Medical imaging aids technology can support radiologists in making 
quicker and even more accurate diagnoses by providing a visual image of the inside 
of the human body. As a result, the doctor can treat diseases more effectively, 
resulting in better patient care. Medical imaging has progressed in measuring 
speed, spatial resolution, and contrast. Having this helpful tool necessitates having 
enough capacity to have qualified radiologists evaluate the required data. 
 

Medical X-rays are images that diagnose several of the most sensitive 
human body organs, such as the bones, chest, teeth, and head. For generations, 
medical professionals have utilized this approach to investigate and visualize 
fractures or anomalies in specific body areas. Since X-rays are excellent diagnostic 
instruments for chest illnesses, they are non-invasive and cost-efficient. X-rays can 
reveal pathological changes, cavitations, consolidations, infiltrates, blunted 
costophrenic angles, and small, widely scattered nodules can all be seen on CXR 
images. Pleurisy, effusion, pneumonia, bronchitis, infiltration, nodule, atelectasis, 
pericarditis, Cardiomegaly, Pneumothorax, fractures, and many more disorders and 
diseases can be diagnosed with a chest X-ray[1]. 
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Figure  1: Common interpretation workflow. 

Source: [2] 
 

Figure 1 shows the typical process of how the radiologist interpreted the 
radiograph. Radiologists face a complex problem in classifying abnormalities on 
chest x-rays. As a result, computer-aided diagnostic (CAD) systems have been 
created in recent decades to extract meaningful information from X-rays to assist 
doctors in gaining a quantitative understanding of an X-ray. However, such CAD 
systems have not yet reached a level of significance that allows them to judge the 
types of diseases shown in X-rays. [3]. Thus, the role of CAD was left as visualization 
functionality that helps doctors in making decisions. 
 

The field of medical image analysis is now intensely focused on deep 
learning. In 2012, Krizhevsky et al. presented AlexNet[4]—a convolutional neural 
network—for image classification in computer vision and won the ImageNet 
challenge by a large margin. The increased computer capacity (i.e., parallel 
computing of graphical processing units (GPUs)) and the large amount of data 
available made this possible. Such success reintroduced neural networks as a 
machine learning technique. Deep learning has already proven its capacity to 
interpret medical with excellent accuracy[5]. 
 

1.2 Problem Statement 
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Plain radiography is the most common imaging modality in radiology 
departments, and chest X-rays are the most frequent examination type [Bundesamt 
für Strahlenschutz, 2020; NHS England, 2020]. The limitation to getting all chest X-
ray images evaluated by radiologists is inadequate capacity [Care Quality 
Commission, 2017; Royal College of Radiologists, 2018]. As the amount of data 
produced from various medical imaging methods rises[6] and the growing world 
population [United Nations DESA, 2019], The demand for expert reading capacity is 
likely to rise soon. 
 

Chest pathologies interpreted from chest X-rays require an expert 
radiologist. The improvement of time consumption and accuracy of interpreting is 
required to mitigate the shortage of expert radiologists. Recently, deep learning 
(with Convolution Neuron Network: CNN) has been successful in medical mage 
interpreting. Implementing Transfer learning and Image enhancement techniques 
would improve the performance deep learning model. 
 

The existing deep learning model, CheXNet[7], for diagnosing 14 chest 
pathologies performs well on most of them. However, some pathology still required 
improvement, e.g., Infiltration, Nodule, Pneumonia, and Consolidation. This 
experiment will focus on improving the model's performance using three image 
enhancement techniques. Then, Transfer learning and finetune the model with a new 
form of chest X-ray from Image enhancement techniques.  
 

1.3 Objective 
o To improve the performance of deep learning CNN, CheXNet[7], classification 

model on Infiltration, Nodule, Pneumonia, and Consolidation. 
o To investigate and study the suitability of 3 different Image enhancement 

techniques with Transfer learning and fine-tuning that affect the performance of 
deep learning model. 
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o To construct the method used for Image enhancement technique to select the 
best detection performance on the specific pathologies, Infiltration, Nodule, 
Pneumonia, and Consolidation. 

 

1.4 Scope and Limitation 
1. The pathologies detection performance interest is: 

a. Infiltration 
b. Nodule 
c. Pneumonia 
d. Consolidation 

2. Preprocessing for image enhancement technique used: 
a. Gamma correction 
b. Contrast limited adaptive histogram equalization (CLAHE) 
c. Balance Contrast Enhancement Technique (BCET) 

3. Deep learning CNN technique is: 
a. Transfer Learning with the CheXNet model 
b. Fine-tune with the CheXNet model 

 

1.5 Thesis Structure 
The following paragraphs outline the structure of this thesis and provide an 

overview of each chapter and its contributions. Chapter 2 summarize the 
background information and essential literature.  

 
Chapter one is a general introduction to the thesis, where the aims and 

significance of the thesis. 
 

Chapter two is a general overview of the radiology X-rays and types of 
chest diseases that may be found in a radiograph and a brief on Deep convolutional 
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Neuron Networks in medical radiography. The image enhancement technique has 
been mentioned as well. 
 

Chapter three is a dataset describing and flow of work in this study. In 
addition, Current progress is included the preliminary result, e.g., image post 
enhancement on gamma technique example. 
 

Chapter four are results from experiments separated into two sections; The 
Single Channel Image Enhancement Results and the Multi-Channel Image 
Enhancement Results. Then, the table comparison of overall pathology detection 
performance and specific pathology detection performance is shown in this chapter. 
 

Chapter five is the conclusion and discussion of the results. 
 

 



 
 

 

 
 

 
CHAPTER 2  

LITERATURE REVIEW 

2.1 Conventional radiography imaging 
Wilhelm Röntgen, who discovered X-rays in 1895 and was the first to take a 

two-dimensional X-ray image of a human body part (see Figure 2 (b)), was the first to 
capture a two-dimensional X-ray image of a human body part. This discovery 
ushered in a new age in medical imaging, which has since grown in popularity to 
become the most common examination type. A two-dimensional projection imaging 
technique that includes projecting an object onto a detector is known as 
conventional radiography. X-radiation is generated by the X-ray tube and travels 
through things. Depending on the varying densities and attenuation coefficients of 
materials, the intensity of X-radiation is dispersed or muted (i.e., bones, tissues, and 
fluids) 

2.2 Digital Radiography 
Digitalization can convert results into a digital image or planar radiograph. 

Planar radiographs can be thought of as two-dimensional (2D) arrays of gray values. 
Each array element or pixel (picture element) represents precisely one image point 
of the detector. The gray level encodes the optical density related to the amount of 
the transmitted energy imparted at the corresponding pixel area. [8] 
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Figure  2: (a) Schematic representation of the X-ray imaging system for  
Digital PA chest radiography. (b) The digital image (planar radiograph)  

Source: [9] Medical X-ray Images of the Human Thorax 
 
A typical digital PA chest radiograph is shown in Figure 2(a); PA stands for 

posterior-anterior, meaning that the patient faces the observer (the radiation passes 
through the patient from back to front). By convention, the brightness indicates 
absorbed radiation. 
 

2.3 Chest X-ray Abnormalities 
The findings of the frequency study are shown in Table 1. There are two 

issues with this for image processing. First, the wide range of findings makes it 
difficult to create an automatic picture analysis that categorizes the majority of 
discoveries based on hand-made criteria. This challenge explains why, when 
utilizing hand-crafted feature extraction techniques, researchers frequently solely 
focus on aberrant individual discoveries. Because feature engineering is no longer 
necessary thanks to deep learning, researchers no longer need to concentrate on 
specific results.  
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Table  1: Abnormal finding distribution in chest X-rays. 

Source: [10] Comparison of imaging properties of a computed radiography 
system and screen–film systems. 
 

Most exams performed in radiology departments are chest X-rays 
[Bundesamt für Strahlenschutz, 2020; NHS England, 2020]. Therefore, software 
support is required, given the radiology field's increasing workload and declining 
profitability. There are numerous additional clinical uses outside completely 
automated chest X-ray processing, where a radiologist merely has to cross-check 
the data. 

The research for detecting all regular chest X-rays (i.e., no abnormal 
findings on the chest X-ray) can significantly reduce the workload in a radiology 
department.  
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2.4 Deep Convolutional Neural Networks  
Due to their better performance compared to other machine learning 

paradigms, deep CNNs have been extensively applied in image classification. The 
network structure automatically extracts the spatial and temporal features of an 
image. Many applications have successfully implemented the transfer learning 
method, particularly those where finding an extensive dataset might be challenging. 

 
Information is extracted hierarchically in a convolutional neural network [11]. 

The initial layers extract basic information like edges and color blobs. Deeper layers 
collect feature combinations from prior layers by linearly combining previously 
extracted features. High-level convolutional layers are used in the final convolutional 
layers; high-level features are extracted from the image. Figure 3 demonstrates a 
hierarchical feature extraction. The top row shows a multi-layered convolutional 
neural network. Color blobs and edges are extracted in the first layers, while circle 
combinations are extracted in the middle layers. Then, specific items that should be 
linearly separable by a classifier (i.e., the final fully-connected layer) are retrieved. 
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Figure  3: Hierarchical feature extraction of a convolutional neural network. The top row 
illustrates the layers of a convolutional neural network. The bottom row presents the 
feature visualization of a convolutional network trained on the ImageNet dataset[12].  

source: [11, 13] 
 

2.4.1 DenseNet121, CheXNet 
CheXNet is the model based on the architecture of DenseNet121, as 

shown in the architecture in Figure 4, with pretrained weight from the research[7]. 
With an increasing number of parameters, DenseNets tend to provide constant 
accuracy improvements without any indications of performance deterioration or 
overfitting. It produced cutting-edge findings in various scenarios on several highly 
competitive datasets. Additionally, DenseNets require far fewer parameters and 
processing to execute at the highest level. We expect that more accurate tuning of 
the hyperparameters and learning rate schedules might result in even more 
significant improvements in the accuracy of DenseNets. Because we used 
hyperparameter settings intended for residual networks in our study.[14] 
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Figure  4: DenseNets architectures for ImageNet. Note that each “conv” layer in the 
table corresponds to the sequence BN-ReLU-Conv. 

Source: [14] 
 
CheXNet is a 121-layer Dense Convolutional Network (DenseNets) trained 

on the Chest X-ray 14 dataset by Huang et al. (2016). DenseNets enhance the 
network's information flow and gradients, making very deep network optimization 
manageable. After switching out the final fully linked layer for one with a single 
output, we add a sigmoid nonlinearity. 
 

The network weights are initialized from a model pretrained on ImageNet 
(Deng et al., 2009). The network is trained end-to-end using Adam with standard 

parameters (β1 = 0.9 and β2 = 0.999) (Kingma & Ba, 2014). We used minibatches 
of size 16 to train the model. The initial learning rate of 0.001 decayed by a factor of 
10 each time the validation loss plateaus after an epoch, and pick the model with the 
lowest validation loss.[7] 
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2.4.2 Result from Image classification as multi-label 
The classification problem in this study is multi-label classification. One 

CXR image could have more than one pathology or non-mutually exclusive, as 
shown in figure 5 and figure 6. The evaluation metric used for comparison is 
AUCROC on each pathology class. 
 

 

Figure  5: Multiclass problem and multi-label problem comparison 

Source: https://prakhartechviz.blogspot.com/2019/02/multi-label-classification-
python.html 
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Figure  6: Example of two similar images but with different labels. These two images 
have “joy” and “alone” non-mutually exclusive.[15] 

 

2.5 Image Enhancement 
A pixel can be understood as the intensity value at a specific point in an 

image. It can be considered the visual perception of a collection of pixels. Typically, 
2D descriptions of pixels, like f (x, y). 

Picture processing is essential to computer vision because it allows for 
properly conditioning image data prior to machine learning. The number of gray 
levels utilized can affect the pixel values of an image. For a picture with a gray level 
of m, the pixel range can be written as 0 to 2m. 

In medicine, image processing has been widely applied. In this industry, 
image enhancement is always the most frequently required process. A medial image 
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has numerous components and may be noisy. Finding the correct diagnosis is 
particularly difficult for doctors due to the noise and unclear medical image. Since all 
components of an image, including noise, differ in brightness and intensity, image 
processing can be a valuable tool for detecting and enhancing images. As a result, 
image processing technologies are employed in this work to improve chest X-ray 
images and eliminate any possible noise. Several methods are used in image 
processing to enhance images, including filtering, histogram equalization, and 
intensity correction. 
 

Numerous filters can be applied when filtering data, including Gaussian, 
median, and mean filters. Images are screened for median filters because some of 
them have noise artifacts that need to be eliminated to improve the quality of the 
images. As it rejects the Salt and Pepper noise seen in some medical imaging, the 
median filter effectively reduces noise. 
 

Moreover, image intensity adjustment can also be used to enhance the 
quality of images. This technique involves mapping the pixel’s intensity distribution 
from one level to another. The intensities of pixels are increased by mapping them 
into other values to highlight the images more and more. The image ended up with 
brighter images where the cells are more apparent, including the cancerous cells. 
 

Image enhancement is a crucial image-processing method that suppresses 
or eliminates some secondary information from images to increase the classification 
quality. The goal is to improve upon the original photos such that the objective 
images are more suited for a particular purpose. In this study, we use five different 
enhancing techniques. These image enhancement methods will be briefly explained 
in the section that follows:[7] 
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2.5.1 Histogram Equalization (HE) 
The goal of the histogram equalization (HE) method is to distribute the 

grayscale values in an image evenly. As a result, the likelihood of each gray level is 
equal. To improve image quality, HE adjusts the brightness and contrast of dark and 
low-contrast images[60]. A dark image would cause the histogram to be skewed 
towards the lower end of the grayscale, and the image data would be packed into 
the dark end of the histogram. The grey levels can be re-distributed in a more evenly 
distributed histogram at the dark end, making the picture clear. The histogram of a 

digital image with intensity levels in the range [0, L‐1] is a discrete function 
represented as follows: 
 

ℎ(𝑟𝑘) = 𝑛𝑘          (1) 
 

Where, 𝑟𝑘  is kth intensity value,  𝑛𝑘  is the number of pixels in the image 

with intensity, 𝑟𝑘 . Histograms are frequently normalized by the total number of pixels 
in the image. Assuming an M x N image, a normalized histogram is related to the 

probability of occurrence of 𝑟𝑘  in the image, as shown in equation 2. 
 

𝑃(𝑟𝑘) =
𝑟𝑘

𝑀 ∗ 𝑁
        (2) 

 
 

2.5.2 Contrast-limited adaptive histogram equalization (CLAHE) 
An improved histogram equalization (HE) variant is called Adaptive 

Histogram Equalization (AHE). AHE increases the contrast of each region 
independently by applying histogram equalization over small regions (i.e., patches) 
in the image. As a result, rather than using the image's general information, it 
enhances local contrast and edges in each region according to the local distribution 
of pixel intensities. AHE, however, could exaggerate the image's noise component. 
[61]. Contrast-limited adaptive histogram equalization (CLAHE), on the other hand, 
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produces photos that look more naturally boosted than HE does. It was found that 
the HE approach can oversaturate some areas when used on the X-ray images. 
CLAHE adopts the same strategy as AHE to address this issue. A threshold 
parameter, however, limits the amount of contrast enhancement produced inside the 
chosen region. First, the original image is changed from RGB (red, green, and blue) 
to HSV (hue, saturation, and value) color space to create a form of color that is more 
closely related to how people see color. Second, CLAHE processes the value 
portion of HSV without modifying the hue or saturation. Each gray level is 
redistributed to the original histogram's cropped pixels once it has been cropped. 
Each pixel's value is decreased until it reaches a preset limit. The image that has 
undergone HSV processing is then changed to RGB color space. 
 

2.5.3 Image Invert/ Complement 
When black and white are reversed in a binary image using the image 

inversion or complement approach, zeros become ones, and ones become zeros. 
The original pixel value for an 8-bit grayscale image is subtracted from the greatest 
intensity value, 255; the result is the new image's pixel value. In x-ray photographs, 
the light spots get darker, and the dark spots get lighter than in the original images. 
The mathematical formulation is simple:    
 

    𝑦 = 255 − 𝑥  (3) 
 

Where 𝑥 and 𝑦 are the intensity values of the original and the transformed 
(new) images, this technique shows the lungs area (i.e., the region of interest) lighter 
and the bones are dark as It can be noted that the histogram for the complemented 
image is a flipped copy of the original image. As this is a standard procedure used 
widely by radiologists, it may help deep networks for better classification. 
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2.5.4 Gamma correction 
Gamma correction carries out a nonlinear operation on the pixels of the 

source image. The projection relationship between the pixel value and the gamma 
value following the internal map, gamma correction changes the pixel value to 
improve the image. Image normalization often involves performing linear operations 
on each pixel, such as scalar multiplication, addition, and subtraction. If P 

represents the pixel value inside the [0,255] range, Ω represents the angle value, Ґ 

is the symbol of the gamma value set, and x is the grayscale value of the pixel (x ϵ 

P). Let 𝒙𝒎 be the range midpoint [0, 255]. The linear map from group P to group 

Ω is defined as: 
 

φ: P →  Ω, Ω =  {ω|ω =  φ(x)}, φ(x) =
𝜋𝑥

2𝑥𝑚
      (4) 

 

The mapping from Ω to Ґ is defined as: 
 

h: Ω →  Ґ , Ґ =  {γ|γ = h(x)}            (5) 
 

                  {
ℎ(𝑥) = 1 + 𝑓1(𝑥)          (6)

𝑓1(𝑥) = acos(𝜑(𝑥))      (7)
 

 

Where a ϵ [0, 1] denotes a weighted factor. 

Group P can be related to Ґ group pixel values based on this map. The arbitrary 

pixel value is calculated with a given Gamma number. Let 𝜸 (x) = h(x), and the 
Gamma correction function is as follows 
 

g(x)  =  255 (
x

255
)

1
𝛾/x

        (8) 

 
Where g(x) represents the output pixel correction value in grayscale. 
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2.5.5 Balance Contrast Enhancement Technique (BCET) 

By stretching or compressing the image's contrast without changing the 
histogram pattern of the image data, BCET is a method for enhancing balance 
contrast[16]. The parabolic function obtained from the picture data is the foundation 
for the solution. The general parabolic functional form is defined as 
 

y = a(x − b)2 + c        (9) 
 

The three coefficients, a, b and c, are determined from the following 
equations using the minimum, the maximum, and the mean of the input and output 
image values. 

b =  
h2(E − L) − s(H − L) + l2(H − E)

2[h(E − L) − e(H − l) + l(H − E)] 
        (10) 

 

a =  
H − L

(h − l)(h + l − 2b) 
                              (11) 

 

c = L − a(l − b)2                                            (12) 
 

Where 'l’ represents the input image's minimum value of the input image. ‘h’ 
denotes the maximum value. ‘e’ denotes the mean value of the input image. ‘L’ is the 
minimum value of the output image, ‘H’ denotes the maximum value of the output 
image and ‘E’ denotes the mean value of the output image. 
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Figure  7: Histogram for original X‐ray image and images undergo different 
enhancement techniques[17]. 
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2.5.6 Min Max Linear Contrast Stretching 
Contrast stretching involves extending an image's contrast beyond its 

intensity values to a specified range of values. Another name for it is normalization. 
Minimum-Maximum, Percentage, and Piecewise Contrast Enhancement are a few 
methods of contrast stretching. 

In Min-Max Contrast Stretching for each pixel: 
 

𝑝𝑖𝑥𝑒𝑙 = (𝑝𝑖𝑥𝑒𝑙 − 𝑚𝑖𝑛)/(𝑚𝑎𝑥 − 𝑚𝑖𝑛)) ∗ 255 
 
Where min and max are the image's maximum and minimum pixel 

values.[18] 

2.6 Related Works 
The National Institutes of Health (NIH) CXR dataset [19] comprises 112,120 

frontal CXRs, individually labeled to include up to 14 distinct pathologies. The 
authors employed Natural Language Processing to text-mine illness diagnoses with 
an estimated accuracy of more than 90% to create these labels from the related 
radiological reports. 
 

The CheXNet deep CNN model, which uses this NIH CXR dataset, is stated 
to outperform the average radiologist on the pneumonia diagnosis task significantly. 
CheXNet image classification models accept input images with dimensions of 
224x224. The CNN architecture is a 121-layer convolutional neural network trained 
using ChestX-ray14, the world's most extensive publicly available chest X-ray 
dataset, which contains over 100,000 frontal view X-ray pictures of 14 illnesses. In 
the following study, the weight from model training might be used for Transfer 
learning.[7] 
 

The CheXNet is based on Dense Convolutional Network (DenseNet). It 
establishes direct links between any two layers with the same feature-map size. We 
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demonstrated that DenseNets grow quickly to hundreds of layers while posing no 
optimization difficulties. DenseNets yield constant improvements in accuracy as the 
number of parameters increases, with no indication of performance degradation or 
overfitting. It delivered cutting-edge outcomes across different datasets in a variety 
of settings. Furthermore, DenseNets require far fewer parameters and less 
computation to reach state-of-the-art performance.[14] The propose of DenseNet121 
to be implemented came from the performance comparison of ResNet152, 
DenseNet121, InceptionV4, and SEResNeXt101 on CheXpert, finding that 
DenseNet121 performed best.[20] 
 

On 12 image classification datasets, 16 convolutional neural networks 
(CNNs) have been tested using ImageNet Transfer. They discovered that applying 
these ImageNet pretrained structures to logistic regression as feature extractors or 

fine-tuning them on the target dataset produced Spearman 𝜌 = 0.99 and 𝜌 = 0.97 
between ImageNet accuracy and transfer accuracy, respectively. Regularizes that 
improve ImageNet performance are highly detrimental to transfer learning 
performance based on penultimate layer features, and better ImageNet 
architectures obtain outstanding accuracy.[21] 
 

This research investigates the impact of prominent image-enhancing 
techniques and reports on their impact on detection performance. Five image 
improvement techniques were used To increase COVID-19 detection accuracy: 
histogram equalization (HE), contrast limited adaptive histogram equalization 
(CLAHE), image complement, gamma correction, and Balance Contrast 
Enhancement Technique (BCET). The gamma correction approach outperforms 
other enhancing techniques in detecting COVID-19 from typical and segmented 
lung Chest X-ray images.[17] 
 
 



 
 

 

 
 

CHAPTER 3  
METHODOLOGY 

3.1 Dataset 
The dataset includes around 60% of all frontal chest x-rays taken at the 

hospital and was taken from the clinical PACS database at the National Institutes of 
Health Clinical Center. As a result, compared to earlier chest x-ray datasets, we 
anticipate that this dataset is much more representative of the actual patient 
population distributions and clinical diagnosis problems. Of course, the dataset 
size—the overall number of images and the frequencies of lung diseases—would 
improve the deep learning training efficiency.[22]. Refer to [19] for the details of how 
the dataset is extracted and image labels are mined through natural language 
processing (NLP). 
The whole corpus of ChestX-ray14 is used to train and evaluate techniques for 
multilabel pathology classification. Figure 8 shows 8 chosen ChestX-ray14 samples. 
The collection includes 112,120 frontal chest X-rays from 30,805 patients.  
In this research, they randomly split the dataset into training (28744 patients, 98637 
images), validation (1672 patients, 6351 images), and test (389 patients, 420 
images). There is no patient overlap between the sets. 
The collection only includes preprocessed images and does not include the raw 
DICOM images. [19] used the encoded display settings to conduct a simple 
preprocessing while the pixel depth was decreased to 8 bits. Also, each image was 
resized to 1024 x1024 pixels without concern for the aspect ratio.  
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Figure  8: eight visual examples of common thorax diseases 

Source: [19] 
 

The distribution of each class and statistics for non-image data are 
provided in Tables 2 and 3, as well as Figure 9. The prevalence of each pathology 
was usually rare, with frequency ranging from 0.2 percent to 17.74 percent (see 
Table 2). The patient gender and view position distributions were relatively equal, 
with ratios of 1.3 and 1.5, respectively (see Table 3). The histogram in Figure 9 
shows the distribution of patient age in ChestX-ray14. The average age of the 
patients was 46.87 years, with a standard deviation of 16.60 years. 
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Table  2: Summary of disease distribution in the ChestX-ray14 dataset. For each 
disease, the total number of “true” and “false” (i.e., whether the disease is present or 

not) and their prevalence are given. The last row shows the number of “true” and “false” 
items for the implicit label “No Finding.” 

 
Prevalence is the value shown ratio of the positive number found in a sample of 
people studied and usually used in medical conditions for risk of disease. In this 
case, lung disease positive value by a total number of CXR images.  
 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

=  
# 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑖𝑡ℎ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒
  

 
Example on Nodule: 
 



 38 
 

 
 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑛 𝑁𝑜𝑑𝑢𝑙𝑒 =  
6331

(6331 + 105789)
∗ 100  =  5.65 %  

 

 

Table  3: Distribution of patient gender and view position in the ChestX-ray14 dataset. 
For patient gender, the total count of female and male is shown, and for view position, 

the total count of posterior-anterior (PA) and anterior-posterior (AP) is given. In the third 
column, the ratio between the first and second columns 

 

 

Figure  9: Distribution of patient age in the ChestX-ray14 dataset. Each bin covers a 
width of two years. The average patient age was 46.87 years, with a standard deviation 

of 16.60 years. 

 
More exploration into the dataset. As per Figure 10, check each CXR 

image, how many pathologies will show per image, and visualize the bar chart. 
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Evident exist found some insight information on each disease that have some 
correlation. 
 

 

Figure  10: Explore the Number of labels per one image distribution without “No Finding” 
included 

 

3.2 Method for study 
This section exhibits experimental testing for chest X-ray pathology 

detection using deep learning. And background about the dataset and CheXNet 
deep learning model. There is a requirement to improve the effectiveness and 
performance of the image enhancement technique on the transfer learning CheXNet 
model. The Flow from the start to the end of the prediction of each deep model is as 
follows. 
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3.2.1 Flow of work 
3.2.1.1 Image Enhancement and preparation 

In This study, six types of Image enhancement are implemented 
from the flowchart. To experiment with preprocessing on each Chest X-ray image of 
each 14 diseases.  

Figure 11 shows frontal-view chest X-ray images are put through the 
image enhancement process. Prepared datasets were separated on each 
processed image from each technique to prepare for training the Transfer Learning 
CheXNet model. 

In the case of the Gamma correction technique, The initial 
brightness of the Chest X-ray image is required to be the base starting point of 
adjustment of the gamma. After obtaining the initial brightness of each Chest X-ray 
image, adjust of gamma value on each Chest X-ray image in the condition range. 
Then gamma corrected CXR image can feed to the Transfer Learning CheXNet 
model.  
 

 

Figure  11: Flowchart of a subprocess for post Image Enhancement dataset 

From the image enhancement preparation process, Gamma 
Correction must adjust the gamma parameter based on the original image's 
brightness value. Gamma adjustment will not be too high or too low, which can 
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affect to model training result. For example, from Figure 12, the Gamma correction 
process has been implemented with the heuristic process by selecting the start 
point of brightness and the gamma setting. As per Figure 13, the brightness of this 
image (00002364_001.png) is 42.98%. Then, the Gamma setting is chosen as 0.6. 
From the exploration of dataset brightness, the distribution is shown in Figure 13. 
 

 

Figure  12: Post-gamma correction variation 

 

Figure  13: datasets brightness distribution  



 42 
 

 
 

3.2.1.2 Single Channel Image Enhancement process 
The proposed work is shown In Figure 14. Initially, the test dataset of 

chest X-ray images will go through the Deep CNN pertained model, the “CheXNet” 
model. The result is used for the baseline in performance compared with the result 
from different image enhancement techniques on CheXNet fine-tune model.  
 

 

Figure  14: Flow of the Methodology for Single Channel Image Enhancement 

3.2.1.3 Multi-Channels Image Enhancement process 
The proposed work is shown In Figure 15—post enhancements 

chest. X-ray image kept in source storage.  The next step is to get the array of each 
combination Image enhancement technique. The first stack of an array is the original 
image. The second and Third stacks are the combination of the experiment shown in 
the flow of work below. For example, in the Gamma+CLAHE combination, the first 
array stack is the original image. The second is the Post Gamma correction image, 
and the third stack is the Post CLAHE image. Afterward, the image stack with the 
three channels of mention here was input into the model to train the loop from all 
data sources of this combination. The model training use CheXNet transfer learning 
and fine-tuning. Then, the evaluation process proceeds accordingly.  
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Figure  15: Flow of the Methodology for Multi-Channels Image Enhancement 

3.2.2 Training Procedure 
We use a 121-layers Dense Convolutional Network (DenseNets) training 

on Chest X-ray 14 dataset. The architecture of the network is shown in Figure 16. 
The network takes as input an image of a chest X-ray and outputs a class prediction. 
The image used for the training model is from different image preprocessing 
techniques according to the preparation step above. 
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Figure  16: a partial example from the block of DenseNet121 architecture top and 
bottom part 
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We train chest X-ray classification models with pretrained ImageNet and 
use the weight obtained from our training condition without CheXNet weight. 
The task of interest is to predict the probability of different pathologies from chest X-
rays. We use the 112,120 frontal chest X-rays from 30,805 patients labeled for the 
presence or absence of 14 radiological observations, split the dataset into training 
(28744 patients, 98637 images), validation (1672 patients, 6351 images), and test 
(389 patients, 420 images). There is no patient overlap between the sets. The base 
model used is DensNet121, ImageNet weight loaded, batch size 32, and the initial 
learning rate is 0.001. The image dimension input 224x224 from Chest X-ray image 
1024x1024, used callback “ReduceLROnPlateau” to decay the learning rate each 
epoch, and the minimum learning rate is 1e-8, optimizer “Adam” with standard 

parameters (β1 = 0.9 and β2 = 0.999), loss function “binary_crossentropy” and 
train 50 epochs. Imbalance data optimization by class weighting. An activation 
function is Sigmoid.   Data Augmentation was implemented by flipping the image 
horizontally only to alter between the PA and AP types of the Chest X-ray image. The 
best weight from training with an original image of the Chest X-ray 14 dataset is 
CheXNet weight. Moreover, the models were trained on Nvidia GeForce RTX 3080 
GPUs with 23 GB of memory. 

Further study starts from the CheXNet weight. Then it uses this weight to 
fine-tune the deep learning model with the same parameter above but alter the input 
source from 6 different image enhancement techniques prepared earlier. The model 
architecture is still the same, except we unfreeze the layer from the start to adjust the 
weight of each neural network on each layer. 
 

3.2.3 Evaluation and Comparison 
We evaluate models using the average of their AUROC metrics (AUC) 

on the 14 radiological observations (Atelectasis, Cardiomegaly, Effusion, Infiltration, 
Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, 
Fibrosis, Pleural Thickening, Hernia) and Comparison between image enhancement 
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technique. The ROC curve is plotted with TPR against the FPR where TPR is on the 
y-axis and FPR is on the x-axis. 

 

Figure  17: AUC - ROC Curve  

source: https://developers.google.com/machine-learning/crash-
course/classification/roc-and-auc 

Defining terms used in AUC and ROC Curve 
 

𝑇𝑃𝑅 𝑜𝑟 𝑟𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

𝐹𝐷𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 
AUC measures the volume that the ROC curve is generating by 

computing the sensitivity and 1-specificity by evaluating all possible threshold 
values. The greater this area, the better the algorithm tends to be. The axis of a ROC 
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plot consists of the false positive rate (1- specificity, FPR) against the true positive 
rate (sensitivity, TPR). An excellent model has an AUC near one, meaning it has a 
good separability measure. A poor model has an AUC near 0, meaning it has the 
worst separability measure. It means it is reciprocating the result. It predicts 0s as 1s 
and 1s as 0s. 

AUC - ROC curve is a performance measurement for classification 
problems at various threshold settings. ROC is a probability curve, and AUC 
represents the degree or measure of separability. It tells how much the model is 
capable of distinguishing between classes. The higher the AUC, the better the 
model predicts 0 classes as 0 and 1 classes as 1. By analogy, the Higher the AUC, 
the better the model is at distinguishing between patients with the disease and no 
disease. Furthermore, when AUC is 0.5, the model has no class separation capacity. 

3.3 Experiment baseline (from paper and our result) 
Pretrained with CheXNet Table 4 below shows the result of CheXNet 

Pretrained from paper and “Our_weight” training from scratch on DenseNets with 
ImageNet weight use for the based line on this study. The result is slightly different 
from the CheXNet paper due to the python dependencies environment and 
configurations that affect the training process.   
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Pathology cheXNet Our_weight 

Atelectasis 0.8094 0.8107

Cardiomegaly 0.9248 0.8914

Effusion 0.8638 0.8776

Infiltration 0.7345 0.7152

Mass 0.8676 0.8455

Nodule 0.7802 0.7145

Pneumonia 0.7680 0.7721

Pneumothorax 0.8870 0.8761

Consolidation 0.7901 0.7986

Edema 0.8878 0.8878

Emphysema 0.9371 0.8967

Fibrosis 0.8047 0.7571

Pleural_Thickening 0.8062 0.7835

Hernia 0.9164 0.8727

mean auroc 0.8413 0.8214  

Table  4: AUROC from CheXNet result with the test set to be Based line for 
comparison. 

 



 
 

 

 
 

CHAPTER 4  
RESULTS 

After training on each source image from 6 different image enhancement 
techniques, in this chapter, we present the results of our performance of each image 
enhancement technique through fine-tuning the CheXNet model with Chest X-ray 14 
dataset. We separately show the AUROC result on each image enhancement 
technique and the relative percentage difference. 

4.1 Single Channel Image Enhancement Result 
In the single channel image enhancement experiment, each image 

enhancement technique was fed to train five times to confirm the trend and 
performance is not occasionally result. The detail on the input image is 224x224 
pixels from 1024x1024 pixels, and three channel is the layer of the processed image 
from the image enhancement on that technique. The performance metric use 
AUROC to compare with the performance from previous paper research, our weight 
reimplements, and the detail above in chapter 3. The result table below compares 
AUROC from each image enhancement technique and the AUROC from the original 
image model with the weight train by ourselves with reference AUROC from the 
previous research paper of CheXNet[7]. 
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4.1.1 Gamma correction 
Table 5 shows the AUROC performance result from gamma correction. 

The AUROC improve clearly on Nodule, Pneumonia, Plural Thickening, and Hernia. 
However, the performance in diagnosing Mass, Pneumothorax, Edema, and Fibrosis 
decreased. 5 repeated experiments confirmed that the result was in the same 
direction. The mean AUROC on the 5th experiment indicates the best overall 
performance of these studies on gamma correction—the performance reduction in 
other pathologies is nearly unchanged. 

 

 

Table  5: AUROC result from Transfer Learning and fine-tuning with gamma 
correction compare with the AUROC from the original image model 
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4.1.2 Contrast-limited adaptive histogram equalization (CLAHE) 
Table 6 shows the AUROC performance result from Contrast limited 

adaptive histogram equalization. The AUROC improves clearly on nodule, 
Pneumonia, Fibrosis, Plural Thickening, and Hernia. However, the performance in 
diagnosing Mass, Pneumothorax, and Edema decreased. 5 repeated experiments 
confirmed that the result was in the same direction. The mean AUROC in the 3rd 
experiment indicates the best overall performance of these studies on CLAHE. The 
reduction performance occurred only on Mass, Edema, and Pneumothorax.   

 

 

Table  6: AUROC result from Transfer Learning and fine-tuning with Contrast limited 
adaptive histogram equalization compared with the AUROC from the original image 
model 
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4.1.3 Histogram Equalization 
Table 7 shows the AUROC performance result from Histogram Equalization. 

The AUROC improves clearly on Cardiomegaly, Mass, Nodule, and Plural 
Thickening. However, the performance in diagnosing other pathology decreases, as 
the red color shows in the table. Five repeated experiments confirmed that the result 
was in the same direction. The mean AUROC in the 1st experiment indicates the best 
overall performance of these studies on Histogram Equalization. The performance 
reduction on the overall pathology improved, but the Nodule detection performance 
slightly decreased from the four remaining experiments. 

 

 

Table  7: AUROC result from Transfer Learning and fine-tuning with Histogram 
Equalization compare with the AUROC from the original image model 
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4.1.4 Balance Contrast Enhancement Technique (BCET) 
Table 8 shows the AUROC performance result from Balance Contrast 

Enhancement Technique. The AUROC improve clearly on Nodule, Plural Thickening, 
and Hernia. However, the performance in diagnosing the rest of the pathology 
decreases, as the red color shows in the table. Five repeated experiments confirmed 
that the result was in the same direction. The mean AUROC on the 5th experiment 
indicate the best overall performance of these study on BCET even if it has no 
improvement compared with the performance without using the image enhancement 
technique.  The most improvement from BCET pathology is Hernia when comparing 
all six image Enhancement Techniques. 

 

 

Table  8: AUROC result from Transfer Learning and fine-tuning with Balance 
Contrast Enhancement Technique compare with the AUROC from the original image 
model 
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4.1.5 Min Max Linear Contrast Stretching (MMCS) 
Table 9 shows the AUROC performance result from Min-Max Contrast 

Stretching. The AUROC improves clearly on nodules, Pneumonia, and Hernia. 
However, in some diagnoses, some pathologies were slightly reduced. 5 repeated 
experiments confirmed the result was in the same direction in most pathology. 
Nevertheless, pathology differences showed in the 3rd experiment; overall 
performance decreased, and the Emphysema and Hernia reduced in different 
directions compared with the remaining experiments. The mean AUROC on the 5th 
experiment indicates the best overall performance of these studies on MMCS. The 
performance reduction in other pathologies is close to unchanged. 

 

 

Table  9: AUROC result from Transfer Learning and fine-tuning with Min-Max 
Contrast Stretching compared with the AUROC from the original image model 
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4.1.6 Image Invert/ Complement 
Table 10 shows the AUROC performance result from Complement. The 

AUROC improves clearly on Nodule, Cardiomegaly, Pneumonia, and Fibrosis. 
However, some pathology diagnoses decreased as red color showed in 
Pneumothorax, Consolidation, Edema, and Emphysema. 5 repeated experiments 
confirmed the result was in the same direction in most pathology. The mean AUROC 
on the 4th experiment indicates the best overall performance of these studies on 
Complement—the performance reduction in other pathologies is nearly unchanged. 

 

 

Table  10: AUROC result from Transfer Learning and fine-tuning with Complement 
compare with the AUROC from the original image model 
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4.1.7 Single Channel image enhancement result comparison 
We observe pathologies improve differently depending on each image 

enhancement technique. Based on the selection of the best mean AUROC from 
each Single Channel image enhancement model training, the comparison result is 
shown in table 11. The best overall can use mean AUROC to indicate from the table; 
MMCS and Gamma correction is the best overall performance on 14 pathologies 
from these single channel input training experiments. For the pathology example of a 
Nodule alone, the CLAHE is the best technique to improve disease detection by 3.37 
percent. The second best for Nodule detection is the Min Max Contrast Stretching 
technique, as shown in Table 11. 

Moreover, The BCET and Gamma correction improve Hernia detection. 
However, The Balance Contrast Enhancement Technique decreases the 
performance of the remaining pathology except for Nodule and Hernia. The best 
improvement in Pneumonia detection used Gamma correction. 

Each pathology detection base on each image enhancement technique, 
from figure 18, shows the potential performance for the specific uses for one class of 
pathology detection. When observing different perspectives from all the experiments 
on image enhancement techniques specific to the disease, the disease which 
significantly improves is Cardiomegaly, Nodule, Pneumonia, Emphysema, Fibrosis, 
Pleural Thickening, and Hernia. Cardiomegaly specifically chooses the Histogram 
Equalization technique to maximize improvement from these experiments. Nodule 
Fibrosis Emphysema and Pleural Thickening chose the Contrast limited adaptive 
histogram equalization; Pneumonia used the Gamma correction technique, and 
Hernia chose the Balance Contrast Enhancement Technique. The best weight 
trained from the experiment is shown in figures 19-25, according to each pathology.
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Figure  18: The percentage of AUROC improvement from image enhancement 
techniques on the specific pathology 
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4.2 Multi-Channels Image Enhancement Result 
The channel of each image enhancement technique will obtain and stack to 

a new image with three different channels. The three-channel consists of the original 
dimension, the first image enhancement technique, and the second. We found that 
the exclusion of the original image causes the model to be mistakenly realized into 
different images, and the performance results in a drastic decrease. Therefore, 
training on multi-channel input must include the original channel with two other 
combinations of image enhancement techniques.  
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4.2.1 Original image + Gamma correction + Invert 
Table 12 shows the AUROC performance result from the combination. 

The AUROC improves clearly on nodules, Pneumonia, and Hernia. However, the 
performance in diagnosing the rest of the pathology decreases, as shown in the red 
color. The five repeated experiments confirm that the result was in the same 
direction. The mean AUROC on the 3rd experiment is 0.4243 percent increment, 
indicating the best overall performance on the combination.  

The most improvement from this combination is Pneumonia. A percent 
increment of 1.924 is the best improvement on Pneumonia, specifically both Single 
Channel and Multi-Channel Image Enhancement. 

 

 

Table  12: AUROC result from Transfer Learning and fine-tuning with gamma 
correction and invert combination compare with the AUROC from the original image 
model
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4.2.2 Original image + Gamma correction + HE 
Table 13 shows the AUROC performance result from the combination. 

The AUROC improves clearly on Nodules, Pneumonia, and Hernia. However, the 
performance in diagnosing the rest of the pathology decreases as the red. 
Significant reduction falls into Pneumothorax the most. The five repeated 
experiments confirm that the result was in the same direction. The mean AUROC in 
the 3rd experiment is a 0.5901 percent increment from the baseline, which indicates 
the best overall performance in this combination. 

 

 

Table  13: AUROC result from Transfer Learning and fine-tuning with gamma 
correction and Histogram Equalization combination compare with the AUROC from 
the original image model
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4.2.3 Original image + Gamma correction + CLAHE 
Table 14 shows the AUROC performance result from the combination. 

The AUROC improves clearly on Cardiomegaly, Nodules, Pneumonia, Emphysema, 
and Hernia. Fibrosis appeared to be one improvement in 5 experiments, and the 
result of it. The rest of these experiments on Fibrosis performance are decreased.  
2nd experiment is the best overall in this combination. However, in the 2nd 
experiment, the model compensates for Hernia detection compared with the 4th 
experiment. The five repeated experiments confirm that most results were in the 
same direction. The mean AUROC in the 2nd experiment is 0.5812 percent increment 
from the baseline, which indicates the best overall performance in this combination. 
The interesting observation of this experiment is that overall performance remains to 
resemble. The difference between the experiment's results is close together. 

 

 

Table  14:  AUROC result from Transfer Learning and fine-tuning with gamma 
correction and Contrast limited adaptive histogram equalization combination 
compared with the AUROC from the original image model
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4.2.4 Original image + Gamma correction + MMCS 
Table 15 shows the AUROC performance result from the combination. 

The AUROC improves clearly on Cardiomegaly, Nodules, Pneumonia, Pleural 
Thickening, and Hernia. In 4th experiment, the model compensates for Pneumothorax 
and Edema detection performance. The five repeated experiments confirm that most 
results were in the same direction. The mean AUROC in the 4th experiment is 0.4946 
percent increment from the baseline, which indicates the best overall performance in 
this combination. The difference between experiment results is close together. 

 

 

Table  15: AUROC result from Transfer Learning and fine-tuning with gamma 
correction and Min-Max Linear Contrast Stretching combination compare with the 
AUROC from the original image model
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4.2.5 Original image + Gamma correction + BCET 
Table 16 shows that  The AUROC performance improves clearly on 

Cardiomegaly, Nodules, Pneumonia, and Hernia from the “ogb” combination. The 
First 3 experiment results stay in the same range in mean AUROC. The five repeated 
experiments confirm that most results were in the same direction, 3 out of 5. The 
mean AUROC in the 3rd experiment is 0.3313 percent increment from the baseline, 
which indicates the best overall performance in this combination. The overall 
performance in this combination is less than all the technique combinations above.  

 

 

Table  16: AUROC result from Transfer Learning and fine-tuning with gamma 
correction and Balance Contrast Enhancement Technique combination compared 
with the AUROC from the original image model
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4.2.6 Multi-Channels image enhancement result comparison 
We observe pathologies improve differently depending on each image 

enhancement technique. Based on the selection of the best mean AUROC from 
each Multi-Channel image enhancement model training, the comparison result is 
shown in table 17. The best overall can use mean AUROC to indicate from the table; 
the ogh3 combination is the best overall performance on 14 pathologies from these 
Multi-Channel input training experiments. For the pathology example of a Nodule 
alone, the ogc4 combination is the best technique to improve disease detection by 
2.71 percent. The second best for Nodule detection is the ogm4 combination, as 
shown in Table 17.  

Each pathology detection base on each image enhancement technique, 
from figure 26, shows the potential performance for the specific uses for one class of 
pathology detection. When observing different perspectives with all the experiments 
on image enhancement techniques specific to the disease, the disease which 
significantly improves is Cardiomegaly, Nodule, Pneumonia, Emphysema, Fibrosis, 
Pleural Thickening, and Hernia. To maximize improvement from these experiments 
for Cardiomegaly, specifically chooses the ogh3 combination and then select the 
ogc2 combination for fibrosis and pleural thickening. The most potent combination 
for detecting nodules and emphysema is ogb5 and ogh1. The most excellent 
combination to diagnose Pneumonia is the ogi3 combination, whereas the best 
combination to detect a hernia is the ogh3 combination. The best weight trained 
from the experiment is shown in figures 27-33, according to each pathology.
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Figure  26: The percentage of AUROC improvement from multi-channel combination 
image enhancement techniques on the specific pathology 
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4.3 All result comparison 
Multi-channel image enhancement compensates performance on detection-

specific pathology instead of overall pathologies. Table 18 all results are shown in 
this table. The single channel image enhancement considered gamma correction 
experiment has stable and the highest overall performance (mean auroc).   

Furthermore, multi-channel image enhancement considered the “ogc” 
combination experiment has stable and the highest overall performance. The 
standard deviation of the “gam5” is less than the “ogc2” combination, which 
indicates that the “gam5” has better overall pathologies detection than the “ogc2” 
combination. 
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